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Abstract. The neighbor-joining (NJ) method is widely Key words: Phylogenetic inference — Neighbor-
used in reconstructing large phylogenies because of itpining method — Large phylogenies — Zero-length
computational speed and the high accuracy in phylogebranches — Accuracy — Deep versus shallow branches
netic inference as revealed in computer simulation stud-
ies. However, most computer simulation studies have
quantified the overall performance of the NJ method i”lntroduction
terms of the percentage of branches inferred correctly or
the percentage of replications in which the correct tree isl_ : . .
: . he scope of molecular phylogenetic studies for infer-
recovered. We have examined other aspects of its per: . L
) - . ring short- and long-term evolutionary histories of or-
formance, such as the relative efficiency in correctly re- _~. . o
; anisms and multigene families has expanded greatly
constructing shallow (close to the external branches og . .
. g eyond molecular systematics due to an explosive
the tree) and deep branches in large phylogenies; the

contribution of zero-length branches to topological errorsgrOWth in the number of sequences available in genetic

) . . : . . databases (e.g., Balczarek et al. 1997; Duret et al. 1994;
in the inferred trees; and the influence of increasing the',. " ) i
tree size (number of sequences), evolutionary rate ar?élgglns et al. 1996’ Kumar_et al. 1996; Kumar a.nd

' ’ zhetsky 1996; Li 1997; Nei and Kumar 2000). With

sequence length on the efficiency of the NJ method. Re;, .
: this growth, data sets for molecular phylogenetics have
sults show that the correct reconstruction of deep

branches is no more difficult than that of shallower Increased in terms of the number of sequences being

branches. The presence of zero-length branches in reazf_nalyzed, and the neighbor joining (NJ) method (Saitou

ized trees contributes significantly to the overall errorand Nei 1987) has become one of the most commonly

: . . ._used methods. It is computationally efficient, has desir-
observed in the NJ tree, especially in large phylogenies - . .

. . able statistical properties, and is known to produce trees
or slowly evolving genes. Furthermore, the tree size does

; - . . as accurate as, or better than, more computationally in-
not influence the efficiency of NJ in reconstructing shal- . .
tensive and global searching methods (Charleston et al.

in all lineages Wei and Kumar 2000; Nei et al. 1998; Rzhetsky and Nei
' 1992; Tateno et al. 1994).

Computer simulations provide a convenient way to
assess the efficiency of tree-making methods (reviewed
by Nei and Kumar 2000). For the NJ method, most of
these computer simulation studies have evaluated its
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USA; e-mail: s.kumar@asu.edu tree topology completely or estimating the proportion of
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Fig. 1. A-D. The four basic model topologies used in this study, with the relative branch lengths shown. Composite trees were constructed by
stacking these four trees to givg, B, C*, andD* trees. For examplé&, F, andG are composite trees consisting of tidrees A?), two C trees
(C?), and eightD trees D®), respectively. All interior branches in the stacked trees have equal relative lengths.

the correct interior branches in the inferred tree (e.g.NJ method uses the extant sequences to infer the realized
Hillis 1996; Kim 1998; Nei et al. 1998; Strimmer and tree rather than the expected tree (Nei and Kumar 2000).
von Haeseler 1996). However, a number of specificNote that the realized tree is not a mere “sample” of the
questions regarding the performance of the NJ metho@&xpected tree. Rather, it is an actual quantity to be esti-
remain unexplored. Are shallow branches (branchesnated because the sequences in a real data set are unique
closer to the tips of the tree) easier to reconstruct thamroducts of the evolutionary process which occurs only
deeper branches? In this case, shallow branches corrence for a given gene.
spond to more recent evolutionary divergences, whereas When the expected number of substitutions on a
deep branches establish evolutionary relationships&ranch is small, the probability that one or more realized
among groups that have diverged earlier in the evolubranch lengths is equal to zero is high (Kumar 1996).
tionary history. How does an increase in the number ofThis suggests that for closely related sequences (slowly
sequences affect the correct inference of shallow anévolving genes or population level divergence), the to-
deep branches? What are the relative contributions of thpology of the realized tree may contain multifurcations.
evolutionary rate and sequence length on the efficiencyrherefore, the performance of all tree-making methods
of the NJ method? How long should an interior branchshould be evaluated by comparing the inferred tree to the
be, in terms of the total number of substitutions, in orderrealized tree rather than the expected tree (e.g., Kumar
to be reconstructed correctly? 1996; Tateno 1990). What is the difference in the effi-
Another common feature of previous simulation stud-ciencies of the NJ method in reconstructing the realized
ies has been that often no distinction was made betweeversus the expected trees?
expected and realized trees. An expected tree is one in It is worth noting that the expected tree can also have
which all branch lengths are expressed in terms of théranches with expected length equal to zero simply be-
expected number of nucleotide (or amino acid) substitucause the product of the evolutionary time elapsed, the
tions per site, whether or not the evolutionary rate islength of the gene, and its rate of evolution is practically
constant among lineages. A realized tree, on the othezero. In such cases, the topology of the expected tree is
hand, has branch lengths equal to the actual number diill bifurcating, but some interior branches are of zero
substitutions per site (Kumar 1996; Nei 1987). The samexpected length (e.g., Saitou 1996). For simplicity, we
branch in the realized and expected trees differ in lengtthave assumed that all interior branches in the model tree
because evolution is a stochastic process in which th@ave expected branch lengted per sequence.
realized tree is one “realization” of the expected tree. The In this paper, we have taken the first step to address
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Fig. 2. A 228-taxonrbcL tree.

the questions raised above. We discuss the results olamong the four basic trees (Figs. 1A-D), as well as a much larger,
tained in relation to the presumed increase in Comp|exity228-sequence, chloropladicL gene tree (Hillis 1996) containing in-

. . T . terior branches of varying expected lengths (Fig. 2) and lacking the
of phylogenetic reconstruction with increasing numberrepeated phylogenetic structure found in our composite trees. This
of sequences.

allowed us to evaluate the generality of the results obtained from the
composite trees.

Computer Simulations Rates of Evolution and Sequence Lengtte conducted computer
simulations using many sequence lengths and rates of evolution. Be-
cause we are comparing the relative performance of the NJ method in

Model Trees.Following Saitou and Imanishi (1989) and Kumar correctly reconstructing small and large phylogenies, we discuss the

(1996), we considered four basic six-taxon model trees. These trees aggo|utionary rate in the context of the lengths of interior branches,

drawn in an unrooted fashion in Figs. 1A-D to reflect the fact that the rather than the maximum pairwise distance between sequences, as the

NJ method produces unrooted trees. Previously these model trees haygter depends upon the number of sequences in the data. A low rate of

been drawn with a root (indicated by a filled circle) to specify an eyolution refers to an interior branch length of 0.00625 substitution/

arbitrary starting point in the computer simulation. Using these fourgjie  Multiples of this rater(= 0.00625) were used for a-D model

basic trees, we constructed larger composite phylogenies (Fig. 1), as ifjees as well as the hybrid model trees. AL trees, we conducted

Kumar (1996). For instance, Fig. 1E is a composite tree consisting ofomputer simulations with up to 10-fold rate differences. The sequence

two copies of tree\, where one copy has been grafted onto the other. |engths employed were in multiples of 100 sites for all the model trees.
We refer to topologies generated in this manneA&srees, where

refers to the number of copies in the composite tree. We constrAtted
B*, C*, andD* trees, where varied from 1 . .. 10, 16, and 32 (a total Simulating Evolutionary Changé&or the computer simulation, the
of 48 model trees containing up to 192 taxa). In all of these model treesstarting point was chosen for each tree (marked by the filled circle in
each interior branch was made to be 1 unit long and the lengths of th&igs. 1A-D), and for this “root” an ancestral sequence of a given length
external branches are given in multiples of the interior branch lengthwas first generated by randomly selecting nucleotides such that the four
(Figs. 1A-D). nucleotides are expected to occur with equal frequency in the ancestral
All expectednterior branch lengths in a given model tree were kept sequence. This sequence was evolved by introducing random nucleo-
equal in magnitude to compare directly the performance of the NJtide substitutions to generate the immediate descendents. In any given
method in reconstructing branches at different depths in the tree as branch, the actual (realized) number of nucleotide substitutions was
function of the branch location (depth) alone. The stacked tree structurebtained by selecting a random number from a Poisson distribution
of our large phylogenies also allowed us to study the change in perwith mean equal to the expected number of substitutions (rate x se-
formance of the NJ method from small trees to the larger compositeguence length). A given nucleotide was allowed to change to any of the
trees. Alternatively, our composite trees can also be viewed as consistther three with equal probability, resulting in the Jukes and Cantor
ing of multiple monophyletic groups, with each group containing the (1969) model of nucleotide substitution. This process was carried out
same number of sequences. This situation is similar to that in multigendor all branches moving away from the root, and a set of sequences was
family evolutionary studies, where gene duplication events need to begenerated at the end of this process. The final set of sequences at the
inferred and the data are often available for a similar set of modelexternal nodes was then used to reconstruct their evolutionary relation-
organisms. While our composite trees are convenient for statisticakhips using the NJ method. We generated 1000 simulation replicates for
comparisons, the situation in real life is obviously more complicated.each case, except for the “hybrid” trees, the 96- and 192-t#xdh
Therefore, we also conducted computer simulations using “hybrid”trees and the 228-taxabcL trees, where 100 replications were gen-
composite trees that were stacked with trees taken at random frorerated.
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Definitions. Tree sizeefers to the number of sequences.iAterior Table 1. Percentage replicates in which the complete model tree is
branchpartitions an unrooted tree into two subtrees, each containing ateconstructed correctlyP{,) by the NJ methodtl
least two taxa. Theluster sizefor a given interior branch is defined as

the minimum of the two subtree sizes. The cluster size thus directly Sequence length
measures the minimurdepthof a branch in terms of the number of
sequences contained in the smaller of the two subtrees that it define§equences 200 500 1000
By this definition, the complexity involved in inferring deep branches 6 57 87 98
is higher than that for shallow branches, because the minimum number
. L . - 12 22 74 96
of taxa to be joined in inferring deep branches is larger than that for 18 8 63 %
shallow branches in the NJ algorithm. Therefore, the depth of a branch
. ) .24 3 54 94
depends only on the subtree sizes rather than the subtree heights in
o ; - - 0 1 46 93
terms of the number of substitutions. This definition of branch depth is 36 1 39 91
more relevant to our analysis because the NJ algorithm always clusters
. . 42 0 33 90
shallow branches before deeper branches, irrespective of the number of 48 0 28 89
substitutions. 54 0 o5 6
60 0 21 86
Performance measure8.number of different measures were used 96 0 8 79
to quantify the performance of the NJ method. 192 0 0 46
P\ represents the proportion of all simulation replicates in which
the topology of the NJ tree is identical to that of the model tree. 2Each value is the arithmetic mean over all the topologies given in

Pgm is the proportion of all branches of the model tree that are Figs. 1A-D, withr = 0.0125.
reconstructed correctly in the NJ tré&y,, = [C,,4(m— 3)], wherec,,4
is the average number of correctly inferred interior branches of the
model tree in all simulation replications, and- 3 is the number of  Table 2. Number of unrooted trees and the corresponding number of
interior branches for an unrooted tree containmngequences. interior branches for the complete and subtree sizes (numbers of se-
P, is the proportion of branches in the realized tree that receive zerqjuences) in the simulation study
substitutions (zero length brancheBy.= [by ,,J(M - 3)], whereb, .4

is the average number of zero-length interior branches in the realizegequences Unrooted trees Interior branches
tree, in all the simulation replications.

Pgr is the proportion of all non-zero-length branches of the realized 4 3 1
trees that are reconstructed correctly in the NJ tRg = C.gavd 5 15 2
[(m = 3) = by 4y, Where c.q .4 is the average number of correctly 6 105 3
inferred non-zero-length interior branches in the realized tree, in all 7 945 4
simulation replications. 8 10,395 5

ps represents the percentage efficiency in correctly estimating 9 135,135 6
branches of a given depth (in terms of the number of taxa) or length (in 10 2,027,025 7
terms of the number of substitutionp), = b/B, whereB is the total 12 654,729,075 9
number of occurrences of the desired type of branches (always non- 18 10728 15
zero length) in all the simulation replicates, abds the number of 24 16°7° 21
cases in which that branch was found in the NJ tree. 30 1G°9 27

36 10760 33

42 106890 39

48 10005t 45

Results 54 16245 51
60 10470 57

96 107820 93

Accurate Inference of Complete Trees 192 1007.79 189
228 160208 225

Table 1 shows the percentage replicates in which the
model tree topology was reconstructed correddy X for
trees containing increasing numbers of sequences and )
sequence lengths, with = 0.0125. As expected, it is 96% fors = 1000. When the number of sequences in-
more difficult to reconstruct trees when they contain Créases to 198y, declines to only 46% fos = 1000.
large numbers of sequences or if the sequences are short

(e.g., Kumar 1996; Strimmer and von Haeseler 1996)influence of Zero-Length Branches on the Efficiency
This is because alin — 3 interior branches (nontrivial qf NJ

partitions) need to be reconstructed correctly for correct

inference of the complete tree, which requires selectind-igure 3 shows the mean number of zero-length branches
the sole true tree from a large number of possible treeper replication for different tree sizes, withands fixed
(Table 2). Longer sequences improve the efficiency ofat 0.00625 and 200, respectively. The probability that a
tree-making methods, partly because the pairwise disgiven lineage (interior branch) has experienced zero sub-
tances can be estimated with better accuracy (lower varistitutions is given by, whereb is the expected branch
ance). Table 1 shows slower rates B, decline for length in terms of the total number of substitutions per
larger sequences as the number of sequences increasssquence. Fas = 200 andr = 0.00625,b = 0.00625

For instance, for 18 sequenc®y, is 8% fors = 200 and  x 200 = 1.25 substitutions. Since all interior branches
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100 —3 Table 3. Percentage branches reconstructed correBty)(for trees
of different size8
£ Overall efficiency
o
T;—; 60 Sequences Average Minimum Maximum
=
5 6 92 53 100
E 407 12 94 55 100
5 18 94 54 100
= a4 24 95 61 100
30 95 56 100
36 95 60 100
0 — 42 95 60 100
0 200 400 600 800 1000 28 05 60 100
Sequence length (s) 54 95 60 100
60 95 63 100

Fig. 3. Percentage branches of the model treRs,) and realized
trees Pgr) reconstructed correctly by the NJ method, with increasing
number of sites, and the corresponding proportion of zero-length
branches Ry; filled circles). The values were averaged over all four
topologies and all tree size&{ B, C*, D* trees), forr = 0.00625.

96 95 64 100
192 95 61 100

2Each value is an average over all rates of evolutios:(0.00625 to
0.0625, in steps of 0.00625), numbers of sites=( 100 to 1000, in
steps of 100), and all topologie&( B*, C*, andD*).

are of equal expected length in our model trees, the ex-
pected proportion of zero-length branchesei§. This
expectation is confirmed in the computer simulation re- 100
sults shown in Fig. 3. 2
Figure 3 also shows the percentage of branches in thgs
model and realized trees that were reconstructed coré’ 80
rectly. As expected, the percentage branches correctly&
inferred increases with increasing sequence length, foE
model as well as realized trees. However, comparison ofg 60
the realized tree to the inferred tree shows much higherg s
Pgr Vvalues even for smab values. InterestinglyPgy, ~
(i.e., for the model tree) is essentially a mirror image of 40

1000 sites
500 sites
——— 200 sites

100 sites

0.0625
0.0315 5 &

Po. the proportion of zero-length branches in the realized 30 4 0.00 <§
tree. This suggests that the zero-length branches in the T M9 g >
ree Size

realized tree contribute significantly towards the decline
in NJ efﬁCiency. Therefore, ZerO'Iength branches ShOUId:ig. 4. Percentage efficiencyPgg) of the NJ method for varying
be properly discounted in any estimation of the NJ effi- evolutionary ratesrf and tree sizes (up to 192 sequences). Average
ciency, as the NJ method reconstructs realized rathefalues ofPgg from all A% B, C*, and D" trees are shown.

than model trees. For this reason, we report only the

efficiency of the NJ method in reconstructing non-zero-

evolutionary rate, for a given sequence length. In gen-
length branches. y g q g g

eral, we find that a medium evolutionary rate leads to a
slightly higher performance when compared to lower or

Percentage Branches Reconstructed Correctly higher rates. . _ _
Our large phylogenies consist of four basic trees, each

In order to present succinctly the rather voluminous com©f which constitutes a monophyletic group. Table 4
puter simulation results (from the thousands of modelshows the efficiency with which these monophyletic
trees used) in one place, we first present a summary tabiroups were inferred correctly—observed efficiencies
(Table 3). In this table, the NJ efficiencieBgdg) were — are similar for different tree sizes for a given sequence
averaged over all rates, topo|ogies, and sequence |engt||'@”lgth. It is thus clear that the NJ method is able to infer
for a given tree size. Results show that the minimumgroups of the same size with similarly high efficiencies
maximum, and average NJ efficiencies are similar acros#! large as well as small phylogenies.

tree sizes, which differ 32-fold in the number of se-

quences (6 tq .192).. This is .fur.ther illustrated in.Fig. 4, Effect of Branch Depth on NJ Efficiency (Table 5)
where NJ efficiencies are similar across tree sizes and

evolutionary rates, for fixed sequence lengths (100, 200As mentioned earlier, the depth of a branch is defined by
500 and 1000). In the figure each value is an averagé¢he size of the smallest subtree connected to it. Further-
taken from all the topologies for a given tree size andmore, a branch is considered correctly inferred when it
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Table 4. Percentage replicates in which monophyletic clusters of six  A. 200 sites
taxa were reconstructed correctly

Sequence length N 10
Tree
size 200 500 1000
12 77 94 99
18 80 926 100 Ds
24 83 97 100
30 83 97 100 192
36 85 97 100
42 84 97 100 _
48 84 97 100 Tree size
54 85 97 100 v .
60 85 97 100 R
96 84 97 100 Branch depth
192 84 96 100

aEach value is the arithmetic mean over all the topologies given in B- 500 sites
Figs. 1A-D and evolutionary rates used.

100
Table 5. Efficiency of reconstructing branches of various depths

Sequence length

Branch
depth 200 500 1000 Ps
2 86 96 99 192
3 85 97 100 60
4 87 97 100 .
5 86 97 99 Tree size
6 83 97 100 6
12 87 99 100 234 h
18 89 99 100 Branch 3¢
;g gé gg 188 Fig. 5. Probability of correct reconstruction of brancheg)(at vari-
ous depths in trees of different sizes. Egghvalue is an average over
48 92 100 100 . ) X X
% 93 100 100 10 evolutionary rates and four topologies‘(B*, C*, and D* trees).

@Each value is a percentage, averaged over all the topologies given in . .
Figs. 1A-D, tree sizes, and evolutionary rates used. struct than the shallow ones (see Discussion later). Fur-

thermore, the efficiency is high for sequence lengths of
500 sites or more and relatively lower for smaller se-
partitions the tree into two clusters, each containing theduences.
same set of sequences as in the original tree. In trees with
varying expectednternal branch lengths (e.9., Fig. 2), gfficiency in Reconstructing Branches of Different
the_eff|C|ency of reconstructing an internal branch couldgegjized Lengths
be influenced by the branch depth and/or branch length.
This is not the case in our study because all the interioiThe number of substitutions per sequence that actually
branches in a given tree are of equal expected length. (Gfccurred in a given branch constitutes the realized length
course, the realized interior branch lengths may differof that branch. This length varies from replication to
among branches in any given replication). This desigrreplication, whereas the expected branch lengths are
allows us to look at only the location (depth) of the identical. As mentioned under Computer Simulations,
branch, independent of its length, and facilitates directhe realized branch lengths are obtained by drawing a
comparison across different parts of a tree. Figure Sandom number from a Poisson distribution, with the
shows the efficiency of reconstruction of branches ofexpected branch length as the mean of the distribution, to
various depths for two sequence lengths. For each sesimulate the stochastic nature of the evolutionary pro-
quence length we find that the efficiency of reconstruc-cess. How large should the realized branch length be in
tion of interior branches is largely similar across all order to obtain an NJ efficiency of 95% or higher? Fur-
depths of the tree, with deeper branches in fact beinghermore, how does this length change with sequence
reconstructed with higher efficiency in some cases. Thidength and evolutionary rate (the two determinants of
observation is somewhat counterintuitive because deepxpected branch length)? To address these questions, we
branches are often thought to be more difficult to recon-computed the percentage efficiency with which branches
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Average difference (/,5)
Percent branches correct

0 500 1000 1500 2000 2500 3000

Sequence length (s)

Fig. 6. Average percentage difference between the expected and thEig- 7. Percentage branches of the model) and realized Rgg)
minimum realized branch length per sequence needepgfar95%. rbcL trees reconstructed correctly by the NJ method, plotted against
increasing number of siteEilled circles show the corresponding pro-

portions of zero-length branches.
of different lengths were constructed correctly, irrespec-
tive of their position in the tree. The resulting branch
lengths were standardized; = [(b - €)/e] x 100, where Our simulation results clearly establish the adverse
b is the minimum branch length required for a 95% ef- effect of the zero-length branches in the realized tree on
ficiency, ande is the expected branch length. A negative the performance of the NJ method (Fig. 3). The NJ
standardized value shows that a tree with realized branctnethod is for reconstructing realized trees rather than the
length that is smaller than the expected branch length caexpected trees, and therefore, its efficiency should be
still be reconstructed correctly at an average. This stanmeasured by comparing the inferred tree to the realized
dardization allows us to make comparisons across diftree. For instance, Hillis (1996) conducted a computer
ferent rates of evolution and sequence lengths (Fig. 6).simulation using the model tree in Fig. 2 and showed that
Figure 6 shows that an increase in sequence lengtthe NJ method recovers the expected (“model”) tree
(with evolutionary rate held constant) leads to a signifi-when the sequence length was000 sites. The increase
cant decrease ihys. However, an increase in evolution- in efficiency of the NJ method in recovering the model
ary rate (with the sequence length held constant) does ndétee with increasing number of sites can be attributed to
changdys. Therefore, when the total numbers of substi- (1) decreasing variance of distance estimates and/or (2)
tutions in the expected tree are the same, data with longaghe decrease in the number of zero-length branches. Us-
sequences will perform better than those with faster evoing the expected branch lengths employed by Hillis
lutionary rates. This is not unexpected because the sam@996), we examined the performance of the NJ method
expected Jukes—Cantor distance will be estimated witly considering the influence of the zero-length branches
lower variance in the former case. (Fig. 7). Our results for the efficiency of the NJ method
in reconstructing the model tree are similar to those of
Hillis (1996). However, now it is clear that an increase in
Discussion the sequence length directly reduces the number of zero-
length branches, and this is highly correlated (almost as
In this work, we have presented results from our analysi® mirror image) with the efficiency of the NJ method
of large phylogenies in which all interior branches in the (Pg,,). In fact, the NJ tree is almost identical to the
expected trees were made equal for any given tree. Thiswltifurcating realized tree (>99% branches are correctly
stipulation allowed us to examine the relative efficiencyinferred) even for only’500 sites. This result, along with
with which the deep and shallow interior branches arethose in Fig. 3, underscores the importance of the dis-
reconstructed correctly. Furthermore, the stacked strudinction between the realized and the model trees in ex-
ture of our composite model trees is suitable for exam-amining the performance of NJ and other methods. In
ining the relative efficiency of correctly reconstructing fact, a similar effect is seen when the stepwise addition
the same branch in small and large trees. As a result, walgorithm is used for the maximum-parsimony method in
are now in a position to establish a “baseline” profile of computer simulations involving thdcL model tree (re-
the NJ performance. In the following we discuss thesults not shown). Zero-length branches can be eliminated
significance of these results and assess their generaligither by increasing the sequence length or by increasing
by comparing them to the results obtained from com-the evolutionary rate. Our simulations suggest that the
puter simulations involving a 228-taxabcL tree (Fig.  former is more effective than the latter, as the distances
2) and some “hybrid” composite trees (see Computeican be estimated with lower variances in the former case
Simulations). (also see Fig. 6).
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2 4 6 810 12 1416 19 2325 27 29 31 39 47 50 52 54 65 71 74 82 Fig. 8. Reconstruction efficiency for branches at
different depths in thebcL tree, for 200 sites

Branch depth (A) and 500 sitegB).

The efficiency of NJ in terms of the proportion of 1997). The large model trees used in our computer simu-
branches reconstructed correctlygf) in the realized lations were formed by stacking smaller trees. This in-
trees is similar for trees consisting of vastly different creases the tree size by the addition of sister groups to
number of sequences. Strimmer and von Haeseler (199@&Xxisting clusters, rather than the addition of taxa to break
have reported similar results, but they did not remove theup long branches, as done in taxon-sampling studies.
negative contribution made by zero-length branchesTherefore, a comparison of our results to those by above
Since Pgg is similar for large and small phylogenies authors is not straightforward.

(Table 3), the efficiency of reconstructing deeper The NJ method works in a stepwise fashion, inferring

branches is likely to be no worse than that of the shallowshallow branches first. Therefore, the topological errors
branches, if their expected branch lengths are equal. This the early stages of tree reconstruction may propagate
was indeed the case, as the branches at different depthhs we move toward inferring deeper branches. Conse-
are inferred correctly with similar efficiencies (Fig. 5). In quently, one may expect deep branches to be more dif-
fact, deeper branches appear to be reconstructed cdiicult to reconstruct correctly than shallow branches, all

rectly with a higher probability, in some cases. This iselse being equal. However, this intuitive argument is

due in part to the fact that the estimate of the averagelearly not supported, as the efficiency does not decline
distance between groups of sequences, used in recomith depth (Figs. 5 and 8), suggesting that the accuracy
structing deep branches, has a lower variance. of the NJ method in the later stages of clustering (deep

An extrapolation of the results in Fig. 5 comes from branches) is largely independent of the accuracy at the
the analysis of our “hybrid” trees as well as the unequal-early stages (shallow branches). To look for an explana-
internal branch lengthrbcL tree, which contains tion of why this may happen, let us consider the theo-
branches with depths ranging from 2 to 82 taxa and ofretical aspects of the minimum-evolution (ME) principle
different lengths. The reconstruction efficiency remained(Rzhetsky et al. 1995; Rzhetsky and Nei 1992) that forms
similar across different branch depths, as long as only théhe basis of the NJ method.
non zero-length interior branches in the realized trees Consider the tree in Fig. 9, where groupandJ are
were considered for measuring the efficiency (Fig. 8).neighbors, as are groupsandL. If groupsl, J, K, and
Recently, many investigators have considered the effedt are reconstructed correctly, then, under the ME prin-
of taxon sampling on the efficiency of tree-making meth-ciple, the correct inference of branelis not affected by
ods, in which the main emphasis has been to study anthaccuracies in inferring within-group phylogenies
remedy the effect of long branch attraction for small and(Rzhetsky et al. 1995). That is, errors in phylogeny
large phylogenies (see Graybeal 1998; Hillis 1998; Kimwithin groups do not affect higher-level clustering as
1996; Purvis and Quicke 1997; Yang and Goldmanlong as the monophyly of a group is inferred correctly,
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@ ence (Nei et al. 1998) between the NJ and the model trees
a c (not shown), we found that for a given sequence length
there is little difference between the optimality score for

the NJ topology and that for the model topology, irre-
@/ d\@ spective of the tree size. The worst NJ performance was
for large trees with very small sequence lengths (or very

Fig. 9. A schematic showing the topological configuration around an slow evolutionary rates), as there was a very large num-

interior branch €). Four clustersi( J, K, andL) always surround any ber of statistically equally good trees (Kumar 1996).

given internal branch. Therefore, the results presented in this paper are gener-
ally applicable to methods with underlying principles
similar to the NJ method (e.g., Gascuel 1997).

and the realized branch length (brar@twill dictate the It is important to exercise caution in extrapolating

efficiency of correct reconstruction of that branch. Whenresults from any computer simulation to real-life situa-

monophyletic relationships within groupis §, K, andL) tions. We have assumed that the evolutionary processes

are not correctly inferred, then one of two things mayamong the lineages have remained the same throughout

happen. First, groupmay contain some taxa that belong the evolutionary history, i.e., the evolutionary process is

to groupd, and vice versa (or such swapping may occurstationary. This condition is often met in short-term evo-

for K andL). In this case, the reconstructionefmay not  |ution (e.g., population data) and in slowly evolving

be affected because the true neighbor groups will tend tgenes but is likely to be violated when we consider long-

cluster together anyway. The second possibility is theterm evolutionary histories of genes and species. If the

incorrect grouping of taxa from more distantly related stationarity condition is not met, the correct inference of

clusters (e.g., taxa from groupclustering within group  deep branches is likely to be adversely affected (e.g.,

K). This would depend on the length of branehfor  Steel et al. 1993). This aspect will be examined in further

longere it is more difficult for a taxon to cross over to a computer simulation studies.

nonsister group. For a deep branch, the number of taxa

around it is large and the random possibility of crossoveracknowledgments. We would like to thank Roman G. Johnson and
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ciency is at least the same, or sometimes greater, which,

as mentioned earlier, is because the average distances

between groups have lower variance than the pairwise
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