
Copyright  2002 by the Genetics Society of America

Genetics Software

BEST: A Novel Computational Approach for Comparing Gene Expression
Patterns From Early Stages of Drosophila melanogaster Development

Sudhir Kumar,*,†,1 Karthik Jayaraman,‡ Sethuraman Panchanathan,*,‡,§

Rajalakshmi Gurunathan,*,§ Ana Marti-Subirana** and Stuart J. Newfeld†

*Center for Evolutionary Functional Genomics, †Department of Biology, ‡Department of Electrical Engineering, §Department of Computer Science
and Engineering, Arizona State University, Tempe, Arizona 85287 and **Phoenix College, Phoenix, Arizona 85013

Manuscript received August 2, 2002
Accepted for publication September 30, 2002

ABSTRACT
Embryonic gene expression patterns are an indispensable part of modern developmental biology.

Currently, investigators must visually inspect numerous images containing embryonic expression patterns
to identify spatially similar patterns for inferring potential genetic interactions. The lack of a computational
approach to identify pattern similarities is an impediment to advancement in developmental biology
research because of the rapidly increasing amount of available embryonic gene expression data. Therefore,
we have developed computational approaches to automate the comparison of gene expression patterns
contained in images of early stage Drosophila melanogaster embryos (prior to the beginning of germ-band
elongation); similarities and differences in gene expression patterns in these early stages have extensive
developmental effects. Here we describe a basic expression search tool (BEST) to retrieve best matching
expression patterns for a given query expression pattern and a computational device for gene interaction
inference using gene expression pattern images and information on the associated genotypes and probes.
Analysis of a prototype collection of Drosophila gene expression pattern images is presented to demonstrate
the utility of these methods in identifying biologically meaningful matches and inferring gene interactions
by direct image content analysis. In particular, the use of BEST searches for gene expression patterns is
akin to that of BLAST searches for finding similar sequences. These computational developmental biology
methodologies are likely to make the great wealth of embryonic gene expression pattern data easily
accessible and to accelerate the discovery of developmental networks.

PATTERNS of gene expression in the fruit fly Dro- antagonize decapentaplegic signaling (Ashe and Levine
sophila melanogaster have been extensively studied by 1999; Jazwinska et al. 1999a,b). As this example shows,

visualizing the presence or absence of gene products analysis of similar gene expression patterns is important
or their markers in the developing embryo (visualization to understanding the interplay of genes that generate
methods are reviewed in Goldstein and Fyrberg the body plans of fruit flies, humans, and other metazo-
1994). Genetic studies show that genes with similar ex- ans (reviewed in Carroll et al. 2000; Davidson 2000;
pression patterns often have mutant alleles that affect Rougvie 2001).
the same tissue. In these studies, researchers routinely Familiarity with the wealth of images of gene expres-
infer gene interactions by visually comparing gene ex- sion patterns gathered over the past two decades is es-
pression pattern images (e.g., Gieseler et al. 2001; sential for discovering new genetic interactions. How-
Takaesu et al. 2002). For example, the dorsal/ventral ever, the burden of becoming familiar with extensive
polarity of the Drosophila embryo is controlled by many past literature and the rapidly increasing amount of
genes, including the secreted factors decapentaplegic and information on gene expression patterns is an impedi-
short gastrulation and the transcription factor brinker. short ment to cross-laboratory endeavors and to building a
gastrulation and brinker have very similar expression pat- global genetic framework for embryonic development.
terns and their mutant phenotypes are also very similar. Computational tools to automatically identify images
Genetic analyses have shown that both of these genes with similar gene expression patterns from a large col-

lection of images and to predict potential genetic in-
teractions using these images would greatly facilitate
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situ RNA hybridization studies (http://www.fruitfly.org).
The need for a computational system is particularly
acute in studies of Drosophila, as scientists move beyond
studies of single genes or gene families to generate a
global view of development. To address these issues,
we have developed in silico approaches for automated
comparison of gene expression pattern images that
mimic some of the visual comparison techniques used
by researchers in the laboratory. Our methods enable
easy and efficient access to gene expression and interac-
tion data and will likely facilitate new discoveries in
developmental biology.

In this article, we describe methodologies for (a)
standardizing gene expression pattern images as they
are acquired under different illumination conditions
and are published in a variety of sizes, orientations, and
resolutions; (b) quantifying the amount of dissimilarity
between two expression patterns by comparing images
containing them; (c) identifying those images from a
large collection that contain expression patterns similar
to that contained in the given image; and (d) inferring
genetic interactions between two genes by comparing Figure 1.—Gene expression pattern images published by

two different groups of investigators (Tsai et al. 1998; Zhangthe expression pattern of a particular gene in wild-type
and Levine 1999). (A and B) Original gene expression patternand mutant backgrounds. In the first phase of our ef-
images obtained from the PDF file available online. Relativeforts to develop computational methods, we have fo- size differences are due to the differences in sizes of the images

cused on early embryonic development in D. melanogas- as originally published. (C and D) Edge-fitted images with the
ter. This focus reflects two relevant features of the field rectangle bounding the embryo denoted by the dotted line.

(E and F) Size-standardized images. (G and H) Expressionof Drosophila developmental genetics. First, there is an
pattern extracted images.emphasis on understanding early developmental events

that have global effects, such as the organization of the
embryonic dorsal/ventral axis. Second, the deposition

et al. 2001; Kobayashi et al. 2001; Nibu and Levineof the cuticle after roughly three-fourths of embryonic
2001).development prevents the use of several techniques

commonly employed for the analysis of gene expression.
We present results showing the performance of our

MATERIALS AND METHODSmethodologies using a prototype collection of 982 im-
age-searchable gene expression pattern images cap-

To meaningfully compare gene expression images computa-
tured as whole embryos and retrieved from the literature tionally, it is important to standardize them and to remove
(Gaul and Jackle 1987, 1990; Tautz 1988; Pankratz background information (reviewed in Castleman 1996).
et al. 1989, 1990; Hulskamp et al. 1990, 1994; Kania et Standardization is required because investigators publish digi-

tal images in different sizes and orientations and becauseal. 1990; Pankratz and Jackle 1990; Hulskamp and
images are acquired under different illumination conditions.Tautz 1991; Riddihough and Ish-Horowicz 1991;
Digital images are composed of many fine dots (called pixels)Sommer and Tautz 1991; Steingrimsson et al. 1991; of different intensities. Thus standardization establishes the

Pignoni et al. 1992; Gutjahr et al. 1993; Lardelli and pixel-to-pixel correspondence between two images by setting
Ish-Horowicz 1993; Grossniklaus et al. 1994; Hart- up a uniform size and point of reference for all images. For

example, two expression patterns in Figure 1 (A and B) aremann et al. 1994; Pelegri and Lehmann 1994; Rothe
quite similar to the naked eye; however, they do not have theet al. 1994; Schulz and Tautz 1994, 1995; Tsai and
necessary pixel-to-pixel correspondence for computer-basedGergen 1994; Margolis et al. 1995; Rivera-Pomar et
analysis. The gene expression image standardization proce-

al. 1995; Sanchez-Herrero 1995; Yu and Pick 1995; dure involves a number of steps.
Arnosti et al. 1996; Klingler et al. 1996; Kosman and Embryo-enclosing algorithm: This procedure starts with fit-
Small 1997; Vincent et al. 1997; Lawrence and Pick ting the Drosophila embryo boundaries into the smallest possi-

ble rectangular area, a process referred to as “edge-fitting”1998; Nibu et al. 1998; Toy et al. 1998; Tsai et al. 1998;
(Castleman 1996; Costa and Cesar 2000). For instance, theWu et al. 1998; Ashe and Levine 1999; Goldstein et
dotted lines in Figure 1 (C and D) are the smallest rectanglesal. 1999; Jazwinska et al. 1999b; La Rosee-Borggreve
in which the actual embryonic image is contained. Since early

et al. 1999; Niessing et al. 1999; Zhang and Levine stage embryos have a consistent shape, it is an effective way
1999; Janody et al. 2000; Jin et al. 2000; Nasiadka et al. of removing the noise outside the embryo area. It is actually

more effective than a contour-detecting algorithm in the pres-2000; Wimmer et al. 2000; Casares and Flores-Saaib
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ent case because many images contain embryo boundaries
that are too faint to generate a complete contour.

For this step, we have developed an algorithm in which the
boundaries of the initial rectangular image are moved inward
until they touch the Drosophila embryo outline on all four
sides. In this algorithm, we first consider an area of 5 � 5
pixels at the four corners of the image and then compute
the mean (m) and standard error (s) of the average color
intensities for pixels in the four corners of the image. Next,
we find the topmost row in the image, where the upper bound-
ary of the embryo is present. For this, we traverse top-to-
bottom in each column to identify the pixels closest to the
top boundary where the absolute difference between the pixel

Figure 2.—Original and extracted patterns using adaptiveintensity (p) and m is significant (e.g., m � p is greater than
thresholding for a simple expression pattern (A and B) andtwice the standard error under the assumption of normality).
the expression pattern for a pair-rule gene (C and D).The row coordinate of the pixel identified closest to the top

edge of the image is the top boundary of the embryo. To
identify bottom, left, and right boundaries, we use the same
algorithm; the only difference is that now we traverse from also contains some noise. We therefore filter the images to
bottom to top in each column, left to right in each row, and suppress and/or remove the noise by employing wavelet filters
right to left in each row, respectively. This results in an embryo and morphological operators to selectively remove the higher
enclosed in the smallest rectangular area possible. The embryo frequency bands contributed by noise (Adams and Bischof
boundaries determined using this algorithm for A and B in 1994). The result of this extraction process for a simple region
Figure 1 are shown in C and D. Note that all images are of expression (Figure 2A) is shown in Figure 2B. For images
standardized to an anterior (left)–posterior (right)–dorsal containing multiple regions of expression, we employ the re-
(top)–ventral (bottom) orientation. gion-growing procedure to extract relevant patterns. Region

Size standardization: In the next step, we need to scale all growing is a procedure that groups pixels or subregions into
the resultant images to the same size as they are often captured larger regions starting from a seed pixel (or region) and ap-
or published in very different sizes (compare Figure 1, A and pending the neighboring pixels that have similar properties.
B). We chose a size of 270 � 100 pixels, which was the average This improves data quality and makes the extracted pattern
size of gene expression pattern images acquired from the biologically relevant. For instance, an algorithm implementing
published literature. For scaling, we perform a geometric the region-growing procedure automatically extracted all ar-
transformation (simple scaling) followed by an interpolation eas of expression for genes that affect multiple regions (e.g.,
to derive the pixel values of the new image. In these studies, we pair-rule genes) without requiring manual input (Figure 2, C
used a gray-level bilinear-interpolation scheme (Castleman and D). (For multiply stained embryos, use of color-sensitive
1996, p. 124). It is a first-order interpolation, which determines thresholds corresponding to each stain separately allows for
the destination pixel intensity value based on the four nearest the generation of multiple images.) These methods do not
neighbor pixels of the source image. This is a simple but distinguish between quantitative levels of expression; they are
effective approach for scaling. Results from this transforma- meant for identifying spatial similarities in the presence or
tion are shown in Figure 1, E and F, which are standardized absence of gene expression.
images in which pixel correspondence has been established. Finally, we convert the color/gray-scale pixels into simple

Expression pattern extraction: The next step in the gene black-and-white patterns such that only pixels containing gene
expression pattern image standardization is to eliminate back- expression take on a black color and the rest of the image
ground to focus on the foreground containing the expression lacks any color (Figure 1, G and H). We do not convert original
pattern. This ensures that only actual patterns of gene expres- images directly into black-and-white images prior to conduct-
sion are compared for biologically meaningful analysis. In ing the above-mentioned size standardization and pattern ex-
Figure 1A, the gene expression pattern is the darkly stained traction procedures because the information contained in
region embedded in a lighter-color background. While this differences in color intensities is valuable for reliably separat-
can be recognized easily by a trained eye, the process needs ing expression patterns from the background.
to be automated for large-scale data gathering. Therefore, Digital representation of expression patterns: The binary
the expression pattern (relevant visual content) first must be images representing gene expression patterns are processed
extracted from each image. to derive a vector of features describing the image content

Extraction of the gene expression pattern from the back- (gene expression patterns). We represent each image in the
ground requires the use of a threshold value of pixel intensity form of a string of 1’s and 0’s, where black pixels are denoted
(Gonzalez and Woods 1993; Castleman 1996). All pixels by a value of 1 and white pixels by a value of 0. For exam-
with intensity less than the threshold are assigned a white ple, an expression pattern is represented as 0100111000…
color (background) and all others are left as is. Our prelimi- 00000001111111. This is referred to as the binary sequence
nary results demonstrated, as expected, that the same thresh- vector (BSV) representation. The BSV representation is partic-
old value cannot be used for all images due to differences in ularly useful in quantifying image-to-image dissimilarity for

finding images with similar or overlapping expression pat-the intensity distribution caused by variations in investigator
equipment, gene expression pattern, and other factors. To terns, and it allows for localization of image similarity searches

to any section of the embryo.compensate for these variations, we automatically derive
threshold values for each image by using adaptive thresholding An alternative set of features can be derived using shape

descriptors, which have proven to be effective in establishingmethodology (see Lie 1995 for details). This can be accom-
plished, for example, by using the variance of the pixel inten- the similarity between two images as well as in effecting image

retrieval (Costa and Cesar 2000). The latest multimedia stan-sity values for a given image as the basis for the choice of the
specific threshold value for that image. While this method dard proposed by the International Standards Organization

(ISO) for indexing and retrieval of images, namely MPEG7,captures the entire expression pattern, the resulting image
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proposes shape descriptors for efficient and effective image
retrieval. These features are specifically designed for natural
images and their utility in the gene expression pattern image
analysis is generally unclear. We therefore investigated the
usefulness of shape descriptors by adapting them to our spe-
cific class of expression pattern images. Our analyses showed
that they are not more efficient than the binary sequence
vector for the early stage embryos considered here (K. Jayara-
man, S. Panchanathan and S. Kumar, unpublished results).

Finding best matching expression patterns with the basic
expression search tool (BEST): To find the best matching set
of images for a given query image, we need to compute the
extent of dissimilarity between gene expression patterns. We
use the BSV representation for this purpose. The correspond-
ing bit sequences are compared and the number of bits with
different values are counted. We define the expression pattern
distance (DE) to be equal to the number of differences between
two images divided by the number of pixels depicting the
expression pattern in at least one of the two images. In other
words, we determine expression pattern similarity by focusing
only on the pixels that show gene expression (have value 1)
in either image. For example, two images, A and B, with bit
sequences of length 30 given below have nine differences
(underlined bits).

Figure 3.—A simple algorithm for inferring gene interac-
Expression Pattern A: 000110011110000000000111111111 tion between genes A and B using gene B’s expression pattern
Expression Pattern B: 000110011111110000000111000000 images in wild-type and mutant backgrounds for gene A. The

wild-type expression pattern B is captured in image BC and
Therefore, DE � 9/18 � 0.5. Images showing the highest the expression of gene B in A mutant background is captured

amount of match (i.e., lowest DE) with the query image are in image A- BC. In this image nomenclature, a superscript dash
retrieved as the best matches. This simple metric showed reflects the mutant gene and a superscript C reflects the gene
excellent performance for early stage embryos in an analysis whose expression is captured. Also, the logic expressions con-
of a collection of 982 images (see below). taining symbol � test whether the expression pattern in the

Inferring gene interactions: Gene interactions are com- image on the left is contained completely in the expression
puted by comparing expression patterns of individual genes pattern of the image on the right.
in wild-type and mutant backgrounds. Normally, investigators
conduct this task by simple visual inspection and deduction.
However, as the number of images increases, visual inspection

is used. This operator results in a 0 if the values of the corre-becomes cumbersome. Therefore, we have devised an algo-
sponding pixels in the two images under inspection are therithm that uses gene expression pattern images, their geno-
same (i.e., if they are both 0 or both 1) or results in a 1 iftypes, and their probes to infer the nature of the interaction
the values of the corresponding pixels in the two images arefor that pair of genes. This computational system works well
different. Outputs from gef function for this image as well asfor early stages of embryonic development because gene ex-
the original data are input to the flowchart diagram for infer-pression at these stages is often relatively broad, rather than
ring interactions.highly localized as in later stage embryos. Also, we find that

�80% of the available images are from early stage embryos.
Therefore these methods are applicable for large amounts of
existing data. RESULTS

A flowchart for the two-gene case is shown in Figure 3, in
Performance of data standardization methods: Wewhich the expression patterns of gene B in the wild-type and

mutant backgrounds for gene A are used. By design, these examined the performance of our methodologies for
data shed light on how the expression of gene B is influenced embryo-enclosing and expression pattern extraction us-
by gene A. Figure 3 shows various paths starting from the ing 97 images from eight articles (Lawrence and Pick
gene expression images and proceeding to the decisions that

1998; Toy et al. 1998; Tsai et al. 1998; Ashe and Levinecorrespond to whether or not the expression of gene B is only
1999; Goldstein et al. 1999; Jazwinska et al. 1999b;positively affected (A → B), only negatively affected (A —|B),

positively and negatively affected (A →|B), or not affected Zhang and Levine 1999; Jin et al. 2000). We provided
(A � B) by gene A. Using the BSV representations of gene the original and the automatic embryo-enclosed images
expression patterns, the actual algorithm works as follows. We to 16 independent evaluators (graduate students in biol-
begin by defining a new function, termed the gene expression

ogy or computer science not involved in the currentfunction (gef ), which evaluates whether a given expression
project) and requested that they give a score of 0.25 forpattern contains all 0’s or all 1’s or a combination of 0’s and

1’s in a given image (i.e., no expression, ubiquitous expression, each edge in the edge-fitted image that, in their opinion,
or localized expression pattern, respectively). It produces 1 if enclosed the Drosophila embryo in the tightest fit possi-
the image contains all black pixels. If all pixels are white, then ble (visually). Therefore, a score of 1.0 refers to perfect
it produces a 0; otherwise, it returns a P (for partial). To

fit of all four edges, and a score of 0 represents theanalyze all possible interactions between the gene expression
poorest fit in all directions. The average edge-fittingpatterns, we derive new image patterns based on the two origi-

nal images, for which the logical exclusive OR (xor) operation score was 0.875; i.e., 3.5 edges fit well on average. While
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most edge-fitted images scored perfectly, we identified in descending order below the query image in Figure
4 with the percentage of similarity (1 � DE) given ina few images that scored poorly (score �0.5). This ap-

pears to be due to poor or highly varying illumination parentheses.
Figure 4A shows an image with expression restrictedin the image (e.g., embryo boundaries are too faint in

some images) or to artifacts such as panel numbers or to the posterior 10% of the embryo (Zhang and Levine
1999). Specifically, the image shows the expression ofarrows. In these difficult cases, we needed to manually

set boundaries. forkhead RNA in a transgenic embryo with maternal ex-
pression of a mutant hairy cDNA fused to the bicoid 3�We evaluated the performance of our automatic ap-

proach for pattern extraction by again asking 16 inde- untranslated region (UTR). With this as the query im-
age, BEST should retrieve images with posterior re-pendent evaluators to assign a score of 1–4 for each

extracted pattern (1 being worst and 4 being best). This stricted expression patterns, especially other panels in
the original article. This is indeed the case. Four of thetests the performance of the above method to approxi-

mate what the human eye can easily recognize. The five BEST hits are other panels in the original article.
These panels depict tailless, huckebein, and forkhead RNAaverage success score for the combined region-growing

and adaptive-thresholding methodology was found to expression in transgenic embryos with maternal expres-
sion of different mutant hairy cDNA fused to the bicoidbe 3.5 (87.5%). The observed difficulty with automatic

pattern extraction appears to relate to the lack of suffi- 3� UTR. In addition, the BEST hits contain an image
with expression of brachyenteron RNA in a huckebein mu-cient contrast between the expression pattern and the

background. In addition, in the presence of multiple tant embryo (Goldstein et al. 1999).
Figure 4B shows an image with expression restrictedpatterns of interest (with different illuminations) the

automatic technique needs to be user guided to extract to the anterior 25% of the embryo (Zhang and Levine
1999). Here, the expression of hairy RNA in a transgenicall biologically significant regions. For this reason, a

semiautomatic system was developed in which different embryo with maternal expression of a hairy cDNA fused
to the bicoid 3� UTR is captured. Three of the five BESTthreshold values and/or new seed points for different

regions of interest in the embryo can be specified manu- hits to this image are other panels in the original article;
they depict hairy RNA expression in transgenic embryosally. This improves data quality and makes the extraction

biologically relevant. with maternal expression of different mutant hairy
cDNA fused to the bicoid 3� UTR. An image from Hul-Finding similar gene expression patterns computa-

tionally: We explored the effectiveness of our computa- skamp and Tautz (1991), which depicts bicoid RNA
expression in a wild-type embryo, is also identified. Thetional approach in finding similar expression patterns

using a prototype collection of 982 patterns from 49 bicoid RNA localization is regulated by sequences in its
3� UTR (MacDonald 1990); thus the identification ofpublished research articles (Figure 4). These tests were

geared toward determining the sensitivity of our compu- bicoid when using a query image in which gene expres-
sion is regulated by bicoid 3� UTR sequences is clearlytational approach and the biological validity of the im-

age-matching procedure. A computer program was writ- meaningful. An image from Flores-Saaib et al. (2001)
depicting the expression of Gal4-driven �-galactosidaseten to automatically retrieve gene expression pattern

images showing overlap with a given query pattern based (lacZ) RNA in a transgenic embryo expressing the
C-terminal domain of Dorsal fused to Gal4 was alsosolely on the similarities between images. We refer to

the images retrieved by BEST as “BEST hits.” among the five BEST hits. Results for Figure 4, A and
B, clearly show that our search tool effectively retrievesHere we briefly summarize the characteristics of our

10 test-case expression patterns and then we describe biologically relevant images that match a query image
with a simple expression pattern.BEST-hit results for each case. Of the 10 patterns, 9 are

lateral views (Figure 4, A–E, G, and H) and one is a Figure 4C shows an image with expression of orthoden-
ticle RNA restricted to the anterior 25% of the embryo,dorsal view (F). Expression patterns in some images

differ considerably from each other (e.g., Figure 4, A except that expression is absent at the anterior terminus
(Tsai and Gergen 1994). Four of the five BEST hitsand B), some differ only slightly (Figure 4, B and C),

some have clearly overlapping domains of expression are images with an anterior expression pattern in which
expression is also absent at the anterior terminus. Threeeven though they are quite different overall (Figure 4,

D and E and G and I), and others have multiple distinct of these are from another article by the same author
(Tsai et al. 1998) and depict orthodenticle RNA expressionregions of expression (Figure 4, E, F, I, and J). These

query images were chosen without regard to their geno- in different genotypes. An image from Grossniklaus
et al. (1994) depicting the expression of sloppy paired1type, probe, or any other consideration except for diver-

sity of expression pattern. Also, BEST hits were based RNA in a wild-type embryo was also among the five
BEST hits. The least similar of the five BEST hits is ansolely on gene expression contained in the images; no

prior knowledge of gene interactions was used. For each image with expression throughout the anterior region
of the embryo from Zhang and Levine (1999) showingimage, the program queried the entire collection of 982

images. The top five BEST hits for each image are shown the expression of hairy RNA in a transgenic embryo with
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Figure 4.—BEST-hit re-
sults for a variety of query
images. Each image is iden-
tified by the last name of the
first author of the original
research article and the
figure number for that arti-
cle. Values in parentheses
are the percentage of simi-
larity score (1 � DE). BEST
hits are arranged in de-
scending order starting with
the best hit. Author names
and citations are as follows:
Zhang (Zhang and Levine
1999); Goldstein (Goldstein
et al. 1999); Saaib (Flores-
Saaib et al. 2001); Huls-
kamp3 (Hulskamp and
Tautz 1991); Tsai (Tsai
and Gergen 1994); Tsai2
(Tsai et al. 1998); Gross-
niklaus (Grossniklaus et
al. 1994); Ashe (Ashe and
Levine 1999); Arnosti (Ar-
nosti et al. 1996); Gaul1
(Gaul and Jackle 1990);
Hulskamp2 (Hulskamp et
al. 1990); Margolis (Mar-
golis et al. 1995); Nasiadka
(Nasiadka et al. 2000); Ja-
nody ( Janody et al. 2000);
Pomar (Rivera-Pomar et al.
1995); Nibu1 (Nibu and
Levine 2001); Nibu2 (Nibu
et al. 1998); Jazwinska ( Jaz-
winska et al. 1999b); Kos-
man (Kosman and Small
1997).

maternal expression of a hairy cDNA fused to the bicoid The next two BEST hits are images of Krüppel protein
expression in a hunchback mutant embryo (Gaul and3� UTR. Notably, even though the query image in Figure

4C is quite similar to the query image in Figure 4B, the Jackle 1990) and Krüppel RNA expression in a bicoid
and hunchback double-mutant embryo (Hulskamp et al.top-five BEST hits for these query images are not the

same. This example demonstrates the sensitivity of the 1990). The next BEST hit is an image of hunchback RNA
expression in a wild-type embryo (Margolis et al. 1995).image search system.

Figure 4D shows an image with a single stripe of The engrailed RNA expression in an embryo with ubiqui-
tous fushi tarazu expression (Nasiadka et al. 2000)expression of short gastrulation RNA driven by the even

skipped stripe 2 enhancer in a transgenic embryo (Ashe rounds out the top five. While the query image and the
BEST hits are from six different articles, all of the genesand Levine 1999). The top five BEST hits include RNA

and protein expression patterns. The top hit is an image involved are part of a well-characterized, spatially local-
ized hierarchy of gene regulation. The query imageshowing Gal4-driven lacZ RNA in an embryo expressing

a Knirps-Gal4 fusion protein under the control of the and the top BEST hits depict expression of a transgene
containing the stripe 2 enhancer that normally directseven skipped stripe 2 enhancer (Arnosti et al. 1996).
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the expression of the pair-rule gene even skipped. As a dominant Toll mutant allele. Two images of lacZ RNA
driven by wild-type and modified versions of the decapen-reviewed by Gaul and Jackle (1990) even skipped expres-

sion is regulated by the gap genes hunchback and Krüppel taplegic dorsal enhancer (Flores-Saaib et al. 2001) in
wild-type embryos are also identified. The other two top(BEST hits 2, 3, and 4). Finally, the segment polarity

pattern of engrailed expression (BEST hit 5) is regulated hits are zernault RNA expression in wild-type and dCtBP
mutants (Nibu et al. 1998). In this case, the query andby the pair-rule gene even skipped (Fujioka et al. 1995).

This example demonstrates the use of the expression all five BEST hits depict the expression of genes involved
in direct interactions with Decapentaplegic signalingsearch system in retrieving data that help in understand-

ing components of developmental pathways. during embryonic dorsal/ventral patterning.
Figure 4I shows an image with stripes of expressionFigure 4E shows an image of the two domains of

hunchback RNA expression in a wild-type embryo. hunch- in ventral and lateral regions. Specifically, the image
shows the expression of short gastrulation in a wild-typeback is expressed in a wide stripe toward the anterior

and a narrow stripe toward the posterior of the embryo embryo (Ashe and Levine 1999). The top BEST hit is an
image of brinker RNA expression in a wild-type embryo(Tsai and Gergen 1994). All five BEST hits are images

showing hunchback expression (visualized in a variety of (Jazwinska et al. 1999b). The fact that the top hit for
short gastrulation RNA expression is brinker is consistentways) in wild-type or mutant backgrounds. The five

BEST hits include overlapping expression patterns from with the roles of brinker and short gastrulation in the
Decapentaplegic signaling pathway (Jazwinska et al.the original article and from three other articles (Gaul

and Jackle 1990; Margolis et al. 1995; Janody et al. 1999a,b). One of the five BEST hits is an image from
Ashe and Levine (1999) showing the expression of short2000).

Figure 4F shows an image, in dorsal view, with three gastrulation RNA in a transgenic embryo in which short
gastrulation is also expressed from the even skipped stripedomains of expression. Expression is seen in the ante-

rior 25% and in two stripes of expression toward the 2 enhancer. Two images of rhomboid RNA expression in
a dCtBP and a snail mutant embryo are also identifiedposterior of the embryo. Specifically, the image shows

Race RNA expression in a goosecoid mutant embryo with (Nibu et al. 1998). All of these genes are involved in
embryonic dorsal/ventral patterning. Even skipped pro-short gastrulation expression driven by the even skipped

stripe 2 enhancer (Ashe and Levine 1999). Four of the tein expression in an embryo derived from a bicoid oskar
double-mutant female is also identified (Gaul andfive BEST hits are images from the same article showing

dorsal views of Race or Race and short gastrulation RNA Jackle 1990).
Finally, we consider an embryo with seven stripes ofexpression in goosecoid mutant embryos with short gastru-

lation expression driven by the even skipped stripe 2 en- expression, a pattern typical of pair-rule genes, for find-
ing BEST hits (Figure 4J). Figure 4J shows the expres-hancer. An image, in lateral view, showing the expres-

sion of knirps RNA in a maternal and zygotic caudal sion of runt RNA in an embryo expressing low levels of
knirps under the control of the even skipped stripe 2mutant embryo, is also identified (Rivera-Pomar et al.

1995). enhancer (Kosman and Small 1997). Four of the five
BEST hits are images from the same article. The topFigure 4G shows an image with expression restricted

to the ventral 10% of the embryo. The expression of BEST hit is an image showing the expression of runt
RNA in an embryo expressing intermediate levels ofsnail RNA in an embryo derived from a groucho germline

clone is shown (Goldstein et al. 1999). Two of the five knirps under the control of the even skipped stripe 2
enhancer. The other three BEST hits from this articleBEST hits are images from the same article showing

snail RNA expression in wild-type and huckebein mutant show the expression of fushi tarazu RNA in embryos
expressing low or intermediate levels of knirps underembryos. In addition, two images of lacZ RNA expres-

sion driven by a fusion of rhomboid and twist enhancers the control of the even skipped stripe 2 enhancer. fushi
tarazu is a pair-rule gene expressed in the same patternare identified (Nibu et al. 1998; Nibu and Levine 2001).

The identification of twist expression when using a query as even skipped (Lawrence and Johnston 1989). An
image of fushi tarazu RNA expression in an embryoimage of snail expression is biologically meaningful.

Both twist and snail are expressed in the ventral ecto- ubiquitously expressing a Fushi tarazu-VP16 fusion pro-
tein is also identified (Nasiadka et al. 2000). In thisderm and are important for ventral mesoderm forma-

tion (Ray et al. 1991). The expression of Gal4-driven image, the fushi tarazu expression pattern appears con-
tinuous due to its reduced size. In the original figurelacZ RNA in a transgenic embryo expressing Dorsal

fused to Gal4 is also retrieved in this search (Flores- (as published in Nasiadka et al. 2000) it is possible to
distinguish fushi tarazu’s normal striped pattern aboveSaaib et al. 2001).

The expression of decapentaplegic RNA is restricted to the background of ectopic fushi tarazu expression in-
duced by the fusion protein.the dorsal 40% of a wild-type embryo as shown in Figure

4H (Jazwinska et al. 1999b). One of the five BEST hits Overall these results suggest that the basic expression
search tool is (i) able to successfully retrieve expressionis an image from the same article showing brinker RNA

expression in an embryo derived from a female bearing patterns of the same gene from the same article, (ii)



2044 S. Kumar et al.

sensitive to relatively small changes in expression pat-
tern, (iii) able to retrieve expression patterns of differ-
ent genes that have similar functions (e.g., dorsal/ven-
tral patterning), and (iv) able to recover expression
patterns of different genes within a spatially localized
regulatory hierarchy (e.g., gap, pair-rule, and segment
polarity genes). Our examples identify numerous
known, biologically meaningful matches (e.g., short gas-
trulation and brinker) and several potentially new matches
(e.g., orthodenticle and sloppy paired1) from a large data
set. This is exactly what a researcher would do when
comparing their images to those in the published litera-
ture manually by eye. The use of BEST hits will expedite
the search for finding comparable RNA and protein
expression patterns (as is the case for the BLAST search
for molecular sequences). As when searching the litera-
ture for matching gene expression patterns, a BEST-
hits user must determine the biological meaningfulness
of matches retrieved by consulting the original articles.

Figure 5.—Application of the algorithm for inferring geneInferring gene interactions: Here we present results
interaction between genes using expression patterns in wild-from five examples in which genetic interactions were type and mutant backgrounds. (A) Effect of bicoid (bcd) on

computed employing the flowchart diagram in Figure Krüppel (Kr) expression (Gaul and Jackle 1990; Hulskamp
3. Our algorithm compares the expression pattern of a et al. 1990). (B) Effect of bcd on tailless (tll) expression (Pig-

noni et al. 1992). (C) Effect of caudal (cad) on knirps (kni)gene in wild-type and mutant embryos. In each case,
expression (Rivera-Pomar et al. 1995; Arnosti et al. 1996).inferred interactions are expected to match those that
(D) Effect of dCtBP on giant (gt) expression (Nibu et al. 1998).an investigator would deduce on the basis of their visual (E) Effect of bcd on orthodenticle (otd) expression (Tsai et al.

inspection of the same images. 1998; Janody et al. 2000).
Figure 5A shows the effect of bicoid on Krüppel (Kr)

expression. On the left, we show Krüppel RNA expres-
sion in a wild-type embryo (Hulskamp et al. 1990) and negative relationship between caudal activity and knirps

expression. This is consistent with the Rivera-Pomar eton the right we show Krüppel protein expression in a
maternal bicoid mutant (bcd� ) embryo (Gaul and Jackle al. (1995) report that giant, a caudal-dependent repres-

sor, refines the expression of knirps.1990). Our algorithm compares the pattern of Krüppel
expression in each image and determines that there is The posterior refinement of giant expression by

dCtBP-mediated repression is shown in the next examplemore extensive Krüppel expression in the bcd� embryo
than in the wild-type embryo. The program suggests (Figure 5D). Here giant RNA expression in a wild-type

embryo and a dCtBP germline clone mutant embryothat Krüppel expression is negatively affected by bicoid
activity, when we consider the extent of the region of (dCtBP�; Nibu et al. 1998) are compared. The algorithm

suggests that giant expression is negatively affected bygene expression. This is consistent with the reported
refinement of Krüppel expression by bicoid-mediated dCtBP activity as reported by Nibu et al. (1998).

Finally, we consider the effect of bicoid on orthodenticlerepression (Gaul and Jackle 1990; Hulskamp et al.
1990). (otd) expression (Figure 5E). The algorithm compares

the expression patterns of Orthodenticle protein in aFigure 5B shows the effect of bicoid on tailless (tll)
expression by comparing tailless RNA expression in wild- wild-type embryo (Janody et al. 2000) and orthodenticle

RNA in a maternal bicoid mutant (bcd�) embryo (Tsaitype and bcd� embryos (Pignoni et al. 1992). The algo-
rithm suggests that tailless expression is also negatively et al. 1998; Janody et al. 2000). Our algorithm suggests

that orthodenticle expression is positively affected by bicoidaffected by bicoid activity. This is consistent with visual
comparison of these images as reported by Pignoni et activity, because there is less extensive orthodenticle ex-

pression in the bcd� embryo than in the wild-type em-al. (1992).
In Figure 5C, we examine the interaction between bryo. This result is consistent with the known activation

of orthodenticle expression by bicoid (Tsai et al. 1998).caudal and knirps (kni). For this purpose, we use images
containing knirps RNA expression in a wild-type embryo These examples illustrate the ability of our computa-

tional techniques to infer genetic interactions using im-(Arnosti et al. 1996) and in a maternal and zygotic
caudal mutant (cad�) embryo (Rivera-Pomar et al. age data in a manner similar to that employed visually

by researchers. The simplicity of the approach is that1995). The algorithm determines that there is more
extensive knirps expression in the cad� embryo than the entire process can be described by a few logic func-

tions and is therefore easily automated for analyzing allin the wild-type embryo and concludes that there is a
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available pairs of images that are suitable for inferring possible pair of genes for which wild-type and mutant
expression patterns are available. It therefore will facili-genetic interactions (results from those analyses will be

published elsewhere). tate construction of developmental networks and help
explore the combinatorial nature of genetic interactions
that provide the exquisite specificity and diversity of
gene expression patterns. These algorithms provide spe-DISCUSSION
cific predictions for researchers, who can then test the

A major problem facing biologists today is that data validity of these in silico inferences. In the future, we
generation has consistently outpaced advancements in plan to develop similar algorithms for simultaneous
computational techniques for developing biological in- analysis of multiple genes.
sights and generating hypotheses. This problem has In summary, methods presented in this article are
plagued molecular sequence data for over a decade. efforts to fulfill the need for computational technology
With the advent of large-scale high-throughput in situ for large-scale analysis of gene expression data. For in-
efforts, we are headed toward biological data overload stance, our approach will facilitate the construction of
in developmental biology as well. For example, Berkeley similarity-based clusters of expression pattern images.
Drosophila Genome Project has released a large collec- Examination of similarities and differences in their spa-
tion of images (�30,000) generated with a standardized tial and temporal contexts and of the genetic back-
RNA in situ hybridization method using whole embryos ground of images within each similarity cluster will likely
and cDNA probes from the Drosophila UNIGENE set reveal new genetic interactions and thus accelerate the
(http://www.fruitfly.org). About 15,000 of these images discovery of hidden links in developmental networks.
are expected to depict gene expression from early stage Therefore, an accelerated, expanded understanding of
embryos. These data are released in raw form to the the interconnected nature of gene function may emerge
public. How will we view these data efficiently? How will from in silico analysis.
we find images with similar expression patterns, other
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