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ABSTRACT

Summary: Site-directed mutagenesis is frequently used by
scientists to investigate the functional impact of amino acid
mutations in the laboratory. Over 10 000 such laboratory-induced
mutations have been reported in the UniProt database along with the
outcomes of functional assays. Here, we explore the performance
of state-of-the-art computational tools (Condel, PolyPhen-2 and
SIFT) in correctly annotating the function-altering potential of 10 913
laboratory-induced mutations from 2372 proteins. We find that
computational tools are very successful in diagnosing laboratory-
induced mutations that elicit significant functional change in the
laboratory (up to 92% accuracy). But, these tools consistently fail
in correctly annotating laboratory-induced mutations that show no
functional impact in the laboratory assays. Therefore, the overall
accuracy of computational tools for laboratory-induced mutations
is much lower than that observed for the naturally occurring
human variants. We tested and rejected the possibilities that the
preponderance of changes to alanine and the presence of multiple
base-pair mutations in the laboratory were the reasons for the
observed discordance between the performance of computational
tools for natural and laboratory mutations. Instead, we discover
that the laboratory-induced mutations occur predominately at the
highly conserved positions in proteins, where the computational
tools have the lowest accuracy of correct prediction for variants
that do not impact function (neutral). Therefore, the comparisons
of experimental-profiling results with those from computational
predictions need to be sensitive to the evolutionary conservation of
the positions harboring the amino acid change.
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1 INTRODUCTION
Site-directed mutagenesis followed by functional assays has enabled
scientists to directly profile the functional differences among
proteins that only differ by a single amino acid (Hutchison et al.,
1978; Ling and Robinson, 1997; Yan et al., 2009). Through such
experiments, one can identify sequence domains critical for specific
functions and evaluate the degree of functional change induced

†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First Authors.
∗To whom correspondence should be addressed.

by a mutation (Tao and Cornish, 2002). Frequently the functional
outcomes of laboratory experiments have also been compared with
predictions yielded by computational tools that annotate whether
or not a single amino acid mutation will impact protein function.
If they are successful, computational tools would offer a cost-
efficient way to prioritize variants to explore in the laboratory.
However, investigators have reported a wide range of success of
computational tools from perfect accuracy (e.g. Zou et al., 2011) to
rather poor results [e.g. <60% accuracy (Di et al., 2009)]. These
differences might occur due to limited sample sizes (number of
mutations) investigated in individual studies that are focused on
one protein or members of a protein family (e.g. Hao et al., 2010).
The availability of information on over 10 000 laboratory-induced
mutations provides an opportunity to (1) measure the performance of
computational tools for accuracy in diagnosing laboratory mutations
and (2) compare them with the performance observed for a large
collection of naturally occurring human variants with and without
disease implications.

Here, we report a computational analysis of 10 913 protein point
mutations from 2372 proteins investigated in a variety of functional
assays in the laboratory, which are available online in the UniProt
resource (Magrane and Consortium, 2011). Although a large number
of computational tools are available, we focused our investigation on
three tools: Condel, which is reported to have the highest accuracy
(González-Pérez and López-Bigas, 2011); PolyPhen-2, which has
widespread and long-term usage in the field (Adzhubei et al.,
2010); and SIFT (Kumar et al., 2009a), which is intended to guide
laboratory experiments and has also been used for diagnosing protein
variation for many years.

2 METHODS
UniProt database (www.uniprot.org) is currently the largest repository of
mutations of human proteins that have been experimentally induced by
mutagenesis (Magrane and Consortium, 2011). We used this resource
to retrieve all available laboratory-induced mutations with experimental
descriptions and effects in which exactly one mutation was tested for each
polypeptide in order to avoid confounding evolutionary interpretations. The
final dataset contained 10 913 laboratory-induced mutations from 2372
proteins (Fig. 1).

Based on the experimental outcomes, we designated all laboratory-
induced mutations with any measurable effect on function in the laboratory to
be lab-damaging mutations. All others were given a lab-neutral designation.
In this dataset, the ratio of damaging to neutral mutations was 6:1. In a survey
of the severity of functional impact of lab-damaging mutations, we found
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Fig. 1. A frequency distribution showing the number of different mutants
explored in the laboratory for 2372 human proteins, as reported in the UniProt
database. The median (mean) number of mutations analyzed is 3 (4.6)

Fig. 2. The distribution of long-term evolutionary rates (r) of positions
containing 10 913 laboratory mutations analyzed in this study

that a subset of lab-damaging mutations (42%) was reported to completely
abolish the function assayed. We refer to them as lab-abolishing mutations.

Each laboratory-induced mutation was subjected to Condel, PolyPhen-2
and SIFT analyses using their respective web servers (bg.upf.edu/condel/
analysis; genetics.bwh.harvard.edu/pph2 and sift.jcvi.org). These tools did
not produce diagnoses (neutral or non-neutral) for some mutations, therefore
we reported accuracies for a subset (in parentheses) of all laboratory-induced
mutations for Condel (10 765), PolyPhen-2 (10 814) and SIFT (7172).
In particular, SIFT servers failed to produce diagnosis for ∼35% of the
laboratory-induced mutations because SIFT’s pre-computed database only
provides results for variants that have been reported in dbSNP (Sherry et al.,
2001) in order to increase the speed. We found that the accuracy of Condel
and PolyPhen-2 for the subset of mutations with SIFT diagnosis was <1%
different from those obtained by using all mutations, so we presented and
compared all accuracies directly.

In order to assess the degree of (evolutionary) selective pressure, we
estimated the absolute evolutionary rate (r) for each position containing
laboratory-induced mutations by using the approach of Kumar et al. (2009b)
where evolutionary rate is calculated using the appropriate protein sequence
alignment from the UCSC Genome Browser (Rhead et al., 2010) and
a timetree of 46 species (Kumar and Hedges, 2011). The evolutionary
rate has the unit of the number of amino acid substitutions per site per
billion years. A histogram showing the distribution of evolutionary rates for
positions harboring laboratory-induced mutations is shown in Figure 2. For
simplicity, we divided these amino acid positions into three categories based
on the estimated evolutionary rates: ultra-conserved (r =0), well-conserved
(0<r ≤1) and less-conserved (r>1).

Fig. 3. Accuracy of computational tools in predicting the functional impact
of laboratory-induced mutations that alter the protein function. (A) Proportion
of mutations correctly diagnosed to be non-neutral by Condel, PolyPhen-2
and SIFT. The results are shown for all lab-damaging mutations (filled bars)
and only those damaging mutations that abolish the protein function (open
bars). (B) The cumulative frequency distribution of lab-damaging mutations
that abolish (open squares) and do not abolish function (gray squares) at
various levels of deleteriousness as measured by their Condel scores

3 RESULTS AND DISCUSSION
The true positive rate (non-neutral diagnosis) for lab-damaging
mutations was generally high for all three methods (Fig. 3A). Condel
provided the highest accuracy with a 92% correct diagnosis rate,
whereas PolyPhen-2 and SIFT showed lower accuracies (79 and
63%, respectively). More than 95% of lab-damaging mutations
received non-neutral diagnosis by at least one of the tools, and all
three tools produced correct concordant diagnoses for slightly <50%
mutations. A similar pattern of prediction accuracy was obtained for
3969 lab-abolishing mutations, which are a subset of lab-damaging
mutations (Fig. 3A).

The functional impact scores that measure the deleteriousness
of laboratory-induced mutations produced by Condel were quite
similar for lab-damaging mutations that completely abolished
protein function and the remainder of lab-damaging mutations that
exhibited partial protein function (Fig. 3B). On average they differed
by 6% (0.85 and 0.79, respectively), which is small but statistically
significant (two-tailed Z-test; P<0.01). Overall, computational tools
performed well in diagnosing laboratory-induced mutations with
function effects. In addition, these accuracies are comparable to
those reported for human disease-associated variants (Adzhubei
et al., 2010; González-Pérez and López-Bigas, 2011; Kumar et al.,
2011).
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Fig. 4. The accuracies of computational tools and evolutionary properties of mutations. (A) Fraction of lab-neutral mutations predicted correctly by Condel,
PolyPhen-2 and SIFT. (B) Observed-to-expected ratios of the lab-neutral mutations (closed circles, solid line) and human population variants (open circles,
dashed line) in three evolutionary conservation categories. (C) Histogram of evolutionary rates of lab-neutral mutations that were diagnosed correctly (black
bars) and incorrectly (white bars) by PolyPhen-2; similar results are observed for Condel and SIFT. For panel B, 456,426 protein variants were obtained
from the 1000 Genomes Project (Consortium, 2010). Relative proportions of positions in each category was estimated by considering evolutionary rates of
all amino acid positions found in proteins containing at least lab-induced mutation or population variant, as appropriate. These relative proportions were then
used to generate expected numbers of lab-neutral mutations in each category

In contrast, computational tools performed poorly on the lab-
neutral mutation set. Only 26, 46 and 38% of mutations were
correctly diagnosed to be neutral by Condel, PolyPhen-2 and SIFT,
respectively (Fig. 4A). All three methods produced the correct
diagnosis for <10% of the mutations, with only 35% laboratory-
induced mutations correctly diagnosed by two or more methods (i.e.
consensus approach). Therefore, computational tools are unable to
aid in correctly diagnosing mutations found to have no functional
impact in the laboratory, even when we used a strict rule for
laboratory neutrality where only mutations with no measureable
functional effects are given the lab-neutral designation. These results
are rather surprising, because computational tools are known to
be highly accurate in diagnosing neutral polymorphisms found in
the human population (Adzhubei et al., 2010; González-Pérez and
López-Bigas, 2011; Kumar et al., 2009a; Ng and Henikoff, 2006).

We explored different possibilities to potentially explain the
observed patterns. First, the laboratory mutation sets are expected
to contain an overabundance of changes to alanine because of
alanine scanning, which is a cost-efficient alternative to testing

every possible non-native amino acid (Bromberg and Rost, 2008).
Indeed, nearly half of all lab-neutral mutations are changes to
alanine. Therefore, we estimated the accuracy of computational tools
after excluding all such mutations. This resulted in <3% change
in accuracy of computational tools and, thus, does not explain the
observed pattern.

Second, we evaluated the accuracies of computational tools for
amino acid changes caused by single base pair mutations. This is
important because we found that one-third of the laboratory-induced
protein mutations in our dataset were a result of multiple base pair
changes in the same codon, which is not common in naturally
observed variants in human populations. Amino acid differences
with multiple base pair mutations have much lower (>2-fold)
amino acid substitution probabilities (e.g. BLOSUM62 scores) when
compared with those with single base pair mutations. This fact
might explain the reduced performance of computational tools that
have been optimized using data from human disease-associated and
neutral variants, e.g. HumVar2 (Adzhubei et al., 2010; González-
Pérez and López-Bigas, 2011). The accuracies of individual
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computational tools differed by <10% in comparisons of single-
and multi-nucleotide variants. Therefore, the inclusion of amino
acid mutations caused by multi-nucleotide changes does not explain
the observed pattern of low prediction accuracy of computational
tools.

Third, we examined the preponderance of lab-neutral mutations
in ultra-, well- and less-conserved positions because we have
previously found that the accuracy of PolyPhen in correctly
diagnosing neutral mutations is the lowest at the most highly
conserved amino acid positions (Kumar et al., 2009b). If lab-
neutral mutations were overrepresented at ultra-conserved positions,
this might explain the reduced accuracy of computational tools
for lab-neutral mutations as well. Indeed, there is a significant
overabundance of lab-neutral mutations at highly conserved
positions, which is exactly opposite of the pattern observed for
human polymorphisms (Subramanian and Kumar, 2006; Fig. 4B).
Figure 4C clearly shows that the lab-neutral mutations found at
highly conserved positions are very difficult to diagnose correctly,
whereas the accuracy of diagnosis is higher for lab-neutral mutations
found at fast evolving positions. The inaccuracy of computational
tools in diagnosing mutations with no discernible functional change
in the laboratory points to the need for high-throughput laboratory
profiling to identify truly neutral mutations at evolutionarily
conserved positions.

Of course, one could argue that the identification of truly
neutral mutations in the laboratory is much harder than identifying
damaging mutations, because the numbers of laboratory functional
assays are limited by current technology and by our knowledge of
all functions of a protein. This would mean that a protein mutation
that is not disruptive for a known set of assayed functions would
be designated a neutral status in the laboratory, although it may be
disruptive to an untested function or in vivo. These possibilities can
only be tested when information on in vivo assays and additional
functional knowledge becomes available.

However, our analyses clearly show that the differences in
successful prediction of neutral mutations in the laboratory and
those observed in nature can be resolved to a large extent by taking
an evolutionary-aware approach. For example, all 92 damaging
mutations of the beta-globin gene (HBB) in the UniProt resource
occur at ultra- and well-conserved positions, for which both
Condel and PolyPhen-2 produce 100% correct diagnosis. This
consistency occurs because computational tools have high rates
of correct diagnosis for damaging mutations at ultra- and well-
conserved positions. On the other hand, 48 lab-neutral mutations
of cystathionine beta synthase proteins also occur at ultra- and
well-conserved positions. They are expected to be misdiagnosed
by computational tools, which is indeed the case (100% incorrect
by PolyPhen-2 and Condel). Therefore, by using the evolutionary
conservation of positions mutated in the laboratory, it will now
be possible for scientists to better understand the reasons for
the discordance between the outcomes of laboratory experiments
and computational predictions. This would ultimately improve the
combined use of experimental and computational techniques to
survey the functional impacts of millions of protein mutations that

we are expected to encounter as we acquire increasing numbers of
sequences from human exomes.
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