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ABSTRACT

Recent studies have shown that the protein interface sites between individual monomeric units in biological assemblies are

enriched in disease-associated non-synonymous single nucleotide variants (nsSNVs). To elucidate the mechanistic underpinning

of this observation, we investigated the conformational dynamic properties of protein interface sites through a site-specific

structural dynamic flexibility metric (dfi) for 333 multimeric protein assemblies. dfi measures the dynamic resilience of a single

residue to perturbations that occurred in the rest of the protein structure and identifies sites contributing the most to function-

ally critical dynamics. Analysis of dfi profiles of over a thousand positions harboring variation revealed that amino acid residues

at interfaces have lower average dfi (31%) than those present at non-interfaces (50%), which means that protein interfaces have

less dynamic flexibility. Interestingly, interface sites with disease-associated nsSNVs have significantly lower average dfi (23%) as

compared to those of neutral nsSNVs (42%), which directly relates structural dynamics to functional importance. We found that

less conserved interface positions show much lower dfi for disease nsSNVs as compared to neutral nsSNVs. In this case, dfi is

better as compared to the accessible surface area metric, which is based on the static protein structure. Overall, our proteome-

wide conformational dynamic analysis indicates that certain interface sites play a critical role in functionally related dynamics

(i.e., those with low dfi values), therefore mutations at those sites are more likely to be associated with disease.
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INTRODUCTION

Advances in sequencing technologies are providing a
wealth of data on human genetic variation. It is now
clear that any personal exome contains thousands of var-
iants, the majority of which are non-synonymous single
nucleotide variants (nsSNVs).1 However, distinguishing
between neutral variants (i.e., those with little or no
effect on phenotype) from variants associated with dis-
ease still remains a major challenge for both monogenic
(Mendelian) and complex diseases.1,2 The current state-
of-the-art methods for diagnosing amino acid variants
primarily employ evolutionary information obtained
from multispecies sequence analysis in a variety of
ways.1–6 While these methods have been used exten-
sively, they often fail to correctly diagnose damaging var-
iants at evolutionarily variable positions and neutral
variants at highly conserved positions.2

Several methods have been proposed to incorporate

structure-based information from protein structures. Two

prominent methods are to use accessible surface area

(ASA), which determines the surface area of a protein

accessible to a solvent, and the change in protein stabil-

ity, which utilizes the difference in free energy between

the folded and unfolded state on mutation through
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empirical calculation based on the 3D structure.7–12

Interestingly, the addition of these modalities has only

produced a marginal 3–4% improvement in the rate of

true positive diagnosis.9,13,14 A common feature among

these methods is that they are based on the static 3D

structure of the protein, which fails to capture the

dynamic motion of the protein structure. From the con-

formational transitions of allosteric proteins to the

required flexibility of a ligand-binding site, proteins must

fluctuate to achieve their function.15–30

A reason for the lack of methods incorporating protein

dynamics into nsSNV diagnoses could be the absence of

amino acid site-specific measures that can statistically

quantify the contribution and impact of each position on

the conformational dynamics of the protein in a fast and

efficient way. We recently developed a dynamic flexibility

index (dfi), which measures the contribution of each posi-

tion to functionally important dynamics.31 Through dfi

analyses of >100 monomeric proteins, we found that the

added feature of protein dynamics has the potential to

distinguish between nsSNVs that impact biological func-

tion and those that have no effect on function (neutral

nsSNVs) at a proteome scale.31 Moreover, this large-scale

analysis including population variations implicated in dis-

eases, functionally critical positions (catalytic and binding

sites), and evolutionary rates of substitutions produced

concordant patterns; it established that the preservation of

dynamic properties of residues in a protein structure is

critical for maintaining the protein/biological function.31

The dfi metric has not yet been evaluated for biological

assemblies. Many proteins form biological assemblies to

perform their specific functions in the cell. Recent studies

have shown that nsSNVs located at protein-protein inter-

face sites are often associated with disease10,32 where

additional metrics beyond evolutionary information can

be useful.33 Therefore, we report the dfi analysis for pro-

teins that form biological assemblies and its relationship

with evolutionary conservation. We also compare the dif-

ference between the dfi of disease-associated and neutral

nsSNVs when it is calculated in biological assemblies and

when it is calculated by using proteins as monomers to

determine which is more informative at phenotypic pre-

diction. Moreover, we compare dfi with the static measure

of solvent accessible area, which has also been used to pre-

dict disease-associated nsSNVs in biological assemblies.10

METHODS

Data set

We generated a curated dataset of 1,174 protein

nsSNVs using available databases, including HumVar

that contains 301 disease-associated and 200 neutral pop-

ulation variants compiled for PolyPhen-2,6 383 neutral

variants from the 1000 Genomes Project with those hav-

ing population frequency >10%,34 and 290 disease-

associated variants from the Human Gene Mutation

Database (HGMD).35 The set of 333 unique multimeric

proteins containing 591 disease-associated and 583 neu-

tral nsSNVs was modeled such that all the proteins

formed assemblies and have 3D structures in the Protein

Data Bank36 with >80% sequence identity between the

reference sequence and experimentally derived protein

structures and >80% sequence coverage using BLAST.

The high constraints were imposed to ensure that the

structures used in this study are real experimental human

proteins rather than pure homology models.

The dfi metric for biological assemblies

The dynamic flexibility index (dfi) is a metric to deter-

mine the structural flexibility at specific sites on a protein.

We applied our original method31 directly to biological

assemblies (BAs) such that the dynamic flexibility for each

position in the BA is considered. In brief, the method is

based on the perturbation response scanning (PRS) method

where the equilibrium structure of a protein is constructed

as a 3-D elastic network model (ENM) in which the nodes

are represented by C-alpha atoms,37,38 and the pairwise

potential between each atom is given by the potential of a

harmonic spring. A small perturbation in the form of a

random Brownian kick is applied sequentially to each

C-alpha atom in the elastic network. The perturbation on a

single residue results in a cascade of perturbations to all

other atoms in the network, thus inducing a global response.

The fluctuation response profile of the positions upon

perturbation of a single residue ( DR½ �3N31) is obtained using

linear response theory and given by the equation

DR½ �3N31 ¼ H½ �3N33N

� �-1
DF½ �3N31 (1)

where the DF vector contains the components of the

externally applied random unit force vectors (f̂ Þ on the

selected residues, and H21 is the inverse of Hessian

matrix (i.e., H, the Hessian, is a 3N 3 3N matrix com-

posed of the second order derivatives of the harmonic

potential with respect to the components of the position

vectors for the chain of length N). To minimize the

effects of randomness, this perturbation procedure is per-

formed ten times to ensure that the applied force is iso-

tropic with a zero angular average (f̂ ¼ 0), and the

response vector DRi
j is averaged.

In short, the application of the random Brownian kick

to a given residue on the 3D elastic network perturbs the

residue interaction network of the protein beyond fluctu-

ations inherent in the system at equilibrium and elicits

responses from all other residues in the structure.

Through the perturbation response scanning method

(PRS),39,40 we compute the fluctuation response of resi-

due j, DRi
j, both in direction and magnitude on pertur-

bation. We repeat this perturbation on each single

residue for all positions in the chain and obtain the
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response profiles of all other positions. The dynamic

flexibility index, dfi, is then obtained by the equation

dfi ¼
PN

i¼1 jDRi
j j

PN
j¼1

PN
i¼1 jDRi

j j
(2)

where DRi
j ¼

ffiffiffiffiffiffiffiffiffi
DR2
p

is the magnitude of positional dis-

placements for residue j in response to a perturbation at

residue i after averaging out the response vector DRi
j

over ten different random directional unit forces, and N

is the total number of positions on the biological assem-

bly. Note that we compared the dfi values obtained from

the coarse-grained ENM model with those obtained from

all-atom replica exchange molecular dynamics simula-

tions for several proteins in our earlier work31 in which

the dfi values obtained from these two different simula-

tion approaches yielded very high correlations, as Pear-

son correlation coefficients between PRS and all-atom

MD ranged from 0.64 to 0.88 for five proteins.

For the monomeric analysis of biological assemblies,

the dfi value is estimated using the monomeric unit

alone (i.e., for a homomeric dimer with two units of 2N

residues only the N residue position of the monomeric

unit is considered). Thus, the impact of the interactions

aroused due the interaction of interface residues between

each unit in the BA is not considered. In estimating the

dfi values for the BA, however, the whole complex (i.e.,

2N residue positions of the two homomeric units) is

used such that the interactions between the interface

positions in the BA are explicitly included in the Hes-

sian. Moreover, the flexibility response of residue i on

unit 1 after perturbing residue j on unit 2 is computed

Figure 1
The schematic diagram of the method followed for the structural dynamic analysis of each multimeric protein. We identify a three-dimensional (3-

D) structure for each protein sequence through a BLAST search using the protein data bank (PDB). In this search, the sequence coverage and the
sequence identity between the reference sequence query and the known protein structures is set to >80%. The identified 3D experimental structures

from PDB are then used for the perturbation response scanning (PRS) model to predict the dynamic flexibility index (%dfi) for each residue posi-

tion. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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and included in the dfi profile of unit 1. A workflow

depicting the methodology for the dfi analysis of the BA

and monomeric unit is provided in Figure 1.

Because we collectively analyze atomic positions for a

wide variety of protein structures, dfi must be normal-

ized. Thus, the dfi value of a specific atomic position in

the protein is expressed as %dfi, which is a percentile

rank of that atom in a sorted array of all dfi values in a

given protein. The dfi calculation is performed on each

biological assembly, which is comprised of two or more

chains. The calculation is then done on a single chain

taken from the biological assembly (Fig. 1).

Accessible surface area

We compare the dfi metric with a static metric known as

accessible surface area (ASA) and its capability to quantify

phenotypes of nsSNVs. The ASA metric determines the

amount of surface area in the crystal that is accessible (i.e.,

exposed to a solvent). We calculated ASA by using the DSSP

program.41 Following the dfi procedure, we normalized ASA

values for each residue position and expressed them as %ASA.

Prediction of interface sites

The prediction of molecular interface residues of BAs were

determined using the PISA server.42–44 PISA is a computa-

tional tool that predicts the strength of interaction between

two monomers and the interfaces between them, resulting in

the multimer that is likely the functional form of the BA.

Evolutionary rates

We estimate the absolute evolutionary rate at each site

by using a previously described method,2 which com-

putes the number of amino acid substitutions in a given

phylogeny following the parsimony algorithm for each

site independently.45 The evolutionary rate of amino

acid changes across species is then the number of amino

acid substitutions divided by the total time elapsed in

the tree. Evolutionary rates are in the units of substitu-

tions per amino acid per billion years (Byrs) and are

based on protein sequence alignments of 46 species avail-

able from the University of California–Santa Cruz

resource (UCSC Human Genome Browser).46

RESULTS AND DISCUSSION

To assess the effect of using biological assemblies

(BAs) on the estimation of conformational dynamic

parameters, we compared the dfi values of all 1174

nsSNVs in 333 BAs with those obtained by using only

the monomeric units. Many sites harboring sequence

variants showed large differences in %dfi calculated from

Figure 3
Cumulative %dfi distributions of protein interface sites for disease-
associated variants (black line) and neutral variants (grey line) from the

human population (compiled from HumVar and the 1000 genomes

project). The average %dfi for disease-associated variants at interfaces is
23% while that for neutral variants is 42% (P< 0.0001).

Figure 2
A scatter plot is shown in (A) of the %dfi values for all variants, disease-associated and neutral, using the biological assembly units (y axis) their
corresponding monomeric units (x axis). Each axis is scaled logarithmically. Many sites exhibit low dfi in the BA but much higher dfi in their

monomers, indicating that they are located at interfaces. Cumulative %dfi distributions of interface sites (B) and noninterface sites (C) for the BA
units and their corresponding monomeric units.
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the BA and monomeric forms [Fig. 2(A)]. For example,

many high %dfi sites in the monomeric calculations

showed rather low %dfi in the BA calculation. We found

many of these residues to be located at interface sites in

the BA, which seems reasonable since residues at interfa-

ces exhibit a different fluctuation profile in assemblies.

This is due to their interaction with the residues of

another unit, unlike the monomeric forms where the

same residues would interact with a solvent instead.

When considering only the interface sites (357 of 1174),

we observe a large difference (P< 0.0001) in the cumula-

tive %dfi distributions [Fig. 2(B)] between the mono-

meric and multimeric forms with an average %dfi of

31% for the BA unit and 51% for the monomeric unit.

The interface variants had lower dynamic flexibility, with

>50% showing %dfi� 25%. This tendency is expected

since the interactions with other monomeric units in the

BA lead to a decrease in flexibility. On the other hand,

the cumulative %dfi distributions of monomeric and BA

units are very similar for the nsSNVs at non-interface

sites (817 of 1174), as shown in Figure 2(C). For these

sites, the average %dfi for BA units was 50% and that for

their monomeric units was 46%.

The above pattern prompted us to investigate whether

considering the structural dynamics of the BA is more

powerful in distinguishing disease-associated nsSNVs. We

computed the cumulative distributions of 207 disease-

associated nsSNVs from 62 proteins and 150 neutral

nsSNVs from 71 proteins separately for interface sites

(Fig. 3). There is a distinct separation between the two

cumulative distributions. At lower dfi, the separation of

the two curves was pronounced, indicating that sites

containing disease-associated variants have lower dfi than

those containing neutral variants at interfaces. The aver-

age %dfi for disease-associated variants at interfaces is

23% while that for neutral variants is 42% (P< 0.0001).

We chose two case studies to shed light on the mecha-

nistic differences for the analysis of individual proteins

and BAs. Human pyridoxine-5’-phosphate oxidase

(1NRG in the Protein Data Bank) is a homodimer that

serves as an important enzyme to catalyze reactions in

the vitamin B6 metabolism pathway. Two variants with

known disease implications from HGMD were mapped

onto the protein interface, as shown in Figure 4(A). The

structure is colored within a spectrum of red–yellow–

green–cyan–blue, where red shows the highest and blue

the lowest values of %dfi. Based on Figure 4(A), it is

clear that these two variants located at the interface have

low dynamic flexibility (ARG-95 and ARG-229 have a

%dfi of 0.07981 and 0.15962, respectively). With such

low dfi values those sites are likely critical for function,

thus a mutation there will likely lead to a disruption in

function. For instance, the site ARG-229 is mutated to

TRP-229, which results in the potentially fatal disease,

neonatal epileptic encephalopathy (NEE).35,47 For the

second case, three neutral variants from the 1000

Genomes Project were mapped to the model structure of

human carboxypeptidase A1 (homologous structure is

Figure 4
The ribbon diagrams of (A) recombinant human pyridoxine-5’-phosphate oxidase (PDB code: 1NRG) and (B) human carboxypeptidase A1 model

structure (PDB code: 1PYT) with respect to dynamic flexibility index, %dfi, are shown. Each structure is colored within a spectrum of red–yellow–
green–cyan–blue, where red shows the highest and blue the lowest values of %dfi. In (A), two disease-associated variants are shown, which both

occur at interface sites, while (B) shows three neutral variants, with TYR-435 occurring at an interface site and the other two at non-interface sites.
The colors of their sticks and spheres correspond to their %dfi.
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1PYT in the Protein Data Bank) with TYR-435 occurring

at an interface site and the other two at non-interface

sites [Fig. 4(B)]. From Figure 4(B), it can be seen that

these sites have noticeably higher dynamic flexibility.

Interestingly, even TYR-435 had a high dfi score of

0.62084 despite its location at an interface. It is expected

that interface sites generally have lower dfi values since

they are interacting with residues of another protein,

thus high dfi at an interface is surprising and could lend

useful information relating to the phenotype. Figure 4

shows how variants within an individual protein could

lead to the general trend seen in Figure 3, which is based

on the analysis of >100 proteins. Moreover, the trend

exhibited in Figure 3 and the case study presented in

Figure 4 together gives further indication to the notion

that dfi may discriminate disease-associated from neutral

variants.

For comparison, we also examined the performance of

ASA, a metric based on the static form of the protein

structure, which has also been utilized to differentiate

disease-associated nsSNVs from neutral variants.10,33,48

We found that the average %ASA showed only a small

difference (45% for disease-associated and 66% for neu-

tral population variants), as compared to a 2.5 times dif-

ference observed for average %dfi (21% for disease

associated and 54% for neutral population variants). We

found that there is a correlation between ASA and dfi, as

sites with low ASA that are surrounded with other resi-

dues rather than solvent would exhibit fewer fluctuations

and cause lower dfi values. However, among these low

ASA positions, certain positions can be more dynamically

critical in translating or controlling the functionally

related motion than others due to their residue interac-

tion pattern within the protein structure. By utilizing dfi,

we are able to capture these dynamically critical posi-

tions. Thus, the above result suggests that the interface

residues that play an important role in the collective

motion of the BA are more susceptible to damaging

mutations.

We examine whether the predictive capabilities of dfi

for the BA go beyond that afforded by evolutionary con-

servation of positions involved by estimating the evolu-

tionary rate (r) for each nsSNV site (as described in the

methods section). We divided the estimated evolutionary

rate (r) into two different categories: ultra-conserved

(r 5 0) or less-conserved (r> 0). In our analysis, 37% of

interface sites and 30% of non-interface sites were ultra-

conserved sites. Likewise, 63% of interface sites and 70%

of non-interface sites were less-conserved sites. This dif-

ference in evolutionary rates is rather small, as compared

to conformational dynamics where a higher fraction of

interface sites have very low dfi (53% of interface sites

and 29% of non-interface have dfi� 25%). This

prompted us to consider the phenotypic prediction of

nsSNVs at interface sites, as the ability to correctly iden-

tify disease associated variation at less-conserved sites is

not high for many evolutionary rate based in silico pre-

diction tools1,2 and many interface sites are at less con-

served positions. We surmised that dfi calculated using

BAs may provide information beyond that afforded by

evolutionary conservation at those sites. Thus, we

explored the ability of dfi to discriminate disease-

associated and neutral nsSNVs at less-conserved sites

(r> 0).

We compared box plots of %dfi and %ASA for

disease-associated and neutral variants at interface sites

that were less-conserved [Fig. 5(A)]. Remarkably, the

average %dfi of disease-associated nsSNVs is �2.5 times

lower than that of neutral nsSNVs gathered from human

population statistics.6 The average %dfi for disease-

associated variants was 25% at less-conserved sites at

interfaces, whereas the average %dfi for neutral variants

from the 1000 Genomes Project and HumVar was 45%

Figure 5
(A) A box plot of %dfi (green) and %ASA (brown) distributions com-
paring disease-associated and neutral nsSNVs for less-conserved variants

(evolutionary rate r> 0) occurring at protein interfaces. Box plots show
median, upper, and lower quartiles, and whiskers represent maximum

and minimum values. (B) A receiver operating characteristics (ROC)

curve for dfi and ASA using a test set that was generated from 10% of
the whole data set. The area under the curve (AUC) for dfi and ASA

was 0.71 and 0.56, respectively. TPR and FPR are true and false positive
rates in predicting disease - associated nsSNVs to be identified as non-

neutral, respectively.
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(P< 0.001 when comparing both datasets). This suggests

that dfi is likely a useful metric for predicting phenotypes

of nsSNVs at less-conserved sites. In comparison, we did

not see a suggestive difference in ASA between neutral

and disease-associated variants, as the average %ASA for

disease-associated sites was 47% at less-conserved inter-

face sites, whereas the average %ASA for neutral sites

was 52% (P 5 0.63 for disease vs. 1000 Genomes Project

and HumVar). We then conducted a receiver operating

characteristics (ROC) curve analysis for %dfi and %ASA

to elucidate their ability to distinguish between disease

and neutral phenotypes of nsSNVs. A randomly gener-

ated test set consisting of 10% of the entire data set

(which only includes nsSNVs at interfaces) was used and

the remaining 90% was used for training.4,49 The area

under the curve (AUC) for dfi is 0.71 and 0.56 for ASA

[Fig. 5(B)]. Therefore, the use of dfi appears to be

advantageous for use in future diagnostic methods.

CONCLUSION

This work has provided evidence that non-

synonymous variants observed at protein interface sites

with low dfi are more likely to be disease-associated.

This may be due to the fact that protein interface sites

with low dfi play a critical role in modulating the func-

tionally important inter-dynamics of biological assem-

blies. Indeed, evolutionary based metrics as well as

proteins’ static structure based metrics such as ASA have

unique strengths in predicting the phenotypic impact,

thus incorporating metrics based on structural dynamics

(such as dfi) along with other metrics may increase the

prediction accuracy of phenotypes of interface nsSNVs.
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