
Integration of structural dynamics and molecular
evolution via protein interaction networks:
a new era in genomic medicine
Avishek Kumar1,5, Brandon M Butler1,5, Sudhir Kumar2,3,4

and S Banu Ozkan1

Available online at www.sciencedirect.com

ScienceDirect
Sequencing technologies are revealing many new non-

synonymous single nucleotide variants (nsSNVs) in each

personal exome. To assess their functional impacts,

comparative genomics is frequently employed to predict if they

are benign or not. However, evolutionary analysis alone is

insufficient, because it misdiagnoses many disease-associated

nsSNVs, such as those at positions involved in protein

interfaces, and because evolutionary predictions do not

provide mechanistic insights into functional change or loss.

Structural analyses can aid in overcoming both of these

problems by incorporating conformational dynamics and

allostery in nSNV diagnosis. Finally, protein–protein interaction

networks using systems-level methodologies shed light onto

disease etiology and pathogenesis. Bridging these network

approaches with structurally resolved protein interactions and

dynamics will advance genomic medicine.
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Introduction
Proteins are the remarkable workhorses of life, as they

play crucial roles in biological function. They carry out

their function through complex, carefully orchestrated

protein–protein interactions in a crowded cellular envi-

ronment. There have been many efforts to understand

living systems by identifying protein interactions, includ-
www.sciencedirect.com 
ing high-throughput methods such as yeast two-hybrid

systems [1–3] and high affinity purification followed

by mass spectrometry [4]. Moreover, these experimental

efforts have been combined with computational

approaches, making it possible to generate protein–pro-

tein interaction (PPI) networks at different genomic

scales, from metabolic pathways to a diversity of species

from bacteria to humans [5].

In addition to the tremendous amount of data arising from

PPI networks, another front has emerged through geno-

mic sequencing. For the past two decades, scientists have

been profiling genomic variations in healthy and diseased

individuals. Genome-wide association studies, whole-ge-

nome sequencing, and exome sequencing have shown

that each personal genome contains millions of variants,

thousands of which are non-synonymous single nucleo-

tide variants (nsSNVs). Many of these nsSNVs are asso-

ciated with Mendelian and complex diseases [6]. With the

sequencing of each new personal exome, the constella-

tion of nsSNVs is expanding at a fast rate. But the

translation of a personal exome variation profile into

biomedically relevant information remains a challenge,

particularly because a large proportion of novel nsSNVs

are rare [7].

In this review, we discuss approaches for diagnosing the

potential disease/functional impact of nsSNVs (Figure 1).

First, we review methods based on detailed evolutionary

and biophysical information, where molecular structures

of protein complexes and the corresponding conforma-

tional dynamics information are utilized. Then, we re-

view systems-level approaches of PPI networks to

identify disease-associated mutations and disease pathol-

ogy. A unified approach that merges these three major

levels of information in diagnosing benign and disease-

associated nsSNVs can provide solutions to the current

challenges in genomic medicine [8�,9�].

Evolutionary and structural approaches for
prediction of disease mutations
A large number of computational tools employ purely

evolutionary information to predict the impact of

nsSNVs, under the auspices of the neutral theory of

molecular evolution [10�,11]. Simply put, evolutionarily

permissible substitutions in the amino acid sequence are

determined by comparing sequence homologs across the
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Figure 1
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Computational tools in genomic medicine — two different approaches on different scales are used to determine the impact of nsSNVs on protein–

protein interactions. (a) Structural methods use the information provided by hotspots [40,51] and estimate the change in binding affinity upon

mutation. Hotspots (red spheres) are functional residues that are crucial for binding in protein–protein interactions, while non-hotspot residues

(wheat spheres) still participate in interactions at the interface but are not crucial. If a hotspot is mutated, then it will result in a deleterious

mutation. Evolutionary metrics leverage positional conservation, which is determined by a multiple sequence alignment of many different species

across the tree of life to measure the effect of nsSNVs [11]. Mutations at conserved sites are usually deleterious. The phylogentic tree shown here

presents the 10 mutations associated with Miller syndrome, a rare genetic disorder. All mutations occur at slowly evolving or highly conserved

sites both in primates and distantly related vertebrates. (b) Protein–protein interaction (PPI) networks represent a systems-level approach where

each node represents a protein and undirected edges represents their interactions. Disease mutations leading to a loss of an interaction can be

shown as a removal of an edge, while knock out mutations can be captured as a node removal. Local and global network metrics can be used to

find disease-associated variants.
evolution of diverse species. If an nsSNV is not found in

the observed variation across the phylogeny, then it may

be diagnosed to be putatively disease-associated (i.e.,

function impacting). To be more precise, probabilistic

scoring functions are developed by using amino acid

positional conservation and molecular phylegenetics.

Current evolution-based diagnosis methods are widely

used and are considered to produce good estimates [11–
21]. However, they do have blind spots [11] and their

accuracies in practical applications is debated because of

their need to use training data that may not reflect the

distribution of nsSNVs in the application domain [22–24].

Some of the current approaches combine evolutionary

considerations with structural information in order to

improve the prediction accuracy [21,25–27]. For instance,
Current Opinion in Structural Biology 2015, 35:135–142 
PolyPhen-2 uses solvent accessibility, secondary struc-

ture propensities, and crystallographic B-factors to classi-

fy mutational sites [21]. Other approaches consider the

change in polarity, volume, and charge of the amino acid.

Solvent accessibility has been used in a number of phe-

notypic prediction studies and has proven to be a useful

attribute in disease prediction [26]. Moreover, residue–
residue interaction networks of protein structures are

used to identify functionally important residues through

network topology parameters [27,28], and are utilized in

predicting the impacts of observed nsSNVs. While the

evolution-based methods are more effective than meth-

ods that solely use structural features, their accuracy

breaks down at less-conserved positions resulting in true

positive rates less than 50% [11,29]. These methods also

have great difficulty in diagnosing benign variations at
www.sciencedirect.com
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highly conserved positions (<50% rate of correct diagno-

sis of true negatives) [30]. It has also been shown that in
silico tools yield very low accuracy for nsSNVs found to be

associated with complex diseases; PolyPhen-2 [29] pro-

duced 22% true positives for 757 variants from VAR-

IMED [31]. This low accuracy is due to multiple genes

having small cooperative effects in complex diseases

whose disease-associated nsSNVs are often not located

at highly conserved positions [32,33,34��,35].

Beyond evolutionary conservation, there have been many

efforts to utilize structural and network properties to diag-

nose disease variants. An all-atom structural mapping of

observed nsSNVs on human PPI networks revealed that

disease-associated nsSNVs are largely found at protein–
protein interfaces [34��]. For this reason, some recent

methods have focused on modeling interfaces and predict-

ing changes in binding affinities to distinguish the disease-

associated nsSNVs from neutral nsSNVs. The proliferation

of available experimental structures in the Protein Data

Bank [36] and current advancements in homology model-

ing have facilitated the development of human structural

interaction network (HSIN) databases of protein–protein

and domain–domain interactions [37]. Mapping neutral

and disease-associated nsSNVs on HSIN has shown several

important results [32,33,34��,38,39�]. First, these studies

showed that the pleiotropy of disease-associated nsSNVs

can be explained by proteins interacting with different

proteins at different interfaces [33], where the mutations at

these separate interfaces may lead to different diseases and

intensities [34��]. Second, nsSNVs at interfaces may dis-

rupt or enhance protein–protein interactions, thus, playing

an important role in pathogenesis [38,40]. While the dis-

ruption of transient binding interactions can usually affect

the protein localization, the loss of obligate interactions

due to interface mutations leads to complete loss of func-

tion. The mutations that enhance binding interactions may

cause aggregation or aberrant recognition, as observed in

cancers [39�].

Because interface mutations may alter binding interac-

tions, there have been efforts to predict the effects of

these mutations by measuring the difference between the

free-energy change upon binding of the wild type and

mutant (DDG). Free energy differences upon binding

calculated via thermodynamic integration and free energy

perturbation approaches combined with molecular dy-

namics simulations are computationally expensive,

particularly for large-scale protein complexes [41]. There-

fore, many have developed in silico tools as a fast alterna-

tive to estimate DDG using statistical energy functions

based on known protein structures [42–44] and/or cou-

pling with machine learning tools using training sets [45–
47]. However, these calculations can be rather inaccurate,

because local structural changes upon mutations are gen-

erally neglected [48,49].
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Teng et al. used an all-atom molecular force field

(CHARMM) to investigate the effect of disease and

neutral nsSNVs on binding energies for 264 protein–
protein complexes with known nsSNVs. They found that

disease-associated mutations often destabilize the elec-

trostatic component of the binding energies. Further-

more, the change in physicochemical properties upon

mutation, such as large changes in polarity and hydropho-

bicity, do not significantly alter the binding energy,

making it challenging to distinguish between disease

and benign nsSNVs [50]. Evaluating the importance of

a particular interface residue to binding is another ap-

proach to predict the impact of nsSNVs.

Experimentally, crucial binding sites can be identified by

mutating each site to alanine and measuring the change in

binding affinity. These positions, called hotspots, are

often located at highly conserved positions with large

changes in accessible surface area (ASA) upon binding

[8�,51]. If a mutation occurs on such a site, it will impact

function and, possibly, be deleterious. Incorporating bio-

physical and structural properties of known hotspots into

machine learning algorithms have made it possible to

distinguish between disease-associated and neutral

nsSNVs at protein interfaces [38]. It remains a challenge

to predict disease-associated mutations occurring at non-

hotspots.

Conformational dynamics and allostery in
disease development
Currently, most machine learning methods that use struc-

tural features (e.g., ASA) are based on static 3D structures.

This practice neglects protein conformational dynamics.

However, protein structure-encoded conformational dy-

namics, which span a broad timescale of motion from

atomic fluctuations and side chain rotations to collective

domain movements, underlie a protein’s biological func-

tion. Protein evolution studies of several different protein

families have shown that changes in conformational dy-

namics through allosteric regulation lead to new functions

(e.g., green fluorescent protein (GFP), beta-lactamase

inhibitors, and nuclear receptors [52–54]). Moreover evo-

lutionary rates are strongly correlated with the flexibility

of individual positions obtained from conformational dy-

namics [55–57].

Protein dynamics studies assert that protein function can

be explained by analyzing the individual contribution of

residues to the conformational dynamics and stability of a

protein [55,56,58�]. Therefore, conformational dynamics-

based metrics can also be utilized in predicting the impact

of nsSNVs on protein function. Gerek et al. used an amino

acid site-specific dynamic flexibility index (DFI) metric

to evaluate the effect of flexibility of individual positions

on biological fitness and function. DFI is a position-

specific metric that quantifies the resilience of each

residue to a perturbation occurring at another part of

the chain, thus identifying the flexible and rigid parts
Current Opinion in Structural Biology 2015, 35:135–142
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of a protein [55]. Analysis of disease-associated and neu-

tral nsSNVs for more than 100 human proteins revealed

that disease-associated nsSNVs occur predominately at

low DFI sites (i.e., rigid hinge sites), signifying the

importance of hinge sites that control functionally crucial

motions. In contrast, neutral variants are more abundant

at positions with high DFI, suggesting that flexible sites

are more robust to mutations [55]. Furthermore, DFI

profiles of over a thousand positions harboring mutations

revealed that positions at protein interfaces have lower

average DFI than those at non-interfaces, suggesting that

protein–protein interfaces have less dynamic flexibility

[58�]. These results suggest that hinge positions at inter-

faces are crucial for binding and mutations at these hinge

sites will probably lead to disease.

Allostery is the regulation of cellular functions through

the alteration of protein dynamics and structure upon an

action at a distant site, which has been implicated in

diseases. There are several disruptions of allosteric reg-

ulations that lead to disease development. Mutations can

allosterically impair post-translational modification as ob-

served in driver mutations in cancer [59,60�,61]. Disease-

associated variances can also change the ON/OFF popu-

lations in cell signaling by altering the stability of certain

conformations and/or dynamics. Furthermore, they can

lead to disease by shifting allosteric pathways, as observed

in the mutation that gives rise to hyperekplexia [62].

Finally, mutations farther away from functionally crucial

sites can allosterically impair hinges (i.e., rigid parts),
Figure 2
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softening the functionally crucial regions and lead to

the loss of allosterically regulated conformational dynam-

ics as observed for disease-associated mutations of human

ferritin [63�].

Allostery can elucidate the impact of non-hotspot muta-

tions dynamically linked to hotspots [7]. Hotspots evalu-

ated by the HotPoint server [51] of the protein assemblies

in the dataset studied by Butler et al. [58�] indicated that

most mutations occurring at hotspots are disease-associ-

ated. However, among the hundred disease-associated

nsSNVs at interfaces, only half of them were at hotspots.

How do non-hotspot sites play a role in disease-associa-

tion? This can be studied by a new metric called the

functional dynamic flexibility index (f-DFI) [63�]. f-DFI

quantifies the resilience of each residue upon the pertur-

bation of a functionally crucial distant site. Thus, f-DFI

enables the identification of non-hotspots residues that

are linked allosterically to hotspots. Interestingly, �80%

of disease-associated mutations at non-hotspots exhibited

high f-DFI values (>0.6), indicating they are dynamically

coupled to hotspot residues. Figure 2 presents a case

study of two protein complexes, alanine:glyoxylate ami-

notransferase and lysosomal beta-hexosaminidase A. In

this case, benign mutations have low f-DFI (<0.4), de-

spite being in close proximity to hotspots. In contrast, the

disease-associated mutations have high f-DFI (>0.6),

indicating they are dynamically linked to hotspots.

Two are spatially close to a hotspot, so it is not surprising

that they have high f-DFI scores. However, the others are
(b) Disease

0.6 0.7 0.8 0.9 1.0
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rotein complexes used in a previous study [58�], alanine:glyoxylate

PDB codes 1h0c and 2gk1, respectively. Both are enzymes in the

us system. One chain on each dimer is color-coded by its f-DFI score

[63�]. On the left AGT displays 3 neutral mutations, while on the right

an Gene Mutation Database (HGMD) [87]. None of the mutations are

an capture the dynamic coupling between mutations at non-hotspots
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not as close, they are dynamically coupled with hotspots

making them crucial sites. When non-hotspot sites dy-

namically coupled to hotspots are mutated, loss of func-

tion may occur and result in a potentially detrimental

phenotype.

Network metrics can identify disease-
associated proteins in PPI networks
Beyond the joint evolutionary and structural analysis of

single proteins, the diagnosis of disease causing nsSNVs

for complex diseases would require the analysis of multi-

ple proteins together that are connected in PPI networks.

In PPIs, proteins and their interactions are represented as

nodes connected by undirected edges [64–66,67�] with-

out taking into account the details of molecular interac-

tions. PPI networks are described by scale-free networks

having hubs with a high degree of connectivity; thus, they

have the important property of being resilient to random

stochastic effects, a necessary property in biology [68].

Disease can manifest itself in two ways in networks: node

removal or edge modification. When a node is removed

from a network, it is due to a destabilizing mutation that

knocks out a protein. An edge modification is due to

removing or adding an edge in the interaction network. It

has been experimentally shown that many edgetic muta-

tions are due to mutations on interfaces [69]. Edges

(interactions) can also be added, leading to gain-of-func-

tion mutations [70].

Local and global network metrics combined with known

disease-associated proteins can reliably predict unknown

disease-associated proteins. The first attempts to identify

disease-associated nsSNVs in PPI networks used local

metrics such as the Direct Neighbor Counting method

(also known as the guilt-by-association method), where it

is assumed that candidate proteins that interact with

known disease proteins are themselves disease-associated

[71,72]. Global metrics can identify disease proteins that

do not directly interact with known disease proteins [67�].
In the shortest path analysis method, the shortest path

between two disease nodes is found. A node in close

proximity to multiple disease nodes has a high probability

of being disease-associated [73]. It has also been shown

that ‘bottleneck’ or ‘sole-broker’ proteins with a high

betweeness/centrality (i.e., many shortest paths passing

through a node) are also probably to be disease-associated

[74,75]. Methods such as diffusion kernel and random

walk with restart measure how two non-interacting nodes

are related by having random walkers start from a known

disease node and diffuse through the network [76]. These

global metrics enable the identification of the nodes and

edges that are associated to known disease genes by

exploiting the full network topology.

Proteins that interact with several disease proteins or

proteins that are in proximity to disease proteins will

have a higher probability to be encoded by a disease gene
www.sciencedirect.com 
[76]. Köhler et al. showed that random walk with restart is

superior to local metrics [76]. Although random walk

methods produce the most accurate results, they still fail

to identify disease variants predicted by local methods.

Navlakha and Kingsford were able to create a consensus

method using 13 different metrics in tandem in an en-

semble of decision trees with a random forest classifier

[77]. This method currently has the best accuracy. By

incorporating multiple-omics (e.g., genomics, transcrip-

tomics, and proteomics) analysis into network methods,

Chen et al. were able to identify biological processes for

two viral infections and the development of type 2 dia-

betes [78��]. The robustness of the PPI network used is

crucial for the higher accuracy of these approaches [79–
82]. Guney and Oliva [83] tested several network-based

methods with respect to the perturbations of the system

using various disease phenotypes from the Online Men-

delian Inheritance in Man (OMIM) database. They

found that disease proteins are connected via multiples

pathways in a PPI network. Even when these networks

are significantly perturbed, network-based methods can

reveal hidden disease association proteins, particularly

in cases of breast cancer and diabetes. In general, the

PPI network approaches can identify certain proteins

associated with specific disease better than others

[77,83].

Overall PPI networks represent the simplest networks.

They capture whether proteins interact, the architecture

of a network, but they do not tell us how or at what rate

they interact, and what the parameters of the network are.

There have been cases studies were interactions in PPI

networks can be parameterized by rate constants [84–86].

Because of difficulties of measuring parameters in a

cellular context, parameterization of a proteome wide

PPI network in humans has yet to be realized. Thus,

the future of network approaches in PPI analysis lies in

creating more accurate PPI datasets and integration of

different omics.

Conclusion
Advances in sequencing technologies are providing a

myriad of data on human genetic variation. However,

distinguishing between neutral variants (with little or no

effect on phenotype) from variants conferring disease risk

remains elusive. While earlier methods did not consider

the role of protein interactions in the identification of

disease-associated variants, recent studies about the prev-

alence of nsSNVs at interfaces provided mechanistic

insight about their crucial role in interactions. This has

led to two different approaches at different length scales:

PPI networks at the system level and biophysical meth-

ods and evolutionary information at the molecular level.

The future in genomic medicine lies in merging these

two approaches. The information of how two proteins

interact in a PPI network, rather than merely knowing two

proteins interact, will provide the next major advance-
Current Opinion in Structural Biology 2015, 35:135–142
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ment to uncover disease pathology of Mendelian, parti-

cularly, complex diseases. As PPI data improves and new

nsSNVs are discovered, we will enter a new phase of

genomic medicine.
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