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Abstract

Motivation: Functions of cancer driver genes vary substantially across tissues and organs. Distinguishing passenger
genes, oncogenes (OGs) and tumor-suppressor genes (TSGs) for each cancer type is critical for understanding
tumor biology and identifying clinically actionable targets. Although many computational tools are available to pre-
dict putative cancer driver genes, resources for context-aware classifications of OGs and TSGs are limited.

Results: We show that the direction and magnitude of somatic selection of protein-coding mutations are significantly
different for passenger genes, OGs and TSGs. Based on these patterns, we develop a new method (genes under selec-
tion in tumors) to discover OGs and TSGs in a cancer-type specific manner. Genes under selection in tumors shows a
high accuracy (92%) when evaluated via strict cross-validations. Its application to 10 172 tumor exomes found known
and novel cancer drivers with high tissue-specificities. In 11 out of 13 OGs shared among multiple cancer types, we
found functional domains selectively engaged in different cancers, suggesting differences in disease mechanisms.
Availability and implementation: An R implementation of the GUST algorithm is available at https:/github.com/liliu
lab/gust. A database with pre-computed results is available at https://liliulab.shinyapps.io/gust.

Contact: liliu@asu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1Introduction Interestingly, only one computational method (20/20+) are

available to predict OGs and TSGs (Tokheim et al., 2016). The 20/
20+ is an extension of the 20/20 rule in which OGs have >20%

In tumor development, oncogenes (OGs) and tumor-suppressor genes
(TSGs) work complementarily to promote and maintain abnormal

cell growth (Morris and Chan, 2015; Weinberg, 1994). OGs cause
cancers through gain-of-function variants, whereas TSGs operate by
loss of function. While there are a few well-known OGs (e.g. RAS)
and TSGs (e.g. TP53), it is fast becoming clear that the tumor-
enabling activities of a gene is not the same for all types of cancers.
Activities of driver genes depend strongly on their cellular contexts be-
cause of tissue-specific organizations of cancer pathways (Schaefer
and Serrano, 2016; Schneider et al., 2017; Visvader, 2011). Prediction
of functional status of genes in different cancer types and cellular con-
texts is critical for not only understanding tumor biology, but also
informing targeted therapies and drug-repurposing (Morris and Chan,
2015; Schneider et al., 2017; Sleire et al., 2017).

©The Author(s) 2019. Published by Oxford University Press.

mutations causing missense changes at recurrent positions and TSGs
have >20% mutations causing inactivating changes (Vogelstein
et al., 2013). However, recurrent missense mutations are not a deter-
ministic feature of OGs because these events can cluster at function-
ally neutral positions due to high mutational rates (Schaub et al.,
2018), and many TSGs harbor hotspots of inactivating missense
mutations (lacobuzio-Donahue et al., 2004; Miller et al., 2015).
Meanwhile, random mutational processes may introduce protein-
truncating mutations (i.e. nonsense and frame-shifting mutations)
into OGs, which increase in frequency via genetic drift with no sig-
nificant impact on tumor fitness and mislead annotations (Lipinski
et al., 2016; Mort et al., 2008; Schaub et al., 2018). Therefore,
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conventional ratiometric measures are inadequate to distinguish
these two groups of genes.

Because tumor development is an evolutionary process, cells car-
rying somatic mutations are under natural selection within tumors.
The positive selection promotes advantageous genotypes that confer
higher fitness to a tumor. The negative selection eliminates geno-
types with adverse effects. Neutral evolution lets insignificant geno-
types to drift up or down in frequency. In OGs, gain-of-functions
may be achieved via missense mutations, which are expected to be
positively selected. In contrast, protein-truncating mutations (e.g.
nonsense mutations and frame-shifting mutations) often inactivate
an OG and are detrimental to tumor fitness, resulting in negative se-
lection. In TSGs, both protein-truncating mutations and missense
mutations can be positively selected when they result in the loss of
functions. Otherwise, they may drift neutrally or be even under
negative selection if they disrupt essential biological functions. For
passenger genes (PGs) that do not have significant impact on tumor
fitness, we expect that all mutations are under neutral selection (Sun
et al., 2017; Williams et al., 2016).

In this study, we tested whether the difference in evolutionary
dynamics of missense and truncating mutations has sufficient signal
and power to improve the detection of OGs and TSGs beyond that
of ratiometric measures. Such contrast is essential to distinguish
TSGs deactivated by missense mutations from OGs activated by
missense mutations, which is a challenging task for conventional
ratiometric measures because hotspots of missense mutations are
present in both cases. Furthermore, when activities of a gene vary
across cancer types, the direction and magnitude of somatic selec-
tion will change accordingly, enabling contextual classification of
driver genes.

Our analysis of 10 172 tumor exomes from The Cancer Genome
Atlas (TCGA) (Cancer Genome Atlas Research Network et al.,
2013) project revealed significant differences in selective patterns of
OGs, TSGs and PGs. Based on these patterns, we developed a com-
putational method, named genes under selection in tumors (GUST)
that integrates somatic selection of genes in tumor development, mo-
lecular conservation during species evolution and conventional
ratiometric measures to classify cancer genes in different tissues and
organs.

2 Materials and methods

Curation of cancer-type specific functions of driver genes: to test our
hypothesis and to train a random forest model, we needed cancer-
type specific functional annotations of cancer genes. Because these
annotations are not currently available, we conducted manual cura-
tions using two lists of genes with complementary information. The
first list consisted of 36 OGs, 48 TSGs and 21 genes with dual OG/
TSG roles annotated in the cancer gene consensus (CGC, version
87) (Sondka et al., 2018). The tumor-activating or -suppressing roles
of these genes have been confirmed with cancer hallmarks in experi-
mental assays and are attributable to coding substitutions or indels
(Hanahan and Weinberg, 2000). The second list consisted of 235
computationally predicted driver genes assigned to specific cancer
types (Bailey et al., 2018). These predictions were based on a meta-
analysis of the TCGA samples with multiple computational pro-
grams. These two lists shared 70 genes. We then retrieved somatic
mutations of these 70 genes from the TCGA project (Cancer
Genome Atlas Research Network et al., 2013). For a gene to qualify
as an OG in a specific cancer type, it needs to be annotated as an
OG or a dual-role gene in the CGC, predicted as a driver in the
meta-analysis of the matching cancer type, and display mutational
hotspots in the corresponding TCGA tumor samples. For a gene to
qualify as a TSG in a specific cancer type, it needs to be annotated
as a TSG or a dual-role gene in the CGC, predicted as a driver in the
meta-analysis, and have an overabundance of truncating mutations
or missense mutations in the corresponding TCGA tumor samples.
For a gene to qualify as a PG in a specific cancer type, it needs to be
predicted as a PG in the meta-analysis and shows no mutational hot-
spots or overabundance of truncating mutations in corresponding
TCGA tumor samples. Genes that did not meet these requirements

were removed. The final collection consisted of 55 OG annotations,
174 TSG annotations and 304 PG annotations that involved a
total of 50 known driver genes and 33 cancer types (Supplementary
Table S1).

Somatic selection features: given a gene with somatic mutations
reported in a collection of tumor samples, we denote the selection
coefficient of missense mutations as w, and the selection coefficient
of protein-truncating (nonsense and frame-shifting) mutations as ¢.
To account for differences in mutational rates, we consider seven
substitution types (1: A—C or T—G, 2: A—G or T—C, 3: A—>T or
T—A, 4: C—A or G—T, 5: C—G or G—C, 6: C—T or G—A at
non-CpG sites, and 7: C—T or G—A at CpG sites), one insertion
type and one deletion type. Based on the statistical framework pro-
posed by Greenman et al. (2006), the probability of observing these
mutations is a product of multinomial distributions
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where sg, 71, 1y, i and fy, are the observed numbers of synonymous,
missense, nonsense, in-frame indel and frame-shifting indel muta-
tions in the kth rate category, respectively; Sp, My, Ng, I, and Fy, are
the corresponding expected numbers of changes computed by satu-
rated mutations, in which we introduced each possible single nucleo-
tide mutation one at a time; and t, = sp + my, + ny, + i + fk is the
total number of observed mutations. The values of log(w) and
log(¢) are determined by maximizing the log likelihood L and con-
strained within the range of [—35, 5]. The sign and absolute value of
log(w) and log(¢) indicate the direction and magnitude of somatic
selection. Values around O indicate neutral somatic evolution.
Details of parameter tuning are available in Supplementary Methods
and Supplementary Figure S1.

GUST algorithm: GUST is a random forest model that predicts
the class label (OG, TSG or PG) of a gene based on 10 features
(Supplementary Table S2 and Fig. S2). In addition to the log(w) and
log(¢) values, we also compute ratiometric measures to detect muta-
tional hotspots and conservational measures to estimate substitu-
tional rate across species. Specifically, given a gene and a set of
somatic missense mutations detected in tumor samples, we applied
density estimates with a rectangular kernel and a bandwidth of five
protein positions to aggregate closely-spaced mutations into peaks
and denoted the highest peak as the summit. To estimate evolution-
ary conservation of a gene, we downloaded multiple sequence align-
ments of 100 vertebrate species from the UCSC Genome Browser
(Kent et al., 2002), and computed the substitution rate of each pro-
tein position (Kumar et al., 2012; Liu and Kumar, 2013). The aver-
age substitution rate over all positions measures the gene-level
conservation. The average substitution rate over positions in a sum-
mit measures the conservation of a mutational hotspot. For a given
gene/cancer-type pair in the curated annotations, we retrieved som-
atic mutations from the corresponding TCGA tumor samples and
computed values of the 10 features. Using these training data, we
constructed a random forest classifier with 200 trees. For each gene,
this model produces three probability scores of it being an OG, a
TSG or a PG, respectively. It assigns the class label based on the
highest probability score. For all predictions, GUST reports random
forests probability score, sensitivity and specificity. For OG or TSG
predictions, GUST also reports false discovery rate. Detailed infor-
mation of data processing, feature selection and false discovery rate
calculation is available in the Supplementary Materials.

3 Results

3.1 Different selection patterns of cancer genes

For each gene/cancer-type pair in our manual annotations, we
retrieved somatic mutations in the matching tumor samples from the
TCGA project, and computed the somatic selection coefficients. We
found that missense mutations in OGs were under stronger positive
selection than in TSGs, as the mean log(w) was 4.18 and 1.68, re-
spectively (P < 107'°, Fig. 1A). In contrast, protein-truncating
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A c oz Table 1. Performance of GUST and 20/20+
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Fig. 1. The distribution of selection coefficients of the curated genes. (A) Split violin
plot showing densities of log(w) and log(¢) values for PGs, TSGs and OGs. (B)
Positional distribution of somatic mutations of the BCOR gene in stomach cancer and
in melanoma. Vertical lines represent frequencies of various types of mutations at a
given position. Synonymous, missense and truncating mutations are represented by
green, blue and red lines, respectively. Gray lines are density curves. (C) Scatter plot of
log(w) and log(¢) values. Shades of hexagon bins represent the number of observa-
tions. (D) Positional distribution of somatic mutations of the FBXW?7 gene in uterine
carcinosarcoma. (Color version of this figure is available at Bioinformatics online.)

mutations showed positive selection in TSGs [mean log(¢) = 4.08)],
but negative selection in OGs [mean log(p) = —3.25, respectively)].
The effect size of the differences observed is very large, and the
P-values highly significant (P < 107%). The selection measures
observed on PGs were close to zero [mean log(w) = 0.60 for mis-
sense and mean log(¢p) = —0.28 for nonsense mutations|. Therefore,
TSGs, OGs and PGs show significant evolutionary differences.

The distribution of log(¢p) values of PGs had two peaks. The
largest peak located close to 0, consistent with the expected neu-
tral selection of PGs. The second peak located close to -5, indicat-
ing that loss of function of these PGs is detrimental to tumor
growth. Interestingly, many genes in the second peak are estab-
lished TSGs in other cancer types where loss of their functions is
beneficial to tumors. For example, the BCOR gene regulates apop-
tosis in stomach cancer and had overabundant truncating muta-
tions (Cancer Genome Atlas Research Network, 2014). However,
this gene was depleted of truncating mutations in melanoma
(Fig. 1B). Such contrast suggested that although disabled TSGs
promote tumor growth in certain cellular contexts, maintaining
their activities may be essential for tumor development in other
contexts. We then examined the joint distributions of log(w) and
log(¢p) values and found that somatic selection patterns reflected
the contextual activities of a gene (Fig. 1C). For example, the
PIK3CA gene had high log(w) values and low log(¢) values in
bladder cancers, breast cancers and colorectal cancers, consistent
with its well-known OG role. The log(w) and log(¢) values of this
gene were close to zero in melanoma, indicating lack of a role
resulting in neutral patterns. Recently, the passenger role of
PIK3CA in melanoma has been proposed in a study that shows
PIK3CA-mutated melanoma cells rely on cooperative signaling to
promote cell proliferation and PI3K inhibitors do not repress
tumor growth in the absence of other activating driver genes in
melanoma (Silva et al., 2017).

For TSGs, such as TP353, their high log(¢) values occupied
spaces distant from OGs in the distribution plot (Fig. 1C). As dis-
cussed earlier, TSGs with hotspots of missense mutations, such as
the FBXW7 gene in uterine carcinosarcoma (Fig. 1D) are challeng-
ing to distinguish from OGs using ratiometric methods. Based se-
lection measures [log(w)=5.0, log(p) =3.9], this gene is
unambiguously separated from OGs [log(¢)<0], consistent with
our expectations.

Macro-AUC values were calculated by averaging three one-vs-rest ROC
curves. Linear interpolation was used between points of ROC (Wei and
‘Wang, 2018).

TPR, true positive rate, sensitivity; TNR, true negative rate, specificity;
PPV, positive predictive value, precision; NPV, negative predictive value;
ACC, accuracy; AUC, area under the ROC curve.

3.2 Performance of the GUST method

We trained a random forest classifier (GUST) using the 10 features of
the curated genes. Via 10-fold gene-holdout cross-validations, the
testing accuracy of GUST was 0.92. As a comparison, the accuracy
of 20/20+ on the entire training dataset was 0.86. To calculate trad-
itional performance metrics, we converted three-class predictions to
binary predictions by contrasting one class with the other two classes
combined, i.e. one-vs-rest predictions. In all categories, GUST
showed better or comparable performance than 20/20+. The largest
improvements were on the precision of identifying OGs and TSGs,
which increased from 0.78-0.82 in 20/20+ to 0.85-0.92 in GUST
(Table 1). The receiver operating characteristic (ROC) curves recon-
firmed the superior performance of GUST (Fig. 2A). Compared to
20/20+, GUST had a significantly higher area under the curve (AUC)
value of the PG-vs-rest ROC curve (0.97 versus 0.94, DeLang’s test
P = 0.0008), and a significantly higher AUC value of the TSG-vs-rest
ROC curve (0.97 versus 0.93, P = 0.001). However, the AUC values
of the OG-vs-rest ROC curves were not significantly different be-
tween these two methods (0.99 versus 0.97, P = 0.21).

To evaluate the concordance of GUST classifications with other
methods that predict cancer drivers but do not distinguish OGs and
TSGs, we computed a driver score by adding the OG and TSG
scores of each gene. The TCGA PancanAtlas consortium reported a
collection of putative driver genes based on consensus predictions
from 12 computational methods (Bailey ez al., 2018). We first exam-
ined the 510 gene/cancer-type pairs (204 unique genes) predicted as
drivers by >2 methods. In this permissive list, GUST predicted 373
pairs (73.1%, 145 unique genes) as drivers. We then examined the
283 gene/cancer-type pairs (109 unique genes) predicted as drivers
by >3 methods. In this more stringent list, GUST predicted 254
pairs (89.8%, 96 unique genes) as drivers. These results showed that
drivers predicted by GUST had a high agreement with existing meth-
ods while providing additional OG/TSG classifications.

To measure the importance of each predictor in the random for-
est model, we computed the mean decreased Gini index by permut-
ing out-of-bag samples (Louppe et al., 2013). The most informative
predictors are the selection coefficients and fraction of truncating
mutations, followed by the selection coefficient and fraction of mis-
sense mutations (Fig. 2B). Interestingly, evolutionary conservation
was not very informative, which may be because a vast majority of
drivers are known to occur at highly conserved positions
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Fig. 2. The GUST method. (A) ROC curves of one-vs-rest predictions for GUST and
for 20/20+. (B) Variable importance of each feature in the random forest model.
(C) Positional distribution of somatic mutations of the MB21D2 gene. Mutations
were combined from tumor samples of bladder cancer, cervical cancer, head and
neck cancer, lung adenocarcinoma and lung squamous cell carcinoma. A mutation
hotspot is located at coding position 931 that corresponds to protein position 311.
(D) Selection coefficients estimated for the MB21D2 gene in individual cancer types
(dots) and for combined samples (cross). Broken lines are the mean selection coeffi-
cient of all genes analyzed using all TCGA samples. Shaded areas are the 95% confi-
dence intervals of the mean selection coefficients

(Dudley et al., 2012), providing a limited power to discriminate
OGs and TSG.

Although recurrence among patients has been taken as a surro-
gate of mutations under functional selection, recent investigations
have shown that passenger hotspot mutations are common (Buisson
et al., 2019; Hess et al., 2019). For example, multiple samples of
various cancer types harbored a C->T or C->G mutation at position
931 of the MB21D2 gene (Fig. 2C, Supplementary Fig. S3). Buisson
et al. discovered that this mutational hotspot is due to its location in
a hairpin loop susceptible to mutagenesis and functions as a passen-
ger (Buisson et al., 2019). GUST analysis confirmed that the selec-
tion pattern of this gene was consistent with neutral evolution in
individual cancer types and in the combined samples (Fig. 2D).
Thus, GUST predicted the MB21D2 gene as a PG correctly. This
demonstrated the effectiveness of quantifying the contribution of
genetic alterations to tumor fitness in cancer gene classifications.

3.3 Application to TCGA data

We retrieved somatic mutations from whole-exome sequencing data
of 10 172 TCGA tumor samples spanning 33 cancer types. We then
removed low-quality mutations, hyper-mutated or hypo-mutated
samples, genes with fewer than four protein-altering mutations and
genes mutated in <2% of tumors (Supplementary Materials). We
applied GUST to the remaining 9663 samples. We predicted 161
OGs of which 98 were unique genes in 29 cancer types. We also pre-
dicted 331 TSGs of which 179 were unique genes in 33 cancer types
(Fig. 3A, Supplementary Tables S3 and S4).

3.3.1 Novel driver genes

The GUST-predicted drivers consisted of 55 putative OGs and 97
putative TSGs that were classified as PGs in the CGC database
(Sondka et al., 2018). Most (81.7%) of these new putative drivers
were annotated in only one cancer type and had low probability
scores. To estimate the confidence of each prediction, we computed
the sensitivity and specificity of each one-vs-rest prediction based on
the ROC curves. We then derived a list of high-confidence drivers
consisting of 22 OGs with OG-vs-rest specificity >0.99 and 74
TSGs with TSG-vs-rest specificities >0.99, all of which had a PG-vs-
rest sensitivity >0.99. This short list of high-confidence drivers
included two novel OGs and 28 novel TSGs not annotated in the
CGC. The two novel OGs (CNOT9 in melanoma and GTF2I in
thymoma) had single mutational hotspots disrupting highly
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Fig. 3. GUST analysis of the TCGA samples. (A) Number of common and rare OGs
and TSGs found in each cancer type. Abbreviations of cancer types are listed in
Supplementary Table S3. (B-E) Positional distributions of somatic mutations in
novel OGs and TSGs. Evolutionary conservation of each position, measured as
number of substitutions per billion years is displayed above each plot. (F)
Distribution of driver genes with different spectrum of tissue specificity. (G)
Positional distribution of mutations in the EGFR gene in lung adenocarcinoma and
glioma (low-grade glioma and glioblastoma combined). (H) Two-way clustering of
driver genes and cancer types. Driver genes found in more than one cancer type are
used (OGs in red and TSGs in blue). (Color version of this figure is available at
Bioinformatics online.)

conserved protein positions (Fig. 3B and C). The GTF2I mutant
stimulates cell proliferation iz vitro and has been associated with fa-
vorable prognosis of thymoma (Roy, 2017).

All of the novel TSGs had an overabundance of truncating muta-
tions (Supplementary Fig. S4). For example, frame-shifting muta-
tions in SOX9 were observed in 40 colon cancers (Fig. 3D). As an
atypical tumor suppressor, SOX9 has been shown to interact with
nuclear B-catenin. Inactivation of SOX9 causes loss of inhibition of
the oncogenic Wnt/f-catenin signaling pathway and is associated
with patient survivals (Prevostel ez al., 2016). Some novel TSGs har-
bor mutational hotspots. For instance, the N583fs frame-shifting
mutation in BMPR2 introduced premature stops of protein synthesis
and was observed in nine stomach adenocarcinomas (Fig. 3E). We
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searched the literature and found supporting evidence of the tumor
suppressing functions of 22 (78.6%) novel TSGs (Supplementary
Table S5). Many of these novel TSGs were also annotated as puta-
tive drivers by other computational methods (Bailey et al., 2018).

As an independent assessment of the validity of these predicted driv-
ers, we examined how many of their mutations were in major clones
and compared with PGs. The rationale is that genes frequently mutated
in sub-clones may not suggest a selective advantage, but rather other
mechanisms, such as increased background mutational rates.
Specifically, we used SciClone (Miller et al., 2014) to cluster mutations
in each tumor based on variant allele frequencies. We considered the
cluster with the highest variant allele frequencies as the major clone and
the remaining clusters as sub-clones. For the 30 novel drivers, 93.2% of
protein-altering mutations were in major clones, which was similar to
the percentage (93.7%) for the 96 known drivers (Fisher’s exact test
P = 0.54). For the 40 most frequently mutated PGs, a significantly
lower percentage (89.9%) of protein-altering mutations were in major
clones (Fisher’s exact test P = 10~*). Therefore, these predicted drivers
highly likely promote tumorigenesis.

3.3.2 Spectrum of tissue specificity

Even after removing low-confidence predictions, most of the drivers
annotated by GUST were engaged in only one cancer type, showing
high tissue-specificities. Only 13 (59.1%) OGs and 25 (33.8%)
TSGs in this high-confidence set are broad-spectrum drivers, pro-
moting tumorigenesis in two or more cancer types (Fig. 3F). The
most prevalent OG was the PIK3CA gene found in 15 cancer types
with high confidence, followed by the KRAS/NRAS/HRAS genes
found in 13 cancer types. The most prevalent TSG was the TP53
gene found in 18 cancer types, followed by the ARID1A gene found
in 10 cancer types.

Furthermore, 11 out of the 13 broad-spectrum OGs possessed
multiple hotspots (one-sided proportional test P < 0.05 after
Bonferroni corrections, Supplementary Fig. S5 and Supplementary
Methods). For each significant hotspot, we examined the affected
functional domains as annotated in the NCBI Gene database. A rep-
resentative example is the EGFR gene. In lung adenocarcinoma,
48% of missense mutations clustered at a single mutational hotspot
affecting the tyrosine kinase activation loop (Fig. 3G). In glioma,
only one mutation hit this loop (chi-square test P < 107'%), and
69.3% of all missense mutations clustered at two hotspots affecting
the extracellular domains independent of kinase activities. The con-
textual selection of mutations averting the kinase catalytic domain
in glioma suggests an alternate path of activating EGFR signaling.
In fact, several studies have reported the associations of these hot-
spot mutations with different levels of EGFR activities (Kamburov
et al., 2015; Niu et al., 2016; Porta-Pardo et al., 2017). For cancer
management, although tyrosine kinase inhibitors blocking EGFR
are common in the therapeutic armamentarium of lung cancer
(Grigoriu et al., 2015; Takeda and Nakagawa, 2019), these agents
have not been successful in treating glioma even with improved drug
delivery techniques to penetrate the blood-brain barrier (Bethune
et al., 20105 Vivanco et al., 2012; Westphal et al., 2017). These find-
ings suggest a potential direction to investigate and enhance current
treatment regimen.

Interestingly, each of the 33 cancer types engaged at least one
broad-spectrum driver and multiple tissue-specific drivers, implicating
the synchrony of convergent and divergent disease pathways.
Clustering of cancers based on broad-spectrum driver genes grouped
cancer types largely matching their tissue and cellular origins (Fig. 3H).

4 Discussions

Distinguishing OGs and TSGs in individual cancer types is critical to
understanding cancer etiology and pinpointing clinically actionable
targets. In this study, we proved that protein-coding mutations in
OGs and TSGs are under different somatic selection, and subse-
quently developed the GUST method to discover cancer-type specific
functions of cancer driver genes. We compared GUST with the 20/
20+ method that is the only available method to classify OGs and

TSGs. Both GUST and 20/20+ employ a random forest model to in-
tegrate features extracted from tumor exomes. Despite that GUST
uses only 10 features compared to 24 features in 20/20+, the accur-
acy of GUST is consistently higher. In the GUST model, selection
measures contribute the most information content. In 20/20+, the
P-value of enrichment of inactivating mutations is the most inform-
ative feature. Interestingly, this feature is also related to selection, al-
though it is not a strict evolutionary measure (Kryazhimskiy and
Plotkin, 2008; Temko et al., 2018). These results suggest that using
a small number of features engineered on evolutionary mechanisms
is more powerful than feeding a large number of raw features to ma-
chine learning models. Furthermore, given the scarcity of known
drivers for specific cancer types, reducing the number of features in
predictive models helps mitigate overfitting problems.

We acknowledge that a driverMAPS (Zhao et al., 2019) method
has been recently developed that estimates selection coefficients of a
gene under three competing models (i.e. a PG, an OG and a TSG
model). However, this method later combines the OG model and
the TSG model into a driver model and contrasts it with the PG
model to predict driver genes. Consequently, the reported posterior
likelihood and false discovery rate are for the purpose of distinguish-
ing drivers and passenger, but not OGs versus TSGs. Via personal
communications with the authors of driverMAPS, we confirmed
that this method does not provide statistical significance of OG and
TSG classifications. Therefore, we did not compare GUST with
driverMAPS.

While we discovered many known and novel cancer driver genes,
none of them showed dual OG/TSG roles with high confidence in
our analysis. A straightforward explanation is that GUST makes
predictions based on protein-altering substitutions and indels, thus it
is unable to capture genes acting through other mechanisms, such as
noncoding regulatory variants, copy number variants, transloca-
tions, fusions, differential expressions, post-translational modifica-
tions and epigenetic regulations. Further investigations will shed
light on key switches that divert paths of dual-role drivers. We also
note that genes with only a small number of mutations may cause
non-convergence problems during maximum likelihood estimations
of selection coefficients, which limits the application of GUST to dis-
covering rare drivers.

For practical use, we have built an online database (https:/liliu
lab.shinyapps.io/gust) with pre-computed results of analyzing
TCGA samples. Users can query the database and visually inspect
somatic selection patterns and conservational patterns of selected
genes. Combined with information showing if a gene has been anno-
tated by CGC as a driver or a drug target, users can make informed
decisions on prioritizing candidate genes for further investigations.
The R implementation of the GUST algorithm is available on
Github (https://github.com/liliulab/gust).

5 Conclusions

Somatic selection is a quantitative measure of the impact of mutated
genes on tumor fitness. The GUST method estimates these features
directly from whole-exome sequencing or targeted sequencing data
and pinpoints to genes and functional domains driving tumorigen-
esis in different cellular contexts. As gene-centered treatment and
drug-repurposing attracts increasing interest, we expect this new
method and the online database will facilitate discoveries of clinical-
ly actionable targets.
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