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ABSTRACT 22 

Pathogen timetrees are phylogenies scaled to time. They reveal the temporal history of a pathogen 23 

spread through the populations as captured in the evolutionary history of strains. These timetrees 24 

are inferred by using molecular sequences of pathogenic strains sampled at different times. That 25 

is, temporally sampled sequences enable the inference of sequence divergence times. Here, we 26 

present a new approach (RelTime with Dated Tips [RTDT]) to estimating pathogen timetrees 27 

based on the relative rate framework underlying the RelTime approach. RTDT does not require 28 

many of the priors demanded by Bayesian approaches, and it has light computing requirements. 29 

We found RTDT to be accurate on simulated datasets evolved under a variety of branch rates 30 

models. Interestingly, we found two non-Bayesian methods (RTDT and Least Squares Dating 31 

[LSD]) to perform similar to or better than the Bayesian approaches available in BEAST and 32 

MCMCTree programs. RTDT method was found to generally outperform all other methods for 33 

phylogenies in with autocorrelated evolutionary rates. In analyses of empirical datasets, RTDT 34 

produced dates that were similar to those from Bayesian analyses. Speed and accuracy of the new 35 

method, as compared to the alternatives, makes it appealing for analyzing growing datasets of 36 

pathogenic strains. Cross-platform MEGA X software, freely available from 37 

http://www.megasoftware.net, now contains the new method for use through a friendly graphical 38 

user interface and in high-throughput settings. 39 

  40 
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AUTHOR SUMMARY  41 

Pathogen timetrees trace the origins and evolutionary histories of strains in populations, hosts, and 42 

outbreaks. The tips of these molecular phylogenies often contain sampling time information 43 

because the sequences were generally obtained at different times during the disease outbreaks and 44 

propagation. We have developed a new method for inferring timetrees for phylogenies with tip 45 

dates, which improves on widely-used Bayesian methods (e.g., BEAST) in computational 46 

efficiency and does not require prior specification of population parameters, branch rate model, or 47 

clock model. We performed extensive computer simulation and found that RTDT performed better 48 

than the other methods for the estimation of divergence times at deep node in phylogenies where 49 

evolutionary rates were autocorrelated. The new method is available in the cross-platform MEGA 50 

software package that provides a graphical user interface, and allows use via a command line in 51 

scripting and high throughput analysis (www.megasoftware.net). 52 

  53 
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Introduction 54 

Molecular phylogenetics enables dating of the origin of pathogens and of the emergence of new 55 

strains [1-3]. Typically, strains are sampled from individuals and populations during an ongoing 56 

or historical outbreak [4-9]. When sequences are paired with their sampling times, it becomes 57 

possible to calibrate molecular phylogenies of pathogen sequences and infer the timing of pathogen 58 

evolution. For example, HIV-1 sequences have been sampled at various times and geographic 59 

locations following its initial characterization in 1983 [2, 9, 10]. Analyses of sequences extracted 60 

from circulating strains and “archived” strains from preserved tissue samples have established that 61 

HIV-1 (group M) entered the human populations in the early 20th century in Sub-Saharan Africa 62 

[10] and that subsequently dispersed across the globe [11, 12].   63 

Many competing methods are available to build pathogen timetrees that estimate the timing of 64 

divergence of lineages in the tree [13-21]. These methods start with the evolutionary tree of 65 

sequences and build timetrees using the information on sequence sampling times, provided that 66 

the tips in the phylogeny are not contemporaneous. In these analyses, sampling times serve as 67 

calibrations that provide a means to date historical sequence divergences. These analyses are 68 

different from those used for the estimation of species divergence times because the sampling 69 

times of sequences from different species are effectively simultaneous. The difference in the 70 

sampling years for all sequences in interspecies datasets can be assumed to be effectively zero 71 

when compared to the time-scale of speciation. 72 

The Bayesian framework underlies many of the widely-used tools for building pathogen timetrees 73 

(MCMCTree [15] and BEAST [14]). The use of Bayesian methods requires researchers to specify 74 

a clock prior that governs the change of evolutionary rate over lineages and a coalescent model 75 

(demographic history or birth-and-death) to generate a tree prior and compute likelihoods [14, 15]. 76 

Such information is rarely available a priori, and time estimates can vary when using different 77 

priors [22], resulting in alternative biological interpretations [15, 23].  Also, evolutionary processes 78 

that are not adequately modeled in the standard frameworks. For example natural selection or 79 

severe heterotachy can severely distort rate estimates and produce inferences that are contradicted 80 

by historical records or other sources of calibration information, e.g. endogenous retroviral 81 

elements [24-26]. 82 
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Here, we present an approach based on the relative rate framework underlying the RelTime method 83 

[27, 28]. The RelTime method is not computationally demanding and it does not require explicit 84 

clock and coalescent model priors.  Both simulated and empirical analyses have shown RelTime 85 

to perform well for dating species evolution [27, 28]. The new approach advances RelTime by 86 

relaxing the requirement that all tips in the phylogenetic tree are contemporaneous (i.e., sampling 87 

time t = 0), making it suitable for dating of pathogenic strains. We call it the RelTime with Dated 88 

Tips (RTDT) approach. Similar to RelTime, RTDT does not require one to pre-specify rate models 89 

(e.g., autocorrelated vs. independent and exponential vs. lognormal) or a population dynamics 90 

model.  91 

Through the analysis of simulated datasets generated under different assumptions and empirically 92 

derived phylogenies, we compared the accuracy of dates estimated by RTDT with Bayesian 93 

(BEAST [14] and MCMCTree [15]) and non-Bayesian (Least Squares Dating, LSD [16]) methods. 94 

We chose these three methods, because they have been used in sequence data analysis. In the past, 95 

some studies have reported the accuracy of estimation of substitution rates or the age of the root 96 

node of phylogeny [13, 20]. However, the accuracy of node-by-node age estimates remains to be 97 

evaluated. To et al. [16] conducted computer simulations, but only reported the average of the 98 

absolute difference in actual and estimated times for all the nodes in a phylogeny to compare 99 

methods. This measure does not detect node-specific biases and patterns. Also, previous computer 100 

simulation studies have only tested independent branch rate (IBR) model, so the performance is 101 

not known for phylogenies in which branch rates are autocorrelated (ABR model). This is  102 

important because the ABR model fits inter-species data sets much better [29] and may actually 103 

provide a better fit for the viral phylogenies as well. Therefore, much remains to be learned about 104 

the performance of molecular dates obtained by using previous Bayesian and non-Bayesian 105 

methods. Here, we present a new method and extensive computer simulation evaluation of 106 

Bayesian and non-Bayesian methods to yield new, unique insights into the performance of tip-107 

dating methods in building pathogen timetrees. 108 

RESULTS 109 

New Approach (RTDT) for estimating divergence times using temporally sampled sequences  110 

We illustrate the new approach by using a simple example dataset containing four ingroup 111 

sequences (x1, x2, x3, x4) with an outgoup sequence (Fig. 1A), where RTDT requires a phylogeny 112 
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with outgroup specified. This is different from Bayesian methods (e.g., those implemented in 113 

BEAST), which jointly estimate phylogenies and divergence times without requiring the 114 

specification of outgroup sequences. In the ingroup, sequence xi is assumed to be sampled in the 115 

year of ti (2001, 2003, 2002, and 2011, for x1, x2, x3, and x4, respectively) and bi are the branch 116 

lengths, expressed in expected substitutions per site (Fig. 1A). The goal is to estimate the time at 117 

internal nodes, X, Y, and XY: tX, tY, and tXY. 118 

This phylogeny has a time-scale measured in chronological time (ti) and the number of 119 

substitutions (bi). In the RTDT approach, we first project the path length i (number of 120 

substitutions) from the root to a tip (xi) of the phylogeny under the assumption that xi accumulated 121 

substitutions to the year of the sampling time, ti, with a constant evolutionary rate (Fig. 1B). The 122 

projection is accomplished by first regressing the estimated length (in substitutions/site) from the 123 

node ingroup latest common ancestor (XY) to a tip (xi) in the original tree using the corresponding 124 

sampling time. This slope is used to project root-to-tip length, i, forward in time. In our example, 125 

i = 2.479 × ti – 4957. For example, the projected root-to-node length for sequence x1 is 1 = 2.479 126 

× 2001 – 4957 = 3.48. Note that the root in this projection is an “internal-root,” which is located 127 

at the position of zero substitution along the slope (Fig. 1B). 128 

If the evolutionary rate were shared between branches b1 and b2, then the length from root to the 129 

internal node X, i.e., X, predicted by using 1 and b1 and that predicted by using 2 and b2 should 130 

be the same. In practice, they are not the same: X is predicted to be 1.66 when using 1 and b1 (= 131 

1 − b1 = 3.48 − 1.82) and 1.05 when using 2 and b2 (= 2 − b2 = 8.44 − 7.39), respectively. This 132 

suggests the inequality of evolutionary rates between b1 and b2. Under the RRF framework [27, 133 

28] we, therefore, estimate their relative rates, r1 and r2, respectively, in which these two sister 134 

lineages inherited rates from their common ancestor with the minimum ancestor-descendant rate 135 

change. Assuming that the ancestral rate is equal to 1, we have the relationship, (r1 × r2)
1/2 = 1 [27]. 136 

We used the geometric mean, because relative rates could be very different from each other. We 137 

then project (recalibrate) b1 and b2 by determining the values of r1 and r2 which reconcile the two 138 

different estimates of x (Fig. 1C). 139 

The projected b1 is b1′ = b1 × (1/r1) and the projected b2 is b1′ = b2 × (1/r2). To determine the 140 

appropriate rate change factors, we first require that the root-to-X length (X) computed using 1 141 

and b1′, i.e., 1 − b1′ = 1 − b1 × (1/r1), and X using 2 and b2′, i.e., 2 – b2 × (1/r2), be identical. 142 
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Thus, we obtain the relationship, 1 − b1 × (1/r1) = 2 – b2 × (1/r2). Second, we use the constraint 143 

(r1 × r2)
1/2 = 1, to solve for r1 = 0.93 and r2 = 1.08 in the current example. Similarly, for node Y, 144 

we calculate r3 and r4, which gives r3 = 0.99 and r4 = 1.01. 145 

In the next step, we compute the relative rates of bX and bY, i.e., rX and rY, respectively. We 146 

similarly use projected branch lengths, bi′, and projected root-to-tip lengths, i. Here, we use the 147 

shortest root-to-tip length in each lineage of X and Y, because it is closest to a known sampling 148 

time from the root. Because x1 and x3 give the shortest length in the lineages X and Y, respectively, 149 

XY on lineage X is given by 1 – b1′ – bX′, and lineage Y gives 3 – b3′ – bY′ (Fig. 1D). Thus, we 150 

seek to enforce 1 – b1′ – bX′ = 3 – b3′ – bY′. Given that (rX × rY)1/2 = 1, we can calculate rX = 1.07 151 

and rY = 0.93. Note that we previously assigned rX equal to 1, as the ancestral rate of b1 and b2 152 

correspond to rX. Similarly, rY was assigned to be 1. Therefore, the relative rates in the descendant 153 

branches are rescaled. For example, the new relative rate for the branch leading x1 becomes r1_new 154 

= r1 × rX = 0.93 × 1.07 = 1.00. Accordingly, projected branch lengths in the descendant lineages 155 

are rescaled, e.g., b1′ = b1 × (1/r1_new). 156 

Since all tip branch lengths are now projected, we can obtain projected lengths from root to each 157 

internal node, i.e., X, Y, and XY. For example, X is equal to be 1.66 [= 1 − b1′ = 1 − b1 × 158 

(1/r1_new) = 3.48 − 1.82 × (1/1.00)] (Fig. 1E). Using X, Y, XY, and the regression line, i = 2.479 159 

× ti – 4957 (Fig. 1B), we obtain divergence times at the nodes XY, X, and Y to be 1999.9, 2000.3, 160 

and 2000.4, respectively (Fig. 1F). 161 

Performance evaluation using the simulated data sets 162 

We evaluated the performance of RTDT by analyzing simulated data sets, as the true sequence 163 

divergence times are known for these data. We used the correct tree topology (branching pattern) 164 

in all our analyses because we wish to compare the true and estimated times, which is not possible 165 

for all the nodes in the true tree if the inferred tree contains errors.  Also, we did not wish to 166 

confound the impact of errors in topology inference with that of the time estimates. In the same 167 

vein, we used the correct nucleotide substitution model to keep our focus on the accuracy of the 168 

time estimation methods, rather than on the problems encountered by the misspecified nucleotide 169 

substitution model.  170 
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In total, we analyzed 700 simulated viral phylogenies. In the following, however, we first present 171 

results from computer simulations conducted using parameters and tree topology derived from a 172 

DNA sequence alignment of subtype F HIV-1 [30] – a representative dataset with 154 strains with 173 

various sampling times (years 1987- 2007; Fig. 2A) which was previously analyzed using BEAST. 174 

We generated two collections of simulated datasets using this model phylogeny. In one, 175 

evolutionary rates varied independently from branch to branch (IBR model) and in the other rates 176 

were autocorrelated between ancestor and descendant branches (ABR model). We also generated 177 

a collection of simulated datasets in which the expected evolutionary rates were the same for all 178 

branches (constant branch rates, CBR model), to serve as the baseline model. Fifty replicates were 179 

simulated with each clock model (CBR, ABR, and IBR). 180 

We used RTDT, BEAST, and LSD to compute timetrees with the correct nucleotide substitution 181 

model and the true topology. For each method, fifty time estimates were generated for each node 182 

in the model phylogeny. First, we examined the performance of RTDT, which are presented for 183 

CBR, ABR, and IBR models in Fig. 2B, 2D, and 2F, respectively. RTDT produced average time 184 

estimates that were very similar to the actual time for each node, i.e., RTDT performed well in 185 

estimating divergence times for this model tree. The percent deviation between the true time and 186 

the average estimated time (∆t) for all the nodes was close to zero (Fig. 2C, 2E, and 2G), 187 

suggesting that RTDT estimates are mostly unbiased.  188 

We found LSD to also performed well for the CBR and OBR data sets, however, LSD was less 189 

accurate than RTDT for the ABR data sets (Fig. 2G and 3D). LSD estimates for ABR datasets 190 

yielded overly older dates, a problem that became more severe for deeper divergences. This is 191 

probably because LSD assumes rates to be independent among branches [16].  192 

In BEAST analyses, we used strict clock model for the CBR data sets, so it showed an excellent 193 

performance for the CBR data sets. BEAST also performed well for IBR databases, but there was 194 

a small bias (Fig. 2 and 3) that may be attributed to the fact that BEAST assumed a log-normal 195 

distribution of branch rates but the simulations utilized a truncated uniform of rates. Such a bias 196 

became more extensive in the analysis of ABR datasets in which rates were autocorrelated (Fig. 2 197 

and 3), because BEAST assumes branch rates to be not correlated. BEAST produced much older 198 

dates for deeper divergences, a pattern that was also seen in the LSD analyses, possibly because 199 

both methods assume independence of rates. The use of an exponential distribution of rates in 200 
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BEAST performed worse for both IBR and ABR data sets (Fig. 2 and 3). Overall, RTDT 201 

outperformed BEAST and LSD on the ABR data sets, and showed a similar performance for IBR 202 

and CBR datasets.  203 

Although the average of node time estimates across replicates showed an excellent agreement with 204 

the correct node time for RTDT, the estimates varied extensively among replicates (Fig. 4). We 205 

found that standard deviations of estimated times were the smallest for recent divergences in all 206 

the methods, because they are the closest to the tips. As expected, the distribution of the oldest 207 

divergence times showed a much larger spread, because they were furthest from the tips in the 208 

model tree. These divergences span many branches that experienced extensive evolutionary rate 209 

changes over time. Consequently, accurate time estimation of deep divergences was generally 210 

difficult, especially when the branch rates were autocorrelated. 211 

Next, we tested the performance of timetree methods for datasets simulated using a larger (289 212 

taxa) Influenza A virus phylogeny (Fig. 5A)[15]. This phylogeny is dramatically different from 213 

the HIV-1 phylogeny in figure 2A because the influenza A phylogeny is more ladder-like and is 214 

highly unbalanced. We simulated 50 datasets and analyzed them using the correct model and 215 

phylogeny in RTDT, LSD, and MCMCTree. We used MCMCTree instead of BEAST because it 216 

was employed in the source publication [15] and because BEAST (log-normal model) analyses for 217 

many of the datasets data sets failed to converge even after a long running time. 218 

RTDT performed well for Influenza A virus model phylogeny (Fig. 5B - 5M), but it showed a 219 

tendency to infer older ages for the oldest divergences under the ABR model (Fig. 5J and 5M). 220 

The performance of MCMCTree was worse than RTDT for both IBR and ABR datasets, even 221 

though the correct clock model was assumed in MCMCTree analyses (Fig. 5H and L). LSD and 222 

RTDT performed similarly for CBR and IBR datasets. However, for ABR datasets, LSD 223 

performed worse than RTDT for intermediate dates and better than RTDT for the deepest 224 

divergences (Fig. 5K). Therefore, RTDT and LSD were better than MCMCTree, but their 225 

performance was far from perfect. Overall, times estimated for the deepest nodes in ladder-like 226 

unbalanced trees must be interpreted with caution when branch rates are autocorrelated. 227 

We next evaluated the performance of RTDT, LSD, and BEAST for datasets that mimic intra-host 228 

evolution (Fig. 6). We used To et al. [16] data, who simulated such intra-host datasets in which 229 

multiple strains are sampled at the same time. These strains may belong to the same clade (e.g., 230 
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Fig. 6H) or different clades (e.g., Fig. 6A). Each dataset consisted of 110 sequences that were 231 

1,000 bases long, and rates varied independently among branches [16]. Each simulated phylogeny 232 

was different from each other. In these datasets, many tips share the same sampling dates, and the 233 

number of different sampling dates is small (3 or 11 different dates).  234 

In the analysis of To et al.’s datasets with phylogenies similar in shape to the HIV-1 model tree 235 

(Fig. 6A; Fig. 2A), RTDT, LSD, and BEAST showed accuracies consistent with those observed 236 

for the HIV-1 model tree (Fig. 2 and 3) when the number of sampling time points was large, i.e., 237 

eleven time points (Figs. 6B - 6D). However, the situation became worse for all the methods, on 238 

data with only three sampling times (Fig. 6E-G), yielding much higher variances in node times 239 

estimates, especially for the deep nodes. Also, all methods inferred substantially earlier times for 240 

the deep nodes for a few datasets, which suggests loss of signal.   241 

For ladder-like phylogenies in To et al.’s datasets (e.g., Fig. 6H), sequences were temporally 242 

clustered. Results from 11 sampling points show an excellent linear relationship with the true times 243 

(Fig. 6I-K). However, the relationship showed an undulating pattern of high and low dispersion, 244 

with the low dispersions observed for nodes that were located close to the tips. For these datasets, 245 

BEAST (log-normal rate model) frequently estimated divergences to be much younger, as 246 

compared to RTDT and LSD. With fewer sampling points, the pattern becomes clear because bias 247 

becomes higher (Fig. 6N). Overall, all methods showed limited accuracies on phylogenies in 248 

which the number of sampling dates was much smaller than the number of samples. 249 

Analyses of empirical data sets 250 

We also explored some empirical datasets (Supplementary material Fig. S1 and Table 1) to 251 

examine how the patterns of published time estimates would have differed if RTDT was used 252 

instead of BEAST [14] or MCMCTree [31] programs. We begin with HIV-1 subtype F dataset 253 

because we used phylogeny and other evolutionary characteristics of this dataset as a model for 254 

our HIV simulation study (Fig. 2A). We found that estimates obtained by Mehta et al. [30], with 255 

BEAST using a log-normal rate model, were always older than those produced by using RTDT 256 

(Table 1). This result was consistent with our simulation results, as all of these nodes are located 257 

deep in the HIV-F phylogeny (Fig. 2A), for which BEAST is expected to show a tendency to infer 258 

older dates on ABR data (Fig. 3F). CorrTest [29] of this empirical dataset supported an 259 

autocorrelated clock model (P < 0.05). Therefore, one may prefer node ages produced by RTDT. 260 
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Fortunately, RTDT dates do not contradict many of the biological scenarios presented by Mehta 261 

et al. [30], because the 95% highest posterior density (HPD) intervals of BEAST estimates 262 

generally included RTDT estimates (e.g., 1972-1983 and 1987, respectively for node 3). 263 

We next examine results for Influenza A viral dataset, which served as a model for our influenza 264 

simulations (Fig 5A). Different Bayesian methods produced different time estimates, and an 265 

autocorrelated rate model in MCMCTree always produced much older times than the other rate 266 

models in MCMTree and BEAST (log-normal rate model). RTDT estimates were younger than all 267 

the Bayesian estimates (Table 1), but the difference was small when considering BEAST with log-268 

normal rate model, e.g., 1813, 1898, and 1912 by MCMCTree with the autocorrelated model 269 

BEAST (log-normal rate model) and RTDT, respectively for node 1. This result was also 270 

consistent with our simulation results. An ABR clock model fits this data set according to CorrTest 271 

(P<0.001), and our simulations already showed that MCMCTree with an autocorrelated model has 272 

a stronger tendency to generate older dates for deep nodes (Fig. 5L) as compared to RTDT (Fig. 273 

5F).  274 

Results from the analysis of two other HIV-1 datasets – subtypes B/D [32] and subtype D [33] – 275 

showed high concordance between RTDT and Bayesian analyses (Table 1). For Rabies data, 276 

although BEAST estimates were slightly older than RTDT, we found that these RTDT estimates 277 

were within the 95% HPD intervals. The only exception was HIV-2, in which RTDT produced 278 

node times that were much younger than those from MCMCTree analysis. This discrepancy 279 

occurred because this data did not contain much temporal structure, as the root-to-tip lengths and 280 

sampling times did not show a good positive correlation (Supplementary material Figure S2). 281 

Tip-dating methods are known to be adversely affected by such data and their use is generally not 282 

recommended [34, 35]. 283 

Overall, RTDT may be preferred in empirical data analysis. This choice is made easier by the fact 284 

that RTDT is orders of magnitude faster than the Bayesian methods. For example, the Influenza A 285 

virus dataset with 289 sequences was analyzed in only a few minutes by RTDT, but it took BEAST 286 

4.4 days when using a lognormal distribution of rates. 287 

DISCUSSION 288 

We have presented a new relaxed-clock method to estimate times of sequence divergence using 289 

temporally sampled pathogenic strains. The new method (RTDT) is based on the relative rate 290 
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framework in the RelTime method [27] but represents a significant advance of this framework as 291 

it removes the requirement that the sequences sampled to be contemporaneous. In RTDT, there is 292 

no need to specify autocorrelation vs. independence of rates or to select a statistical distribution 293 

for rates, which is an advantage over Bayesian methods where such information is required a priori. 294 

In the analysis of computer simulated data, RTDT performed similar or better than the Bayesian 295 

approaches tested, while Bayesian methods are the most widely used methods in empirical data 296 

analyses [34]. We found that Bayesian methods produced much older time estimates for the 297 

deepest nodes than RTDT when the evolutionary rates were autocorrelated. The worse 298 

performance of BEAST on ABR data can be attributed to the clock model violation because 299 

BEAST assumes that rates vary independently among branches. This result is consistent with 300 

Wertheim et al. [25], who reported that Bayesian methods produced erroneous node times when 301 

evolutionary rates are lineage (clade) specific, similar to what was used for our ABR simulations.  302 

Also, we found another non-Bayesian method (LSD) to perform worse than RTDT for datasets 303 

with autocorrelation of rates (Fig. 3 and 5), likely because LSD assumes that the rate variation 304 

among branches in the phylogeny follows a normal distribution, which may not be satisfied 305 

because log-normal distribution may fit the data better when the branch rates are autocorrelated. 306 

Nevertheless, LSD performed similar or better than the Bayesian approaches, a pattern that has 307 

been seen in the past as well [16]. 308 

As mentioned earlier, we assumed the correct phylogeny as well as the correct substitution pattern 309 

in our computer simulations. However, clearly, inferred phylogenies contain estimation errors and 310 

the nucleotide substitution pattern selected may be suboptimal, both of which will impact the 311 

accuracy of time estimates. A comprehensive investigation is necessary to better evaluate the 312 

robustness of RTDT, BEAST, and LSD in those situations, which is beyond the scope of the 313 

current article. However, it is interesting to note that in the analysis of HIV-1 subtype B/D datasets, 314 

we observed similar divergence times for these datasets (Table 1), which suggests that topological 315 

errors within strains did not have a large adverse impact. Nevertheless, robust inference of 316 

evolutionary relationship of strains or sequences of interest may not be possible under certain 317 

situations [36, 37], and in such cases, the estimation of divergence times will likely be misleading. 318 

Similarly, unreliable branch length estimates will result in poor time estimates, which has been 319 

previously highlighted in ref. [24]. In conclusion, RTDT can produce similar or better results than 320 
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other methods, including Bayesian and non-Bayesian approaches. RTDT method is implemented 321 

in the cross-platform MEGA X software that is freely available from 322 

http://www.megasoftware.net.  323 

  324 
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MATERIAL AND METHODS 325 

Collection and Analyses of Empirical Datasets.  326 

Nucleotide sequence alignments and sampling time information of nine different viruses (see 327 

Table 1 for the detail) were obtained from the supplementary information [15], Dryad Digital 328 

Repository (https://datadryad.org/) [32], or the authors [30, 33, 38]. Note that the HIV-1 Subtype 329 

B/D data [32] was composed of eight datasets, in which each dataset contained sequences of genes 330 

(env, gag, or pol) or the full genome with various numbers of sequences.  331 

Computer Simulation.  332 

We simulated nucleotide sequence alignments along viral timetrees obtained from the original 333 

studies (subtype F HIV-1 [30] and Influenza A [15]) and the respective nucleotide substitution 334 

rates, transition/transversion ratio, CG contents, sequence lengths, and substitution models. The 335 

nucleotide substitution rates were obtained from these original studies (3.2 × 10–3 and 1.7 × 10–3 336 

per site per year for subtype F HIV-1 and Influenza A, respectively). The average 337 

transition/transversion ratios were 2.7 and 2.6, respectively, and the average CG contents were 338 

38% and 41%, respectively. The nucleotide sequence lengths simulated were the same as in the 339 

original datasets (1,293 bps and 1,710 bps, respectively). Note that the tips of branches on the 340 

timetrees were truncated according to the sampling times, which were also obtained from the 341 

original studies. 342 

Using the Seq-Gen software [39] under HKY substitution model [40], 50 alignments were 343 

generated for each timetree with the constant rate (CBR), randomly varying rate (IBR), and 344 

autocorrelated rate (ABR) among branches, following the methods in Tamura et al. [28]. For IBR, 345 

each mutation rate was drawn from a uniform distribution with the interval ranging from 0.5r to 346 

1.5r, where r is the original mutation rate in the simulation above.  For ABR, the rate variation 347 

was autocorrelated between ancestral and descendant lineages. The rate of a descendant branch 348 

was drawn from a lognormal distribution with the mean rate of the ancestral branch and the 349 

variance equal to the time duration, in which the autocorrelation parameter, v in Kishino et al. [41], 350 

was set to 1. Among these datasets, we removed datasets when it included identical sequences 351 

between different taxa, because all sequences should be distinct in actual empirical data. In total, 352 
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we used 50, 49, and 43 datasets for Subtype F HIV-1 with CBR, IBR, and ABR, respectively, and 353 

50, 50, and 38 datasets for Influenza A virus with CBR, IBR, and ABR, respectively.   354 

We obtained 400 LSD datasets (IBR) from the LSD website [http://www.atgc-355 

montpellier.fr/LSD/], which excluded 77 datasets because they contained at least two identical 356 

sequences. 357 

Analyses of simulated data. 358 

For each simulated alignment, each node time was estimated using the correct tree topologies and 359 

sampling times, which were obtained from the original studies. RTDT estimates were obtained 360 

using MEGA-CC [42] with the HKY nucleotide substitution model [40] with gamma-distributed 361 

rate heterogeneity among sites [43] because this option is widely used.  362 

The same substitution model was used in the Bayesian methods. In BEAST [v1.8.0; 14], the strict 363 

clock model was used for analyzing CBR datasets, and independent (lognormal and exponential) 364 

branch rate model was used for analyzing IBR and ABR datasets. The constant population size 365 

model was selected for the coalescent tree prior.  The number of steps that MCMC made was 366 

10,000,000 steps, and trees were sampled every 1,000 steps. To evaluate if large enough 367 

genealogies (trees) were sampled, we used the TRACER software [44] and confirmed that the 368 

number of independent information in the sampled posterior values (effective sample size; ESS) 369 

was at least 200. Since analyses using log-normal and exponential distributions of rate did not 370 

show at least 200 ESS, we used 100,000,000 MCMC steps for all the datasets. Among sampled 371 

trees, we excluded the first 10% of the trees as burn-in and computed the mean height of each node 372 

along the true tree topology using the TreeAnnotator software, which is implemented in the 373 

BEAST software.  374 

Datasets generated along influenza A data were analyzed by using MCMCTree [PAML4.7; 31] 375 

because the source publication used MCMCTree. The default parameters were used, i.e., root age 376 

prior was between 50 and 200 years ago with the violation probabilities of 1%, and the time prior 377 

for the nodes in the tree was constructed using birth-death process. Discarding the first 20,000 378 

iterations, 200,000 iterations were made, and trees were sampled every two iterations. Strict, 379 

independent, and autocorrelated clock model were used for analyzing datasets generated with the 380 

CBR, IBR, and ABR, respectively. 381 
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To obtain LSD [16] estimates, we first estimated branch lengths using the Maximum Likelihood 382 

method with HKY nucleotide substitution model under MEGA-CC [42], because LSD required a 383 

phylogeny with branch lengths as input. Along the phylogeny and sampling time information, each 384 

node time was inferred using the temporal constraints for node time estimates and considering the 385 

variance of branch length estimates, with the default parameters (lower bound for the rate is 386 

0.00001 and parameter of variances is 10). 387 
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S1 Figure. Phylogenies from the published literature for empirical datasets. Branch lengths 396 

were the number of substitutions. Sampling times were indicated for a few sequences. A number 397 

along a node is a node ID, which corresponds to that in Table 1. Those node times were reported 398 

in the original study. 399 

 400 

S2 Figure. Root-to-tip branch length and sampling time for HIV-2 data. The trend line is y = 401 

0.0044x − 8.5 (R² = 0.20). 402 
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Table 1: Empirical datasets used in this study

Clock model

Virus Node* RTDT Bayesian CorrTest Reference

HIV-1 Subtype F (154 sequences, 1293 bps) a
Autocorrelated Mehta, et al. (2011)

Node 1 1987 1975

Node 2 1987 1980

Node 3 1987 1978

Node 4 1987 1973

Node 5 1991 1984

HIV-1 Subtype D (24 sequences, 2173 bps)
a

Autocorrelated Parczewski, et al. (2012)

Node 1 2003 2001

Node 2 2000 1999

Node 3 1995 1997

Node 4 2006 2003

HIV-1 Subtypes B/D (38 -133 sequence, 1497 - 8877 bps)
a,d Mixedx Worobey, et al. (2016)

Node 1 1960 - 1969 1966 - 1969

Node 2 1964 - 1971 1969 -1972

Node 3 1966 - 1973 1969 - 1974

HIV-2 (33 sequences, 1107 bps) b Autocorrelated Stadler and Yang (2013)

Node 1 1983 1938-1941

Node 2 1985 1956

Node 3 1985 1961-1964

Rabies (67 sequences, 1350 bps) a Independent McElhinney, et al. (2011)

Node 1 1901 1885

Node 2 1924 1917

Node 3 1937 1931

Node 4 1945 1941

Influenza A (289 sequences, 1710 bps) c Autocorrelated Stadler and Yang (2013)

Node 1 1912 1813-1910

Node 2 1915 1832-1914

Node 3 1928 1889-1926

a: BEAST with lognormal rates 

b: MCMCtree with constant and autocorrelated clock models

c: BEAST with lognormal rates and MCMCtree with constant, independent, and autocorrelated clock models. 

The range of estimated times based on these different methods was given.

d: The range of time estimates was obtained based on eight different subdatasets.

x: Five datasets showed autocorrelated rates and three independent rates.

*: Node IDs were given in Figures. 2, 5, and 7.

Time Estimates (year)
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Figure legends 555 

Figure 1. RelTime with Dated-Tips (RTDT) approach. (A) A phylogeny of five pathogen 556 

sequences (x1, x2, x3, x4, and outgroup), with branch lengths (bi). The year of sequence sampling 557 

(ti) is given in the parenthesis. The internal nodes are indicated by X, Y, and XY. (B) The 558 

relationship between the path lengths from node XY to tip and sampling times. For example, the 559 

point of x1 is (2001, bX + b1). In the current example, the linear regression expression is i = 2.479 560 

× ti – 4957. We locate a root at the position of  = 0 along the regression line. (C-E) Projected 561 

phylogeny. A root-to-tip lengths were projected using linear regression. We first estimate relative 562 

rates at b1-b4, i.e., r1-r4 (C), and then estimate those at deeper positions of the phylogeny, i.e., rX 563 

and rY (D). Lastly, we estimate the projected length from root to internal nodes, e.g., X (E). (F) 564 

Estimated timetree. The final divergence times are estimated by using the regression line in panel 565 

B.  566 

 567 

Figure 2. RTDT estimates (average node time) for computer simulated datasets. (A) Phylogeny 568 

of HIV-1 subtype F was used as the model tree. A few sampling times are shown at the tips. The 569 

number along a node is the node ID corresponding to nodes of importance in the original study 570 

[30]; see also Table 1. (B-G) Average node time estimates by RTDT for datasets simulated under 571 

(B) CBR clock model, (D) IBR clock model, and (F) ABR clock model. Stacked histograms 572 

showing average time difference from each correct time are given in panels C, E, and G for CBR, 573 

IBR, and ABR, respectively. These averages were means from 50 simulated datasets (replicates) 574 

at each node. For BEAST, we used a strict rate model for the analyses of datasets with CBR, and 575 

exponential (exp) and log-normal (logN) rate models were used for IBR and ABR data sets (C, E, 576 

and G). The shaded areas indicate that the average estimates are older than the actual times (B-G). 577 

 578 

Figure 3. Average node time estimates of LSD and BEAST for datasets simulated following the 579 

model tree in Figure 2A. We generated datasets under IBR model (A-C) and ABR model (D-F). 580 

For BEAST, we used exponential (exp) and log-normal (logN) distributions of rates. The shaded 581 

areas indicate that the average estimates are older than the actual times. The results of RTDT are 582 

presented in Figure 2. 583 
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 584 

Figure 4. A comparison of standard deviations (SDs) of node times. (A-C) The comparison 585 

between RTDT and LSD on CBR (A), IBR (B), and ABR (C) datasets. (D-F) The comparison 586 

between RTDT and BEAST with strict clock rate model on CBR (A) and log-normal rate model 587 

on IBR (B) and ABR (C) datasets. Each point is an SD derived from a node with time estimates 588 

of 50 replicates. The color of a point indicates its true node times. Note that the average node time 589 

is presented in Figure 2 and 3. 590 

 591 

Figure 5. Comparison between RTDT, MCMCTree, and LSD.  (A) Phylogeny of Influenza A. 592 

Sampling times are given for some tips. A number along a node is a node ID, which corresponds 593 

to those in Table 1. Fifty datasets were generated along this phylogeny with CBR, IBR or ABR. 594 

(B-M) Average node time estimates by RTDT, LSD, and MCMCTree (MCMC) for datasets with 595 

CBR (B-E), IBR (F-I), and ABR (J-M). Each time point is an average of 50 simulated datasets. 596 

MCMCTree was performed by using the correct branch rate model for each dataset. Average time 597 

difference from each true time is shown together in the form of stacked histograms (E, I, and M). 598 

The shaded areas indicate that the average estimates are older than true times. 599 

 600 

Figure 6. Comparison between RTDT, BEAST, and LSD using simulated datasets with a small 601 

number of sampling time points. (A) An example of HIV-like phylogeny. Tips are colored based 602 

on the sampling times. In this phylogeny, the root age was set to year of 0 (true age). Datasets were 603 

generated with independent rates. (B-G) Node time estimates by RTDT, LSD, and BEAST (log-604 

normal rate model) for datasets with eleven sampling time points (B-D) and three sampling time 605 

points (E-G). (H-N) An example of Influenza-like phylogeny (H) and node time estimates (I-N).  606 

The shaded areas indicate that the average estimates are older than true times. 607 

 608 

  609 
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Figure 1 610 

  611 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/620187doi: bioRxiv preprint first posted online Apr. 26, 2019; 

http://dx.doi.org/10.1101/620187
http://creativecommons.org/licenses/by/4.0/


28 

 

Figure 2 612 

 613 

  614 
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Figure 3 615 

 616 

  617 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/620187doi: bioRxiv preprint first posted online Apr. 26, 2019; 

http://dx.doi.org/10.1101/620187
http://creativecommons.org/licenses/by/4.0/


30 

 

Figure 4 618 

 619 
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Figure 5 621 

 622 
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Figure 6 624 

 625 
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 627 

Figure S1. Phylogenies from the published literature for empirical datasets. Branch lengths were 628 

the number of substitutions. Sampling times were indicated for a few sequences. Numbers are node 629 

IDs, and those node times were reported in the original study (Table 1). 630 

  631 
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 632 

 633 

 634 

 635 

 636 

Figure S2. Root-to-tip branch length and sampling time for HIV-2 data. The trend line is y = 637 

0.0044x − 8.5 (R² = 0.20). 638 

 639 
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