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ABSTRACT 

 
We present an application of image analysis techniques to automatically annotate biological images depicting gene 
expression patterns in developing embryos of fruit fly (Drosophila melanogaster), a model organism to study gene 
interaction. The aim is to determine the view (lateral versus dorsal/ventral [non-lateral]), orientation (anterior-left or 
anterior-right), and the developmental stage of the embryo. We employed contour curvature analysis, symmetry of the 
gene expression patterns, and shape differences at the anterior and posterior ends of the embryo, among others, for these 
purposes. An analysis of a pilot database of 3500 images indicates that view was correctly identified in 62%, orientation 
in 85%, and developmental stage in 73% of the images. We observed that correct inferences had better separation in 
feature space than incorrect inferences. This means that, although these methods do not exhibit very high classification 
accuracy, they could be employed to identify images which need manual intervention, thereby reducing the target set for 
biologists. The novelty in this work is in the integration of well-established image analysis with the biological 
knowledge for annotating the embryos. Our examinations show that features that provide discrimination ability among 
different views, different orientations, and different developmental stages are often restricted to certain regions of the 
embryo, which agrees with the longstanding knowledge in the developmental biological community. 
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1. INTRODUCTION 
 
Currently, biologists spend significant resources (in terms of time) in manually annotating images derived from large-
scale experimental techniques (for e.g., the Berkeley Drosophila Genome Project (BDGP)1). This annotation includes 
data such as view, orientation, and stage of development of the embryos, among other biological features. The primary 
objective of our work is to develop image analysis techniques to automate some of these annotation tasks in order to 
reduce, or eliminate, time and resource requirements. We begin with a description of what is meant by “view”, 
“orientation”, and “stage” of development for the images in which the fruit fly gene expression patterns are captured. 
View refers to the positioning of the embryo during the image acquisition process.  It could take two states: lateral and 
non-lateral (dorsal/ventral) (Figure 1). Orientation refers to the positioning of the anterior and posterior ends of the 
embryo in the image. If the anterior end of the embryo is at the left hand side of the image, we call the orientation 
anterior-left. Otherwise, we call it anterior-right. Stages in Drosophila melanogaster development denote the time after 
fertilization at which certain specific events occur in the developmental cycle2.  Before any useful features could be 
extracted, we need to apply some preprocessing operations to standardize these images. We specifically perform 
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background removal, edge fitting and resizing operations on the image to accomplish this task following the procedures 
outlined by Kumar et al.3. 
 
Our technique for view determination can be classified into the same category of image processing techniques as 
pose/view determination techniques that have been applied to other types of images, including pose detection from 
human face images4,5, pose estimation for textured surfaces using vanishing points6, and automatic determination of 
view angles for tomography images7. However, unlike the natural world images, the presence of gene expression 
patterns in biological images of the same view, orientation, and stages poses special challenges and makes many of the 
traditional solutions unsuitable. In our approach, we examine the usefulness of gene expression staining as an 
augmentative technique. Our primary technique for automatic lateral/non-lateral view determination employs shape 
analysis of the contours of the embryo (see Figure 1). We have specifically examined the amount of discriminatory 
information present in various vertical and horizontal slices along the anterior-posterior axis, and verified our results 
with the known biological knowledge. The augmentative technique for view determination employs difference in gene 
expression areas for the upper and lower halves of the embryo.  
 
Next, we observe that the anterior-end is usually narrower compared to the posterior-end of the embryo, a feature which 
is more typical of lateral than non-lateral views (Figure 1). We have based our primary technique for orientation 
annotation determination on differences in spatial extent of the embryo at the anterior and posterior ends. An 
augmentative technique, based on multi-scale curvature analysis8 of the embryonic contours at the anterior and posterior 
ends of the embryo, aids the annotation process.  

Our stage determination technique is similar to texture-based analysis and classification techniques that have been 
applied, for instance, to meteorological images9, satellite SAR imagery10, classification of carotid plaque images11 and 
digitized mammograms12. All of these techniques derive feature vectors from block-based analysis of the images, as is 
obvious in any texture analysis technique. However, unlike these images, biological images have distinct regions that 
are expected to provide most of the discriminatory information. The feature vector for stage determination was based on 
textural features (extracted using Gabor filters13) of image sub-blocks, because image texture at sub-block level changes 
as embryonic development progresses (Figure 2). In order to enhance local features in the image that are necessary for 
discriminating between the stage groups, we perform a preprocessing on the images by employing an image 
enhancement technique called CLAHE14.  Finally, a discriminant classifier15 was employed for annotation.  

 
 

Figure 1. Lateral and non-lateral views of Drosophila 
melanogaster embryos. TheAnterior (A) and posterior (P) 

ends have also been labeled for each of these views. 

Figure 2. Drosophila images across different stages of 
development. 



Large-scale validation experiments were conducted on about 3500 in situ hybridization images of the Drosophila 
melanogaster from the BDGP project1. These images were standardized to a predetermined spatial size and the manual 
annotations of view, orientation and stage done by experts were used as the ground truth. We also determined a measure 
of the degree of separation for the results obtained from the various systems and observed that the correctly annotated 
results had a higher degree of separation than the wrongly annotated ones. Our results demonstrate that the image 
analysis techniques can be useful in significantly reducing annotation time and they agree with known biological 
understanding regarding the amount of discriminatory information contained in various embryonic sub-regions.  
 
The rest of the paper is organized as follows. We discuss automatic techniques for view, orientation and stage 
determination, in sections 2, 3 and 4, respectively. We present experimental results in section 5 and discuss them in 
section 6. Finally, section 7 concludes the paper. 
 
 

2. LATERAL/ NON-LATERAL VIEW DETERMINATION 
 
We have based our automatic techniques for lateral/non-lateral view determination on the curvature of the outer 
contour. To determine the axis of symmetry (see Figure 3), we find the centroid and orientation of the embryo using 

image analysis tools16 and determine the line that passes through the centroid with the orientation computed in the 
previous step. We then perform a multi-scale curvature analysis8 on the upper and lower contours of the embryo. A 
feature vector based on differences in curvature values of corresponding points in the upper and lower contours is used 
to train a discriminant analysis-based classifier15. 

 
Figure 3. Illustration of upper and lower outer contour of the Drosophila 

(lateral view), obtained by determining the central axis of symmetry 

 
A secondary method for lateral/non-lateral view annotation employs the gene expression pattern contained in the image. 
The image is divided into a predetermined number of vertical strips. The gene expression binary pattern for the whole 
image is automatically derived by employing the CLAHE technique14, followed by global thresholding17. The difference 
in the amount of expression on either side of the horizontal axis of symmetry was determined for each of the vertical 
strips (Figure 4). The number of vertical strips for which this quantity exceeds an empirically determined threshold is 
used as the basis for supervised classification using a discriminant analysis-based classifier15. When we combine the 
two techniques suitably (by simply taking the logical OR of the decisions of the classifiers based on the two features), 
we observed that the error rate was lower than that for each of the individual techniques (see experimental results in 
section 5). 
 

 
Figure 4. Determination of the gene expression 

symmetry. 



If the classifier employs distance measure Di
L from every sample i (in the test dataset) to the training set of laterals, and 

distance measure Di
NL from every sample i to the training set of non-laterals, then we can define the following measure 

of degree of separation for every sample i (which is directly indicative of the degree of separation in the results): 
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3. ANTERIOR/POSTERIOR ORIENTATION DETERMINATION 
 

The anterior-end of the fruit fly embryo is usually narrower than the posterior-end. Therefore, the primary technique for 
orientation determination uses pixel ratio comparison (number of pixels lying within the embryo boundaries versus the 
number outside it) at the two ends of the embryo image. Considering the standardized image (Figure 5), the anterior end 
of the embryo would have a smaller ratio of area of foreground pixels (i.e., pixels belonging to the embryo) to total area 
of a rectangular box enclosing part of the embryo, as compared to the posterior side. A difference in this ratio for the 
anterior and posterior ends is used as the parameter for an empirically-determined threshold-based classification 
scheme. This technique is augmented by a secondary technique that employs a multi-scale curvature-based descriptor8 
derived from the embryonic contour. Parts of the embryonic contour lying within rectangular boxes shown in Figure 5 
are used to compare curvature at the anterior and posterior ends, and empirical thresholds are used for the difference in 
curvature thus determined, to perform classification (the classifier for A/P orientation determination needs to assign 
images to two classes – “anterior-left” and “anterior -right”). 
 
We conjectured that a combination of the two techniques would result in better A/P orientation determination. The pixel 
ratio-based technique was used as a primary technique, with the curvature-based technique as an auxiliary technique. 
The threshold value from the primary technique was used to decide whether or not to employ the auxiliary technique. 
When the decisions of the two techniques agreed, the classification was trivial. When the primary and auxiliary 
techniques differed in their decisions, the images were classified as uncertain, which would require manual intervention. 
 
However, we observed from experimental results that the uncertain cases usually constituted a small ratio of the total 
number of images. Hence, this classification mechanism automates the decision process to a large extent.  
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Figure 5. Boxes for computing pixel ratios for the 
purpose of A/P orientation detection. (The outer contour 

of the embryo has been traced in black) 
 
 

4. DETERMINATION OF STAGE OF DEVELOPMENT 
 
For distinguishing between different stages of development, we need to extract features from internal organs of the 
embryo (unlike view determination where we extracted a descriptor for external contour shape). We observed that a 
distinguishing feature across the various developmental stages is image textural properties at a sub-block level.  We 
examined a subset of images drawn from three stage groups (1-3, 4-6 and 7-8) and observed that textural features at the 
sub-block level could be used for discrimination. However, features obtained from some regions of biological images 
provide most of the discriminatory information in some stages of development. For example, we know that 
morphological changes at the anterior and posteriors end of the embryo occur during stages 4-6, e.g., formation and 
shifting of pole cells at posterior end, prominent displacement of cell membranes at the anterior and posterior ends.  



Further changes occur in stages 7-8 which are mainly restricted to the middle regions of the embryo, e.g., formation of 
amnioserosa and amnioproctodeal invagination18.  
 
We performed CLAHE14 as a preprocessing step, followed by a feature extraction step where Gabor filters13 at different 
scales and orientations were convolved with the image and the resulting data was extracted from different regions at a 
sub-block level (Figure 6). Finally, a discriminant analysis-based classifier15 was employed with suitable training to 
determine the stage of development of embryo images.   
 
In a generic sense, let denote n stage groups. If the classifier employs distance measure  from every 

sample i (in the test dataset) to the training set corresponding to stage group .  The degree of separation for each 
sample i in the test set from each of the stage groups is given by: 
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Figure 6. A rectangular grid overlaid on the 
CLAHE image, to compute Gabor features from 

each sub-block.

 
 

5. EXPERIMENTAL PROCEDURES AND RESULTS 
 
5.1 Results from lateral/non-lateral view determination 
 
Experiments were conducted on a database of 3526 images that had lateral/non-lateral annotations provided by a set of 
developmental biology experts at the ASU School of Life Sciences. The dataset consisted of 77% laterals and 23% non-
laterals. We manually picked 100 images for training – 50 laterals and 50 non-laterals, and used the remaining 3426 
images for testing. We extracted vertical slices along the anterior -posterior axis of the embryo consisting of the medial 
10%, 20%, 30%, 40%, 50% and 100% of embryo contour features, for the curvature-based primary technique. We 
extracted gene expression from the entire embryo for the secondary technique. We then combined the decisions of the 
classifiers for the two techniques, to obtain overall classification rates (Figure 7a-c). Figure 7d shows the measure 
discussed in equation (1) averaged over all test dataset samples. 
 
5.2 Results from anterior/posterior orientation determination 
 
Experiments were conducted on a database of 3665 images for which the manually annotated orientations were 
available.  Figure 8 shows the performance of the two individual techniques on this dataset. When we combined the two 
techniques as described previously (section 3), the overall performance obtained was better than any of the individual 
techniques. However, we ended up with 802 images in the uncertain set, which meant that these images needed manual 
examination to properly determine their anterior/posterior orientation.  
 



 

(A)                                                                              (B)  

     
 
(C)                                                                              (D)  

     
 
Figure 7.  Correct Classification rates of (a) curvature analysis method for view determination with  features obtained 

from various medial slices, (b) gene expression symmetry method for view determination ( with features obtained from 
the entire image), (c) combined method for view determination (a logical AND combination of the classifier decisions 
for the two techniques) . (d) Classifier performance in terms of degree of separation of samples from lateral and non-

laterals (equation 1). 

 
5.3 Results from stage determination 
 
Experiments were conducted on 3608 standardized images for which stage annotations were available; there were 460 
images from stages 1-3, 1974 images from stages 4-6, and 1174 images from stages 7-8. The training set for each stage 
group consisted of 10% of the total number of images for that group; the remaining images were used for testing. We 
divided the standardized embryo into sub-blocks as shown in Figure 6. We chose a 32 x 32 sub-block size and ignored 
the outer-most ring of sub-blocks as they were not important for classification. From the remaining sub-blocks, we 
extracted features from 0-25%, 25-50%, 50-75% and 75-100% on either side of the embryo vertical midline. We then 
averaged the classification performance across 25 random choices of test and training data sets. Figure 8b shows the 
classification performance. Figure8c shows the measure discussed in equation (2) above averaged over all samples in 
the test dataset. 
 



(A)                                                                               (B) 

    
 
                         (C) 

                          
 
Figure 8.  (a) Performance of the orientation determination technique.  (b) Correct Classification Rates of stage 
determination technique for various sub-regions within the embryo image.  (c) Classifier performance for stage 

determination in terms of degree of separation of samples from various stage groups (equation 2). 
 

 
 

6. DISCUSSION OF RESULTS 
 
6.1 View Determination 
 
From Figures 7 (a-c), we observe that our methods perform very well on lateral views, but a large percentage of non-
lateral views are wrongly annotated. This is because most non-lateral views in our current dataset have morphological 
distortions in their shape, and have little or no gene expression. The curvature analysis based method is heavily biased 
towards laterals. The gene expression symmetry method performs better with non-lateral views. A combination of the 
two methods leads to lower overall performance compared to the curvature analysis method, but reduces the bias 
towards laterals. Also, we observe that extracting data from narrower medial slices leads to an increase in classification 
performance of lateral views. We note the measure of separation plotted in Figure 7d is very different for correct and 
missed classifications (it is higher for the former case as expected). From this Figure, it is evident that this measure 
could be used with a suitable threshold value to decide which images to inspect visually for deriving the annotations.  
 
 
 
 
 



6.2 Orientation Determination 
 
We observe that the pixel ratio comparison method performs better than the curvature analysis method for both anterior-
left and anterior-right images (Figure 8a). However, the combination of the two methods performs better than any 
individual method because it increases the correct classification rate of both anterior-left and anterior-right. 
 
6.3 Stage Determination 
 
We observe that the stage determination performance depends on the medial 0-25% (central part) and the 75-100% 
(anterior and posterior ends) features to a large extent (Figure 8b, c). In other words, these features are a large 
contributor to the overall performance. Specifically, the separation of stages 1-3 and 4-6 from each other and from stage 
group 7-8 is largely dependent on features from 75-100% on either side of the vertical central line, which corresponds to 
the anterior and posterior ends. This result tallies with biological domain knowledge as discussed in section 4. Also, the 
separation of stages 7-8 from the rest of the stage groups is dependent on features from 0-25% on either side of the 
vertical central line, which corresponds to the middle of the embryo. This, again, is consistent with the knowledge of 
Drosophila development. We note that, with the exception of stage group 1-3, the measure of separation plotted in 
Figure 8c is much higher for correct classifications than for misclassifications. It is obvious that the measure could be 
used with a suitable threshold value to decide which images to inspect visually for deriving the annotations.  
 

7. CONCLUSIONS AND FUTURE WORK 
 
Experimental results have proved that the techniques for view, orientation and stage determination are efficient in 
automating the annotation process for stage 1-8 gene expression images of the fruit fly (Drosophila melanogaster) to a 
large extent. We find that for each annotation task (view, orientation and stage) a combination of two techniques 
performs better than any of the individual techniques. However, there exist some drawbacks in our framework. The 
performance of our framework is greatly affected by preprocessing stages (e.g., the accuracy of image segmentation for 
extracting gene expression binaries, the parameters that control the CLAHE preprocessing step) and also the choice of 
empirical thresholds used in orientation determination. Therefore, more robust methods for preprocessing need to be 
explored. Also, the performance of the both view and stage determination technique is dependent on the staining present 
in the embryos; results suggest that it aids view determination but that it is detrimental to stage determination.  This 
points to the need for developing staining-independent techniques for stage determination.  
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