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ABSTRACT

Motivation: Regulation of gene expression in space and time directs
its localization to a specific subset of cells during development.
Systematic determination of the spatiotemporal dynamics of gene
expression plays an important role in understanding the regulatory
networks driving development. An atlas for the gene expression
patterns of fruit fly Drosophila melanogaster has been created
by whole-mount in situ hybridization, and it documents the
dynamic changes of gene expression pattern during Drosophila
embryogenesis. The spatial and temporal patterns of gene
expression are integrated by anatomical terms from a controlled
vocabulary linking together intermediate tissues developed from one
another. Currently, the terms are assigned to patterns manually.
However, the number of patterns generated by high-throughput
in situ hybridization is rapidly increasing. It is, therefore, tempting
to approach this problem by employing computational methods.
Results: In this article, we present a novel computational
framework for annotating gene expression patterns using a
controlled vocabulary. In the currently available high-throughput
data, annotation terms are assigned to groups of patterns rather
than to individual images. We propose to extract invariant features
from images, and construct pyramid match kernels to measure the
similarity between sets of patterns. To exploit the complementary
information conveyed by different features and incorporate the
correlation among patterns sharing common structures, we propose
efficient convex formulations to integrate the kernels derived
from various features. The proposed framework is evaluated by
comparing its annotation with that of human curators, and promising
performance in terms of F1 score has been reported.
Contact: jieping.ye@asu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Detailed knowledge of the expression and interaction of genes
is crucial to deciphering the mechanisms underlying cell-fate
specification and tissue differentiation. DNA microarrays and RNA
in situ hybridization are two primary methods for monitoring

∗To whom correspondence should be addressed.

gene expression levels on a large scale. Microarrays provide
a quantitative overview of the relative changes of expression
levels of a large number of genes, but they do not often
document the spatial information on individual genes. In contrast,
RNA in situ hybridization uses gene-specific probes and can
determine the spatial patterns of gene expression precisely.
Recent high-throughput investigations have yielded spatiotemporal
information for thousands of genes in organisms such as Drosophila
(Lécuyer et al., 2007; Tomancak et al., 2002) and mouse (Carson
et al., 2005; Lein et al., 2006). These data have the potential to
provide significant insights into the functions and interactions of
genes (Kumar et al., 2002; Samsonova et al., 2007).

The fruit fly Drosophila melanogaster is one of the model
organisms in developmental biology, and its patterns of gene
expression have been studied extensively (Arbeitman et al., 2002;
Campos-Ortega and Hartenstein, 1997; Lécuyer et al., 2007;
Tomancak et al., 2002). The comprehensive atlas of spatial
patterns of gene expression during Drosophila embryogenesis
has been created by in situ hybridization techniques, and the
patterns are documented in the form of digital images (Grumbling
et al., 2006; Harmon et al., 2007; Tomancak et al., 2002; Van
Emden et al., 2006). Comparative analysis of gene expression
pattern images can potentially reveal new genetic interactions and
yield insights into the complex regulatory networks governing
embryonic development (Estrada et al., 2006; Kumar et al., 2002;
Peng and Myers, 2004; Tomancak et al., 2002).

To facilitate pattern comparison and searching, the images
of Drosophila gene expression patterns are annotated with
anatomical and developmental ontology terms using a controlled
vocabulary (Grumbling et al., 2006; Tomancak et al., 2002).
The basic requirement for annotation is to assign a unique term,
not only for each terminally differentiated embryonic structure,
but also for the developmental intermediates that correspond to
it. Four general classes of terms, called anlage in statu nascendi,
anlage, primordium and organ (ordered in terms of developmental
time), are used in the annotation. Such an elaborate naming scheme
describes a developing ‘path’, starting from the cellular blastoderm
stage until organs are formed, which documents the dynamic
process of Drosophila embryogenesis. Due to the overwhelming
complexity of this task, the images are currently annotated
manually by human experts. However, the number of available
images produced by high-throughput in situ hybridization is now
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rapidly increasing (Gurunathan et al., 2004; Kumar et al., 2002;
Peng and Myers, 2004; Tomancak et al., 2007; Ye et al., 2006).
It is, therefore, tempting to design computational methods for the
automated annotation of gene expression patterns.

The automated annotation of Drosophila gene expression patterns
was originally considered difficult due to the lack of a large reference
dataset from which to learn. Moreover, the ‘variation in morphology
and incomplete knowledge of the shape and position of various
embryonic structures’ have made this task more elusive (Tomancak
et al., 2002). We attempt to address this problem by resorting
to advanced tools developed recently in the computer vision
and machine learning research communities and on the large
set of annotated data available from the Berkeley Drosophila
Genome Project (BDGP) (Tomancak et al., 2002). There are several
challenging questions that need to be addressed when approaching
this problem by computational methods. As has been stated in
Tomancak et al. (2002), the first challenge is to deal with the issue
that the same embryonic structure can appear in different shapes
and positions due to the distortions caused by the image acquisition
process. Fortunately, recent advances in object recognition research
have led to robust methods that can detect interest regions and extract
features that are invariant to a class of local transformations from
these regions. These two correlated lines of research have reached
some maturity now [see Mikolajczyk et al. (2005) and Mikolajczyk
and Schmid (2005) for an overview].

The second challenge of this task lies in the data representation.
The embryogenesis of Drosophila has been divided into six discrete
stage ranges (1–3, 4–6, 7–8, 9–10, 11–12 and 13–16) in the BDGP
high-throughput study (Tomancak et al., 2002). Gene expression
patterns are documented collectively by a group of images in
a specific stage range. Similarly, annotation terms are also associated
with a group of patterns sharing a subset of the named structures
(Fig. 1). These attributes of the existing biological data pose
challenges, because traditional machine learning tools require that
each object in question be represented by a feature vector of fixed
length. It is challenging to encode the variable number of images
in a group into a fixed-length vector. The existing approach (Zhou
and Peng, 2007) is based on the simplifying assumption that the
terms are associated with individual images instead of image groups.
Kernel methods developed in machine learning are a class of
versatile tools for learning from unconventional data types, since
they only require that the similarity between objects be abstracted
into the so-called kernel matrix (Schölkopf and Smola, 2002).
Kernels between various data types, e.g., strings, trees, graphs, and
sets of vectors, have been proposed in the literature (Grauman and
Darrell, 2005; Kondor and Jebara, 2003; Schölkopf et al., 2004).
We propose to extract a number of locally invariant features from
each gene expression pattern image, and to compute kernels between
sets of images based on the pyramid match algorithm (Grauman and
Darrell, 2007a).

A recent comprehensive study shows that when local features
are used to compute kernels between images, a combination of
multiple feature types tends to yield better results than even the
most discriminative individual feature type (Zhang et al., 2007).
This motivates us to extract multiple feature types from each image
and obtain multiple kernel matrices, one for each feature type.
Thus, the final challenge for automated gene expression pattern
annotation is to develop methods that can combine the multiple
kernel matrices effectively. Automated methods for combining

Stage range BDGP terms

9–10 trunk mesoderm primordium
anteriorendoderm primordium
posterior endoderm primordium
inclusive hindgut primordium

11–12 embryonic central brain glia
lateral cord glia
neuroblasts of ventral nervous system 
procephalic neuroblasts

Fig. 1. Sample image sets and the associated terms in the BDGP database
in two stage ranges. Only images taken from lateral view with the anterior
to the left are shown.

multiple kernel matrices, called multiple kernel learning (MKL),
have been studied in machine learning recently. In such a framework,
the optimal kernel matrix is obtained as a convex combination of
a set of predefined candidate kernel matrices, and the coefficients
for the combination can be computed by optimizing certain criteria.
Methods for MKL have been proposed in the contexts of binary-class
(Lanckriet et al., 2004a) and multi-class classification (Zien and
Ong, 2007), and they have been applied successfully to various
biological applications (De Bie et al., 2007; Lanckriet et al., 2004b).
For the problem of gene expression pattern annotation, a variable
number of terms from the controlled vocabulary can be assigned
to a group of patterns. Hence, this problem belongs to the more
general framework of multi-label learning. We propose methods
based on hypergraph (Agarwal et al., 2006; Zhou et al., 2007) to
project and combine the multiple kernel matrices for multi-label
data. The proposed formulation can capture the correlation among
patterns sharing a common embryonic structure by including them
in a common edge in hypergraph. We also show that kernel canonical
correlation analysis (Hardoon et al., 2004) is a special case of
the proposed formulation. The overall flowchart of the proposed
framework is depicted in Figure 2.

We discuss feature generation and kernel construction in
Section 2. The proposed formulation for multi-label multiple kernel
learning is presented in Section 3. We report the results on gene
expression pattern annotation in Section 4 and conclude this article
with future work in Section 5.

2 FEATURE GENERATION AND KERNEL
CONSTRUCTION

In this section, we present our methods for extracting features from gene
expression pattern images and constructing kernels between sets of patterns.

2.1 Feature generation
There are two primary methods for extracting features. When the images are
not well-aligned, the covariant region detector is first applied on the images to
detect interest regions. Then, local descriptor is used to extract features from
the detected regions. An alternative approach is to apply local descriptor on a
dense regular grid, instead of interest regions (Grauman and Darrell, 2007b;
Lazebnik et al., 2006). Such an approach is motivated from the bag-of-words
model from the text-modeling literature, and competitive performance has
been achieved on image applications (Fei-Fei and Perona, 2005). Since the
images in our FlyExpress (Van Emden et al., 2006) database are already
well-aligned, we take the second approach in this article (Fig. 2). Instead of
tuning the local descriptor and grid size manually, we apply several popular
local descriptors on regular grids of different sizes, and rely on the MKL
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Fig. 2. Illustration of the proposed framework for annotating gene
expression patterns. We extract multiple types of features from image groups
and construct multiple kernels using the pyramid match algorithm. The
multiple kernels are then combined to annotate the image groups. Different
shapes represent different types of features, and filled and hollow shapes are
used to distinguish features from the two different image groups.

framework to select the appropriate local descriptors and grid size. More
details on feature generation are described in Section 4.

2.2 Pyramid match kernels
In kernel methods, a symmetric function is called a ‘kernel function’ if it
satisfies the Mercer’s condition (Schölkopf and Smola, 2002). When used for
a finite number of samples in practice, this condition amounts to requiring that
the kernel matrix is positive semidefinite. The wide applicability of kernel
methods stems from the fact that they only require the characterization of
similarities between objects by the use of the kernel trick.

The pyramid match algorithm (Grauman and Darrell, 2005, 2007a, b)
computes kernels for variable-sized sets of feature vectors. The main
idea of this approach is to convert sets of features to multi-dimensional,
multi-resolution histograms, and then compute the similarity between
the corresponding histograms based on histogram intersections. The final
similarity between two sets of vectors is computed as a weighted sum of
the similarities at the histogram levels. This similarity is an approximation
to the similarity of the best partial matching between the feature sets. The
resulting similarity matrix based on this measure is provably positive definite,
and it can be used in existing kernel-based learning algorithms. Details on
the pyramid match algorithm can be found in the Supplementary Material.

The pyramid match algorithms proposed in Grauman and Darrell
(2005, 2007a, b) treat the sets of features to be matched as orderless. In
some applications, the spatial layout of features within a set may convey
critical discriminative information. Lazebnik et al. (2006) proposed the
spatial pyramid matching algorithm to perform pyramid matching in the 2D
image space, thus taking the spatial information into account directly. The
main idea of this approach is to quantize the local features in images into a
number of discrete types by applying clustering algorithms, and then place
multi-resolution histogram pyramid on the 2D images. It is also possible
to integrate geometric information directly into the original pyramid match
algorithm by adding the image coordinates as two additional dimensions
into each feature vector (Lazebnik et al., 2006, Grauman,K 2007, private
communication), and we adopt this approach in this article. Note that the
original pyramid match algorithms are proposed to match two images, and
that we extend them to match two sets of images.

3 LEARNING WITH MULTIPLE KERNELS
In this section, we present a multi-label, multiple kernel learning formulation
based on hypergraph for integrating the kernel matrices derived from various

local descriptors. Results in Section 4 show that the integrated kernels yield
better performance than that of the best individual kernel.

3.1 Hypergraph spectral learning
Hypergraph generalizes traditional graph by allowing edges, known as
‘hyperedges’, to connect more than two vertices, thus capturing the joint
relationship among multiple vertices. We propose to construct a hypergraph
(for the collection of gene expression patterns in question) in which
each pattern is represented as a vertex. To document the joint similarity
among patterns annotated with a common term, we propose to construct
a hyperedge for each term in the vocabulary, and include all patterns
annotated with a common term into one hyperedge. Hence, the number
of hyperedges in this hypergraph equals the number of terms in the
vocabulary.

Laplacian is commonly used to learn from a graph (Chung, 1997). To learn
from a hypergraph, one can either define hypergraph Laplacian directly, or
expand it into a traditional graph for which Laplacian is constructed. Since it
has been shown that the Laplacians defined in both ways are similar (Agarwal
et al., 2006), we use the expansion-based approaches in this article. The
star and clique expansions are two commonly used schemes for expanding
hypergraphs. Following the spectral graph embedding theory (Chung, 1997),
we propose to project the patterns into a low-dimensional space in which
patterns sharing a common term are close to each other. When formulated
in the kernel-induced feature space, this can be achieved by solving the
following optimization problem:

max
B

trace
(
BT (KCK)B

)
(1)

subject to BT (K2 +λK)B= I,

where K ∈R
n×n is the kernel matrix, n is the number of image sets, C = I −L

in which L is the normalized Laplacian matrix derived from the hypergraph,
B is the coefficient matrix for reconstructing the projection in feature space
and λ>0 is the regularization parameter.

Kernel canonical correlation analysis (kCCA) (Hardoon et al., 2004) is
a widely used method for dimensionality reduction. It can be shown that
kCCA involves the following optimization problem:

max
B

trace
(

BT K
(

YT (
YYT )−1

Y
)

KB
)

(2)

subject to BT
(

K2 +λK
)

B= I,

where Y is the label matrix. Thus, kCCA is a special case of our proposed
formulation based on hypergraph.

3.2 A convex formulation
It follows from the theory of reproducing kernels (Schölkopf and Smola,
2002) that the kernel K in Equation (1) uniquely determines a mapping
of the patterns to some feature space. Thus, kernel selection (learning) is
one of the central issues in kernel methods. Following the multiple kernel
learning framework (Lanckriet et al., 2004a), we propose to obtain an
optimal kernel matrix by integrating multiple kernel matrices constructed
from various features, that is, K =∑p

j=1θjKj where {Kj}p
j=1 are the p kernels

constructed from various local descriptors and {θj}p
j=1 are the weights

satisfying
∑p

j=1θj trace(Kj)=1. We show that the optimal weights that
maximize the objective function in Equation (1) can be obtained by solving
a semi-infinite linear program (SILP) (Hettich and Kortanek, 1993) in
which a linear objective is optimized subject to an infinite number of linear
constraints. This is summarized in the following theorem (Proof given in the
Supplementary Material):

Theorem 3.1. Given a set of p kernel matrices K1,...,Kp, the optimal
kernel matrix, in the form of a linear combination of the given p kernel
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matrices that maximizes the objective function in Equation (1), can be
obtained by solving the following SILP problem:

max
θ,γ

γ (3)

subject to θ≥0, θT r =1,

p∑
j=1

θjSj(�)≥γ, for all�∈R
n×k, (4)

where Sj(�), for j=1,...,p, is defined as

Sj(�)=
k∑

i=1

(
rj

4
ψT

i ψi + 1

4λ
ψT

i Kjψi −rjψ
T
i hi

)
, (5)

�=[ψ1,...,ψk], r = (r1,...,rp)T , and rj = trace(Kj).

The SILP formulation proposed in Theorem 3.1 can be solved by the
so-called ‘column generation’ technique, and more details can be found in
the Supplementary Material.

4 RESULTS
In this section, we apply the proposed framework for annotating gene
expression patterns. We use a collection of images obtained from
the FlyExpress database (Van Emden et al., 2006), which contains
standardized and aligned images. All the images used are taken from
lateral view with the anterior to the left. The size of each raw image
is 128×320.

4.1 Experimental setup
We apply nine local descriptors on regular grids of two different sizes
on each image. The nine local descriptors are SIFT, shape context,
PCA-SIFT, spin image, steerable filters, differential invariants,
complex filters, moment invariants and cross-correlation. These
local descriptors are commonly used for objection recognition (more
details can be found in Mikolajczyk and Schmid, 2005). The sizes
of the grids we used are 16 and 32 pixels in radius and spacing
(Fig. 2), and 133 and 27 local features are produced for each
image, respectively.

It is known that local textures are important discriminative
features of gene expression pattern images, and features constructed
from filter banks and raw pixel intensities are effective in capturing
such information (Varma and Zisserman, 2003). We, therefore, apply
Gabor filters with different wavelet scales and filter orientations on
each image to obtain global features of 384 and 2592 dimensions.
We also sample the pixel values of each image using a bilinear
technique, and obtain features of 10240, 2560 and 640 dimensions.
The resulting features are called ‘global features’.

After generating the features, we apply the vocabulary-guided
pyramid match algorithm (Grauman and Darrell, 2007a) to construct
kernels between image sets.Atotal of 23 kernel matrices (2 grid sizes
× 9 local descriptors + 2 Gabor + 3 pixel) are obtained. Then,
the proposed MKL formulation is employed to obtain the optimal
integrated kernel matrix. The performance of kernel matrices (either
single or integrated) is evaluated by applying the support vector
machine (SVM) for each term and treating image sets annotated
with this term as positive, and all other image sets as negative. We
extract different numbers of terms from the FlyExpress database and
use various numbers of image sets annotated with the selected terms
for the experiments.

Precision and recall are two commonly used criteria for
evaluating the performance of multi-label classification systems
(Datta et al., 2008). For each term, let� and� denote the indices of
patterns that are annotated with this term by the proposed framework
and by human curators in BDGP, respectively. Then, precision and
recall for this term are defined to be P=|�∩�|/|�| and R=
|�∩�|/|�|, respectively, where |·| denotes the set cardinality. The
F1 score is the harmonic mean of precision and recall as F1= (2×
P×R)/(P+R). To measure performance across multiple terms, we
use both the macro F1 (average of F1 across all terms) and the micro
F1 (F1 computed from the sum of per-term contingency tables)
scores, which are commonly used in text and image applications
(Datta et al., 2008). In each case, the entire dataset is randomly
partitioned into training and test sets with ratio 1:1. This process is
repeated 10 times, and the averaged performance is reported. We
report the performance of each individual kernel and compare it
with methods based on multi-instance learning on a dataset of 10
terms and 1000 image sets in the Supplementary Marterial. Results
indicate that kernels constructed from the SIFT and PCA-SIFT
descriptors yield the highest performance.

4.2 Annotation results
We apply the proposed formulations (star, clique and kCCA) to
combine the various kernel matrices derived from different local
descriptors. The performance of multiple kernel learning based
on the soft margin 1-norm SVM (SVM1) criterion proposed
in Lanckriet et al. (2004a) is also reported. Since the SVM1
formulation is only applicable to binary-class problems, we apply
the formulation for each term by treating image sets annotated
with this term as positive, and all other image sets as negative.
To demonstrate the effectiveness of the proposed formulation for
integrating kernels, we also report results obtained by combining the
candidate kernels with uniform weight, along with the performance
of the best individual kernel (among the 23 kernels) for each dataset.
To compare with the existing method proposed in Zhou and Peng
(2007), we extract wavelet features from images and apply the
min-redundancy max-relevance feature selection algorithm to select
a subset of features. As was done in Zhou and Peng (2007), we
assign terms to individual images and apply linear discriminant
analysis to annotate each image. Note that this setup does not
consider the image group information and is the same as the
one proposed in Zhou and Peng (2007). The annotation results
measured by F1 score and precision and recall are summarized in
Tables 1–4.

It can be observed from the results that in terms of both
macro and micro F1 scores, the kernels integrated by either star
or clique expansions achieve the highest performance on all but
one of the datasets. This shows that the proposed formulation is
effective in combining multiple kernels and potentially exploiting
the complementary information contained in different kernels.
For all datasets, the integrated kernels outperform the best
individual kernel. In terms of precision and recall, our results
indicate that SVM1 and Uniform achieve higher precision than
the proposed formulations, while they both yield significantly
lower recall. On the other hand, the best individual kernel
produces slightly higher recall than the proposed formulations,
while it yields significantly lower precision. Note that precision
and recall are two competing criteria, and one can always
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Table 1. Performance of integrated kernels on gene expression pattern annotation in terms of macro F1 score

No. of terms 10 20 30 40 50 60

No. of sets 1000 1500 2000 1000 1500 2000 1000 1500 2000 1000 1500 2000 1000 1500 2000 1000 1500 2000

Star 0.5661 0.5741 0.5434 0.4396 0.4903 0.4575 0.3852 0.4437 0.4162 0.3768 0.4019 0.3927 0.3522 0.3850 0.3862 0.3219 0.3364 0.3426
Clique 0.5251 0.5220 0.4876 0.4536 0.5125 0.4926 0.4065 0.4747 0.4563 0.4145 0.4346 0.4283 0.3872 0.4106 0.4198 0.3594 0.3631 0.3639
kCCA 0.5487 0.5608 0.5323 0.3987 0.4635 0.4477 0.3497 0.4240 0.4063 0.3538 0.3872 0.3759 0.3303 0.3642 0.3666 0.2996 0.3137 0.3263
SVM1 0.4924 0.5413 0.5353 0.3780 0.4640 0.4356 0.3523 0.4352 0.4200 0.3741 0.4048 0.3955 0.3481 0.3869 0.3991 0.3316 0.3462 0.3570
Uniform 0.4947 0.5498 0.5418 0.3727 0.4703 0.4480 0.3513 0.4410 0.4191 0.3719 0.4111 0.3986 0.3436 0.3920 0.4023 0.3298 0.3548 0.3586
BIK 0.5418 0.5430 0.5185 0.4241 0.4515 0.4344 0.3782 0.4312 0.3996 0.3914 0.3954 0.3827 0.3701 0.3849 0.3763 0.3456 0.3448 0.3419
Z&P 0.3756 0.3810 0.3775 0.2695 0.2759 0.2804 0.2086 0.2470 0.2379 0.2117 0.2171 0.2310 0.1926 0.2284 0.2167 0.1764 0.1827 0.1679

We first select a number of terms and then extract certain number of image sets annotated with at least one of the selected terms. The number of terms used are 10, 20, 30, 40, 50
and 60, and the number of image sets used are 1000, 1500 and 2000 in each case. The first three rows report the F1 scores obtained by kernels combined with star expansion, clique
expansion and CCA, respectively. The fourth row presents the F1 scores achieved by kernels combined with the soft margin 1-norm SVM (SVM1) formulation in which an optimal
kernel is learned for each term separately. The fifth row shows the F1 scores achieved by kernels combined from the candidate kernels with uniform weights. The performance of
the best individual kernel (BIK) over all local descriptors and grid sizes on the same dataset is reported in the sixth row. The results obtained by the method proposed in Zhou and
Peng (2007) are reported in the last row. The performance shown in this table is the averaged scores over 10 random partitions of the entire dataset into training and test sets with
ratio 1:1.

Table 2. Performance of integrated kernels on gene expression pattern annotation in terms of micro F1 score

No. of terms 10 20 30 40 50 60

No. of sets 1000 1500 2000 1000 1500 2000 1000 1500 2000 1000 1500 2000 1000 1500 2000 1000 1500 2000

Star 0.5841 0.6011 0.5728 0.4861 0.5199 0.4847 0.4472 0.4837 0.4473 0.4277 0.4470 0.4305 0.4168 0.4347 0.4212 0.4000 0.4171 0.3999
Clique 0.5424 0.5429 0.5079 0.5039 0.5422 0.5247 0.4682 0.5127 0.4894 0.4610 0.4796 0.4660 0.4454 0.4546 0.4580 0.4314 0.4420 0.4251
kCCA 0.5727 0.5922 0.5643 0.4581 0.4994 0.4887 0.4209 0.4737 0.4532 0.4095 0.4420 0.4271 0.4000 0.4241 0.4086 0.3778 0.4042 0.3920
SVM1 0.5290 0.5781 0.5786 0.4361 0.5024 0.4844 0.4239 0.4844 0.4632 0.4248 0.4570 0.4415 0.4095 0.4420 0.4429 0.3947 0.4234 0.4188
Uniform 0.5341 0.5870 0.5837 0.4390 0.5096 0.4975 0.4242 0.4939 0.4683 0.4268 0.4673 0.4492 0.4092 0.4518 0.4482 0.3999 0.4358 0.4226
BIK 0.5585 0.5650 0.5637 0.4614 0.4735 0.4562 0.4189 0.4484 0.4178 0.4100 0.4196 0.4009 0.3914 0.4051 0.3957 0.3869 0.3905 0.3781
Z&P 0.4031 0.4032 0.3796 0.3034 0.2985 0.2827 0.2612 0.2441 0.2125 0.2406 0.2310 0.2203 0.2203 0.2174 0.2114 0.1977 0.1826 0.1586

This table shows the performance of each method in terms of micro F1 score. See the footnotes of Table 1 for detailed explanations.

Table 3. Performance of integrated kernels on gene expression pattern annotation in terms of precision

No. of terms 10 20 30 40 50 60

No. of sets 1000 1500 2000 1000 1500 2000 1000 1500 2000 1000 1500 2000 1000 1500 2000 1000 1500 2000

Star 0.5246 0.5141 0.4861 0.4629 0.5349 0.4842 0.4674 0.5533 0.5089 0.5122 0.5559 0.5510 0.4968 0.5611 0.5509 0.5256 0.5439 0.5614
Clique 0.4586 0.4375 0.3968 0.4531 0.5244 0.5053 0.4674 0.5510 0.5379 0.5219 0.5502 0.5660 0.5078 0.5433 0.5831 0.5240 0.5501 0.5665
kCCA 0.5448 0.5443 0.5230 0.4917 0.5737 0.5585 0.5056 0.6120 0.6102 0.5235 0.6116 0.6421 0.5124 0.6154 0.6139 0.5373 0.5894 0.6642
SVM1 0.5973 0.6163 0.5985 0.5387 0.6121 0.6211 0.5124 0.6323 0.6227 0.5253 0.6151 0.6476 0.5196 0.6126 0.6429 0.5176 0.5628 0.6427
Uniform 0.6258 0.6462 0.6155 0.5691 0.6417 0.6495 0.5379 0.6576 0.6450 0.5596 0.6511 0.6766 0.5349 0.6504 0.6782 0.5625 0.5986 0.6717
BIK 0.4956 0.4830 0.4687 0.4247 0.4994 0.4814 0.4265 0.5089 0.4779 0.4626 0.5200 0.5299 0.4470 0.5093 0.5519 0.4744 0.5125 0.573
Z&P 0.3298 0.3244 0.3182 0.2311 0.2455 0.2453 0.1897 0.2164 0.2106 0.1877 0.1958 0.2127 0.1765 0.2037 0.1976 0.1570 0.1627 0.1515

This table shows the performance of each method in terms of precision. See the footnotes of Table 1 for detailed explanations.

achieve a perfect score on one of them at the price of the
other. Hence, the proposed formulation achieves a harmonic
balance between precision and recall, as indicated by the F1
scores. Note that BIK can have both higher precision and
higher recall than the proposed formulation, since we report
the highest precision and the highest recall among all of the
candidate kernels separately. Hence, the BIK for precision and

recall may not correspond to the same kernel. For all the
four measures, the proposed formulations outperform the method
proposed in Zhou and Peng (2007) significantly. This shows that the
annotation performance can be improved by considering the image
group information.

Figure 3 shows some annotation results obtained by clique
expansion for sample patterns in each stage range. Note that
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Table 4. Performance of integrated kernels on gene expression pattern annotation in terms of recall

No. of terms 10 20 30 40 50 60

No. of sets 1000 1500 2000 1000 1500 2000 1000 1500 2000 1000 1500 2000 1000 1500 2000 1000 1500 2000

Star 0.6482 0.6892 0.6694 0.5019 0.5303 0.5117 0.4033 0.4535 0.4338 0.3675 0.3901 0.3811 0.3346 0.3573 0.3606 0.2961 0.3124 0.3143
Clique 0.6331 0.6654 0.6527 0.5238 0.5649 0.5479 0.4284 0.4820 0.4636 0.4075 0.4210 0.4063 0.3701 0.3808 0.3834 0.3336 0.3323 0.3244
kCCA 0.5952 0.6285 0.5966 0.4111 0.4483 0.4259 0.3292 0.3854 0.3603 0.3171 0.3366 0.3174 0.2905 0.3075 0.3008 0.2575 0.2603 0.2597
SVM1 0.4890 0.5383 0.5211 0.3494 0.4237 0.3890 0.3178 0.3898 0.3665 0.3322 0.3528 0.3300 0.3035 0.3300 0.3298 0.2844 0.2945 0.2878
Uniform 0.4830 0.5378 0.5198 0.3403 0.4219 0.3948 0.3098 0.3919 0.3626 0.3218 0.3569 0.3285 0.2963 0.3325 0.3280 0.2789 0.3014 0.2873
BIK 0.6625 0.6991 0.6954 0.5507 0.5726 0.5613 0.4648 0.5156 0.4983 0.4555 0.4764 0.4767 0.4337 0.4638 0.4678 0.4158 0.4335 0.4374
Z&P 0.4990 0.5504 0.5881 0.4242 0.3990 0.4460 0.2599 0.3869 0.3990 0.3271 0.2985 0.3327 0.2783 0.3427 0.3107 0.2757 0.3023 0.3069

This table shows the performance of each method in terms of recall. See the footnotes of Table 1 for detailed explanations.

Stage range BDGP terms Predicted terms

1–3 maternal maternal

4–6 cellular blastoderm cellular blastoderm

7–8 trunk mesoderm anlage
anterior endoderm anlage
posterior endoderm anlage
head mesoderm anlage

trunk mesoderm anlage
anterior endoderm anlage
posterior endoderm anlage

9–10 trunk mesoderm primordium
anterior endoderm primordium
posterior endoderm primordium
inclusive hindgut primordium

trunk mesoderm primordium
anterior endoderm primordium
posterior endoderm primordium

11–12 embryonic central brain glia
lateral cord glia
neuroblasts of ventral nervous system
procephalic neuroblasts

embryonic central brain glia
lateral cord glia
neuroblasts of ventral nervous system
procephalic neuroblasts
embryonic central brain neuron
lateral cord neuron

13–16 embryonic central nervous system
ventral nerve cord
embryonic central brain neuron
lateral cord neuron
ventral midline
lateral cord glia
embryonic central brain glia

embryonic central nervous system
ventral nerve cord
embryonic central brain neuron
lateral cord neuron
lateral cord glia
embryonic central brain glia
embryonic central brain

Fig. 3. Annotation results for sample patterns in the six stage ranges. BDGP terms denote terms that are assigned by human curators in the Berkeley Drosophila
Genome Project (Tomancak et al., 2002), and predicted terms denote terms predicted by the proposed computational framework. These patterns are randomly
sampled from each stage range, and hence they may not correspond to the same gene.

the pyramid match algorithm can compute kernels between
variable-sized sets of images. Thus, terms can be predicted for image
sets of any size. Overall, the proposed computational framework
achieves promising performance on annotating gene expression
patterns. Meanwhile, we realize that the current framework suffers
from some potential limitations. By comparing the BDGP terms
and the predicted terms for patterns in stage ranges 7–8 and 9–10,
we can see that the structures related to endoderm are predicted
correctly while some of those related to mesoderm are prone to error.
This may be due to the fact that, when viewed laterally, structures

related to mesoderm are more prone to be hidden than those related
to endoderm. This phenomenon becomes clearer when we examine
the results for stage range 13–16 in Figures 3 and 4. As shown in
Figure 4, there are a total of five images in this set in the original
BDGP database. Among these five images, only two of them (the
first and third) are taken from the lateral view and hence are used in
our experiments. The second and the fourth images are taken from
the ventral view, and the fifth image is taken from the dorsal view.
The structure ventral midline can only be documented by digital
images taken from the ventral view as can be seen from the second
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1 2 3 4 5

Fig. 4. The original five images in stage range 13–16 from BDGP. The first
and the third images are taken from lateral view; the second and the fourth
images are taken from ventral view; the fifth image is taken from dorsal
view. Only the first and the third images are used in our experiments shown
in the bottom of Figure 3.

and the fourth images in Figure 4. Since we only use images from
the lateral view, it can be seen from Figure 3 that the proposed
framework cannot predict this term correctly. This problem can
potentially be solved by using images taken from other views such as
ventral and dorsal. However, incorporation of images with multiple
views may complicate the computational procedure, so requires a
special care.

To evaluate the scalability of the proposed formulations, we vary
the number of terms and the number of image sets, and compare
the change of computation time. On a machine with Pentium 43.40
GHz CPU and 1 GB of RAM, when the number of terms is increased
from 20 to 60 on a dataset of 500 image sets, the computation time
increases from approximately 4s to 11s. In terms of the number of
image sets, datasets of 1500 and 2000 image sets with 60 terms take
around 3 and 4 min, respectively.

5 CONCLUSIONS AND DISCUSSIONS
In this article, we have presented a computational framework for
annotating gene expression patterns of Drosophila. We propose
to extract invariant features from gene expression pattern images
and construct kernels between these sets of features. To integrate
multiple kernels effectively, we propose multi-label, multiple kernel
learning formulations based on hypegraph. Experimental evaluation
shows that the integrated kernels consistently outperform the best
individual kernel. Currently, the annotation of patterns by human
curators requires multiple passes, and the proposed framework can
be used as a preprocessing step whose annotation is further refined
by human curators.

In future work, we plan to perform a detailed analysis of the
weights obtained by the MKL formulation, and investigate how
they are related to the relevance of each kernel. Our experimental
results show that features extracted on smaller grids tend to yield
better results. However, computational resource limitations prevent
the use of a grid size smaller than 16 pixels. We plan to explore
ways to overcome this problem. Retrieving gene expression patterns
by combining information from images and annotations is an
interesting and challenging research issue. The proposed framework
can assign a probability of associating each term to each image,
producing a probability vector for unannotated images from various
high-throughput experiments. Such information can potentially be
exploited to facilitate pattern retrieval. Detailed analysis of the
annotation results produced by the proposed framework indicates
that integration of gene expression pattern images taken from
multiple views can potentially improve the annotation performance.
In this case, the current pyramid match algorithms need to be adapted
so that only images taken from the same view are matched. It
can be seen from the third and fifth images in Figure 4 that the

annotation terms can also be associated with partial patterns in each
image. These partial patterns have been removed in our FlyExpress
database (Fig. 3), so these terms cannot be predicted correctly by
the proposed framework. We plan to explore ways to incorporate
these partial patterns in the future.
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