Vol. 16 no. 2 2000
Pages 140-151

Single column discrepancy and dynamic
max-mini optimizations for quickly finding the
most parsimonious evolutionary trees

P W. Purdom, Jr', P G. Bradford? K. Tamura® and S. Kumar®®°

"Computer Science Department, Indiana University, Bloomington, IN 47405-4101,
USA, 2BlackRock Inc., 345 Park Avenue, New York, NY 10154, USA, 3Department of
Biology, Tokoyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji-shi,

Tokyo 192-03, Japan, *Institute of Molecular Evolutionary Genetics, 311 Mueller
Laboratory, University Park, PA 16802, USA and ®Department of Biology, Arizona
State University, Tempe, AZ 85287-1501, USA

Received on June 27, 1998; revised on June 10, 1999; accepted on July 20, 1999

Abstract

Motivation: In the maximum parsimony (MP) method, the
tree requiring the minimum number of changes (discrep-
ancy) to explain the given set of DNA or amino acid se-
quences is chosen to represent their evolutionary relation-
ships. To find the MP tree, the branch-and-bound algo-
rithm is normally used. For a partial phylogenetic-tree
(one that has a subset of the organisms) the traditional
algorithm assigns a cost equal to the discrepancy of the
partial phylogenetic-tree. We propose a single column dis-
crepancy heuristic which increases this cost by predicting
a minimum additional discrepancy needed to attach the
sequences yet to be added to the partial phylogenetic-tree.
A dynamic Max-mini order of sequence addition is also
proposed to quickly terminate branch-and-bound search
paths that are guaranteed to lead to suboptimal solutions.
Results: We studied the running time of 47 problems
generated from 17 data sets. The use of single column
discrepancy heuristic speeded up the computation to 2.4-
fold for static and 18.2-fold for dynamic search order. The
improvement appeared to increase exponentially with the
number of sequences. The proposed strategies are also
likely to be useful in speeding up the MP tree search using
heuristic searches that are based on branch-and-bound-
like algorithms.

Contact: s.kumar@asu.edu

Introduction

The maximum parsimony method of phylogenetic infer-
ence attempts to determine the evolutionary relationship
among a set of organisms based on the fit of the data to the
phylogenetic tree that requires the minimum number of
changes (Fitch, 1971; Hartigan, 1973). The input is a set
of organisms each with an associated string of characters.

The string is a DNA sequence or an amino acid sequence.
In these sequences, the most common evolutionary
change is to substitute a character at a particular place
in a sequence with another, but sometimes the change is
an insertion or a deletion of characters. Therefore, it is
necessary to align the sequences (Taylor, 1996) to ensure
that characters at site k are evolutionarily homologous in
all sequences. The algorithms in this paper assume that
the sequences are already aligned.

A binary tree can be used to represent the evolutionary
history of a set of organisms with their associated molec-
ular sequences. Leaves represent the organisms and se-
quences of the data sets and internal nodes represent an-
cestral organisms and their sequences. For sake of simplic-
ity, we work with only strictly bifurcating trees in which
only two-way splits occur. The root corresponds to the first
such split.

The maximum parsimony algorithms under discussion
do not find the root of the phylogenetic tree, because
the characters (nucleotide or amino acid) are unordered.
Therefore, the algorithms represent a possible relationship
among organisms with an unrooted binary tree. Each
internal node has three neighbors. Each leaf corresponds
to an organism from the input. For n organisms, there are
(2n —5)!! such trees, where (2n — 5)!! is the product of the
odd numbers from 1 to 2n — 5.

In the parsimony method, each leaf of the candidate phy-
logenetic tree is labelled with the sequence of its organism.
To understand the principle of maximum parsimony, as-
sume that each internal node has also been labelled with
some sequence, where all sequences have the same length.
For each edge of the phylogenetic tree consider the labels
associated with the nodes at each end. For each position k,
assign a score of one if the two labels are different and
a score of zero if they are the same (Fitch, 1971). The

140

© Oxford University Press 2000

Optimizations for finding evolutionary trees

discrepancy for the particular phylogenetic tree and the
particular labelling is the sum of this score over all po-
sitions and over all edges. The discrepancy of a phyloge-
netic tree is the minimum discrepancy over all possible
labellings of that tree. Under the maximum parsimony cri-
terion, the phylogenetic tree with the least discrepancy is
the preferred candidate for how the organisms are actually
related to each other.

The best labelling for a particular phylogenetic tree can
be determined in linear time (Fitch, 1971; Hartigan, 1973).
However, the problem of determining the best phyloge-
netic tree is NP-complete (Day et al., 1986; Graham and
Foulds, 1982). Branch-and-bound algorithms are normally
used to find the optimum solution(s) (Felsenstein, 1993;
Hendy and Penny, 1982; Kumar et al., 1993; Swofford,
1998). For large problems, heuristic search methods are
used (Felsenstein, 1993; Kumar et al., 1993; Swofford,
1998). They provide speed, but do not guarantee finding
optimal solutions. The methods proposed can be applied
to either type of computation, but this paper concentrates
on branch-and-bound algorithms.

Branch-and-bound algorithm

The basic form of branch-and-bound parsimony al-
gorithms is now given. The input consists of a set of
organisms, where each organism has a name and a
sequence. The algorithm presented here retains this
information in global variables. Many bookkeeping and
efficiency details are omitted to help bring out the basic
ideas. The variables with ‘tree’ in their name relate to
partial phylogenetic trees (evolutionary trees for some
subset of the organisms).
The main program is:

Parsimony

1. Select the first three organisms and form cur-
rent_tree by joining those organisms into an
unrooted binary tree (there is only one such tree).
Set best_cost to infinity.

2. Call Add_organism(current_tree)

The global variable best_cost keeps track of the discrep-
ancy of the best solution that has been found.
The main program calls the following recursive routine.

Add_organism(current_tree)

Al. Set cost to Cost(current_tree). If cost > best_cost
then return.

A2. If all organisms are in current_tree then

A2.1 Set best_cost to cost. (Use cost — 1 if only one
example of the best tree is wanted.)

A2.2 Output cost and current_tree.
A2.3 Return.

A3. Select an organism i that is not in current_tree.

A4. For each branch j in current_tree

A4.1 Form tree by attaching organism i to branch
J in a copy of current_tree (creating a new
internal node).

A4.2 Call Add_organism(tree).

The presentation of the algorithm leaves some details
unspecified: which three organisms to select in Step Al,
which organism to select in Step A3, and which order
to try the attachment points in Step A4. The choices
made have no effect on correctness, but they can have a
major effect on running time. We consider two particular
versions of the algorithm: one that uses a static sequence
addition order, and the other that uses a dynamic order.
The static order program is an improved version of the
algorithm included in the first version of the MEGA
program, which uses the Max-mini algorithm described
in Kumar et al. (1993). It is referred to as the static
order program from now on. Similar algorithms are also
available in the program PAUP* (Swofford, 1998).

At Step Al, both static and dynamic orders select the
two sequences that have the largest number of differences
in their sequences. They then select a third sequence which
has the most positions where it does not agree with either
of the first two organisms. This gives a high cost starting
phylogenetic tree, which helps speed up the branch-and-
bound algorithm.

The most important difference between the static and
dynamic orders is how an organism is selected in Step
A3. In the static order, sequences are added to the
phylogenetic tree in a fixed order. The dynamic search
program recomputes the least-cost attachment point for
each sequence each time and selects the sequence with
the highest such cost. Ties are broken by selecting the
organism with the highest second-least-cost, remaining
ties are broken using third-least-costs, etc.

At Step A4, each program would like to attach an
organism to the point that results in the least increase in
the cost, then to the one that results in the second least
increase, etc. The dynamic search order program does
precisely that. To save time, the static search program
does the attachment-order calculation just once (the first
time it tries to attach the organism) and then always uses
that attachment-order for the organism in each branch of
the search tree. Although both programs do calculations
for unrooted phylogenetic trees, they use a representation
rooted on the internal node of the initial three-node
phylogenetic tree. This root has no biological significance,
but its use simplifies the programming.

141

P.W.Purdom,Jr et al.

The running time of these algorithms is affected by the
number of nodes visited during the search and by the
time spent at each node. For the static order, the time
per node is determined mainly by the time needed to
compute the cost of current_tree, which is done using the
algorithm based on Fitch (1971). A set of some of the
optimum sequences is computed for each internal node.
The calculation uses a sequence where each element is a
set of characters rather than a single character. An upper
bound on the time per node is proportional to the product
of the number of positions (columns) in a sequence, the
number of organisms in current_tree, and to the number
of different characters that occur in a column. Since only
a small number of characters are possible at a position
for molecular sequences (four for nucleotide sequences
and 20 for amino acid sequences), the complete set of
characters of a site at any node in the phylogenetic tree can
be packed into one integer. Since the machine instructions
(logical and, or, not, etc.) operate on the bits in parallel,
this packing eliminated the last factor from the running
time. At each call to the cost routine there has been
only one change to current_tree, so the static order saves
time by redoing the calculation only for the nodes above
that one place. Note that the computational speed can be
enhanced further by using a byte rather than an integer
when nucleotide sequences are used. For the purpose of
this paper, all comparisons were done on integers since
the main purpose of this paper is to explore the relative
efficiencies of the fast algorithms for biological problems.
(This resulted in the static program running at about half
its normal speed on nucleotide sequences.) The dynamic
and static search order programs treated the question mark
character (used to indicate that a particular character was
not known) and the minus character (used to indicate a
deletion) differently. In order to ensure that all programs
would be solving the same mathematical problem, all
columns in the data that contained these character were
removed (except for the column with a minus in the cytc
data, which had no effect on the comparisons in the paper).

The dynamic algorithm computes for each node the
set of all optimum sequences using an algorithm based
on Fitch (1971) and Maddison and Maddison (1993).
From this information the cost of attaching a single
organism at any point in the phylogenetic tree can be
quickly computed. An upper bound on the time per
node is proportional to the product of the length of the
sequences, the number of organisms in current_tree, and
to the number of different characters in a column. Again,
word parallelism is used to eliminate the last factor. The
running time per node for the dynamic search order is
several times larger than the running time for static order
because additional information is computed. The dynamic
algorithm does these calculations incrementally, so that
only positions that might change are recomputed. The

steps required to carry out this procedure has a good bit
of overhead, but it nearly always saves time.

Dynamic search implementation differs from the static
search implementation in one additional way. In the static
search implementation, first an upper bound on the cost
of the optimal solution is computed by using the Min-
mini heuristic search procedure (Kumar et al., 1993). Then
the Max-mini principle is used to determine the order in
which the sequences will be added to the phylogenetic
tree, which yields another upper bound on the cost of the
optimal solution. The smaller of the two upper bounds is
then used to initialize best_cost. This initial upper bound
was equal to the true value for 35 of the 47 cases studied.
Computing this upper bound takes a negligible amount of
time compared with the time taken by the branch-and-
bound search that follows. The dynamic search program
has two passes. The first pass finds the cost of the optimum
solution using the version of Add_organism that sets
best_cost to cost — 1. The second pass initializes best_cost
to the cost of the optimum solution, and then finds all
the optimum solutions. When the initial estimate of the
cost is correct, using two passes is slower than using one
pass; when the initial estimate is high, using two passes
is sometimes much faster. Measurements indicated that
using two passes was the better approach for the dynamic
algorithm (but the dynamic algorithm did not start with a
good initial estimate of the cost).

In the dynamic algorithm, we compare every sequence
not in current_tree with the union of the sequence sets
at the two ends of each branch of current_tree. An upper
bound on the time for this step is proportional to the prod-
uct of the number of organisms not in the phylogenetic
tree, the number of organisms in the phylogenetic tree, the
sequence length, and the number of different characters
in a column. (Again, word parallelism eliminates the last
factor.) This upper bound depends on the second power
of the number of organisms whereas the upper bound for
static search order depends only on the first power. How-
ever, those steps are performed only when the union of the
sequence sets changes. This usually results in skipping the
most time consuming step, and the measurements indicate
that overall it takes about the same time as the rest of the
process (rather than dominating the running time).

Single column discrepancy

The particular cost function used by the branch-and-
bound algorithm has a major effect on the running time.
For correctness, all that is needed is: (1) that the cost
function returns some lower bound for the cost of the
best phylogenetic tree that can be obtained by adding
organisms to current_tree; (2) that the cost function returns
the true cost when all the organisms are in current_tree.
To reduce the number of nodes in the search tree one

142

Optimizations for finding evolutionary trees

wants the cost function to be as large as possible, but
to be fast, one must balance the quality of the lower
bound against the time required to compute it. If one
could quickly compute a perfect lower bound, the number
of recursive calls would be bounded by the number of
solutions times the number of organisms, and parsimony
would be extremely fast.

Traditionally, parsimony algorithms use the discrepancy
of current_tree as the cost function. Single column discrep-
ancy increases that bound by adding a lower bound on the
cost associated with those organisms that are not yet in the
current phylogenetic tree. For each column one computes
a difference set, the set of characters that occur among the
organisms not in current_tree but not among the organisms
that are in current_tree. The single column discrepancy is
the sum over all columns of the number of elements in
these difference sets. The cost for current_tree is the sum
of the single column discrepancy and the discrepancy of
current_tree.

The reason that single column discrepancy gives a
correct lower bound is that each element in the difference
set will add at least one to the cost of the phylogenetic tree
when the associated organism is added to it. A column
in an optimum labelling of current_tree does not use
any character from the difference set for that column.
Once the organism associated with a character from the
difference set is added, there must be an edge somewhere
in the phylogenetic tree where one end is labelled with
the character and the other end is not. Single column
discrepancy measures this unavoidable cost.

In cases where there is not much evolution, single
column discrepancy may lead to the exact cost of the op-
timum phylogenetic tree rather than just a lower bound on
the cost. Suppose that for an optimum phylogenetic tree
the following situation is true for each column of the data.
For some character in the difference set, the organisms
labelled with that character form a single phylogenetic
subtree. When you delete that phylogenetic subtree, the
same holds for the remaining characters. In this case, each
deleted phylogenetic subtree makes no contribution to the
discrepancy of the column. The attachment cost of the
deleted phylogenetic subtree is one. Thus, the contribution
of the organisms not in current_tree to the discrepancy is
exactly the same as the amount computed from single col-
umn discrepancy. We could ensure that the backtracking
algorithm ran fast (in a time proportional to the number
of solutions, the length of the data, and a small power of
the number of organisms) if the partial phylogenetic trees
that lead only to nonoptimum complete phylogenetic trees
produced an estimated cost bigger than the optimum cost,
but this does not always happen. The improvement from
using single column discrepancy is usually large, but the
method provides no guarantee of an improvement.

The paper by Foulds et al. (1979) contains the idea

of single column discrepancy for the special case where
current_tree is empty. For the empty case one must reduce
the result of the above calculation by the number of
columns, because a one organism phylogenetic tree has
no discrepancy. When current_tree is empty, one organism
can be added to it at no cost. In Foulds er al. (1979)
there are also analyses which consider several columns
together. To adapt those ideas to speeding up parsimony
programs one must find a way to generalize the ideas and
then implement them with low overhead.

Increasing the cost estimate never increases the number
of nodes in the search so long as the cost is used only
to decide which parts of the search space to explore. The
dynamic program, however, also uses the cost estimate to
help decide which organism to add to current_tree. In this
case it is possible for the ‘improved’ cost function to lead
to a poor selection and to an increase in the number of
nodes, but it is rare for this to happen. (For this paper it
happened in 3 of the 47 cases; each of the three cases took
less than 1 s.)

In the static order program, the single column discrep-
ancy calculation needs to be done just once. The time
needed to compute it is extremely small. In the dynamic
program it is done at every node, and the calculation is
done incrementally. To help do the calculation quickly, for
each column, counts are kept of the number of times that a
character occurs in a column and of the number times that
it occurs among the organisms not in current_tree. The
measurements reported below indicate that the time to
compute the single column discrepancy for the dynamic
program increases the average time per node by 37%.
(The quantity that was averaged is the time divided by
the product of the number of nodes, the length of the
sequences, and the number of organisms.)

Measurements

To determine the effectiveness of single column discrep-
ancy on real data, four programs (static and the dynamic
search orders, each without and with single column dis-
crepancy) were run on the 47 data sets described in the
Appendix. The number of nodes in the search trees and
the total running time (including the time for reading the
input and the time for the dynamic program to print an-
swers to a file) are given in Tables 1, 2, 3, and 4. Most
of the programs were run on a 200 MHz Pentium Pro
processor running the Microsoft Windows 95 operating
system. Some cases that needed a lot of memory were
run on a computer with the same processor that was run-
ning Microsoft Windows NT, but the choice of the ver-
sion of Windows used had no significant effect on running
times.

The summary statistics are calculated on 36 of the data
sets. The seq25 data set was excluded because the dynamic

143

P.W.Purdom,Jr et al.

Table 1. Thirteen organism results. This table shows the number of nodes generated and the time (in seconds) used for static and dynamic search programs.
For each program, the None column gives the results for the version of the program that does not use single column discrepancy and the Single column gives
the time for the version that does use it. The Ratio column gives the value in the none column (n) divided by the value in the single column (s). The In ratio
column gives 100[1 — (Inn)/(Ins)]. The three rows for each data set are: nodes generated during pass 1, nodes generated during pass 2, and total time in

seconds
Data Static Dynamic
set None Single Ratio In ratio None Single Ratio In ratio
atp6 13919 4269 3.26 12.4
17598 11146 1.58 4.7 14978 4703 3.18 12.0
18.74 11.77 1.59 59.78 19.44 3.08
atp8 45749 4970 9.21 20.7
48 184 24397 1.97 6.3 47566 7007 6.79 17.8
20.46 9.46 2.16 94.19 12.03 7.83
coxl 70986 36238 1.96 6.0
128244 86537 1.48 33 68443 34758 1.97 6.1
108.62 68.46 1.59 147.92 81.24 1.82
cox2 5826 3090 1.89 7.3
8759 6404 1.37 34 5996 3225 1.86 7.1
5.41 3.97 1.36 15.23 8.68 1.75
cox3 4814 865 441 20.2
8000 4259 1.88 7.0 5545 1055 5.26 19.2
4.50 2.54 1.77 12.48 2.83 441
cytb 82988 21464 3.87 11.9
172601 105039 1.64 4.1 89052 22586 3.94 12.0
217.95 125.34 1.74 405.32 105.32 3.85
ndhl 96232 35688 2.70 8.6
123087 87421 1.41 2.9 103435 38896 2.66 8.5
123.16 97.04 1.27 415.87 146.54 2.84
ndh2 788 674 182533 432 10.8
754 600 450220 1.68 3.8 777279 187855 4.14 10.5
1788.07 1055.25 1.69 6139.39 1611.59 3.80
ndh3 47912 4810 9.96 21.3
39627 17177 231 7.9 53416 3314 16.12 255
20.03 8.24 2.43 105.00 9.22 11.39
ndh4 116601 25830 451 12.9
179751 84474 2.13 6.2 120948 25129 4.81 134
413.02 176.51 2.34 1099.00 236.61 4.64
ndh4l 7770 1881 4.13 15.8
10519 4896 2.15 8.3 7879 2077 3.79 14.9
4.38 1.97 223 18.80 5.59 3.36
ndh5 1197974 235080 5.10 11.6
1380968 575844 2.40 6.2 1237460 241519 5.12 11.6
4470.87 1892.63 2.36 13584.35 2812.84 4.83
ndh6 16 160 5512 2.93 11.1
16724 10120 1.65 52 16 625 3471 4.79 16.1
10.81 6.09 1.77 57.71 16.28 3.54
ratite 2811 1358 2.07 9.2
4747 4412 1.08 0.9 2962 1444 2.05 9.0
241 2.27 1.06 4.49 2.77 1.62

search algorithm (as it was compiled) could handle no
more than 24 organisms. Data sets where some programs

needed less than 1 s were excluded because much of this
time was for overhead. Including those cases would have

144

Optimizations for finding evolutionary trees

Table 2. The cytbn results

Data Static Dynamic
set None Single Ratio In ratio None Single Ratio In ratio
cytb12 10917 5953 1.83 6.5
12943 8682 1.49 42 12103 6267 1.93 7.0
9.44 6.92 1.36 34.14 18.04 1.25
cytb13 20474 6671 3.07 113
27149 18045 1.51 4.0 21898 7514 291 10.7
23.44 16.73 1.40 71.78 24.39 2.94
cytb14 71479 27592 2.59 8.5
113680 78767 1.44 32 77447 28610 2.71 8.8
111.28 76.99 1.45 259.76 101.18 2.57
cytb15 439687 135410 3.25 9.1
786 654 509150 1.55 32 475194 152766 3.11 8.7
914.75 608.11 1.50 1686.19 505.95 3.33
cytb16 1619538 480710 3.37 8.5
1884119 1251572 1.51 2.8 1762040 517913 3.40 8.5
2504.43 1666.21 1.50 6348.85 1883.20 3.37
cytb17 8144105 2415660 3.37 7.6
14 888 639 10638244 1.40 2.0 8907 690 2607 887 342 7.7
23913.55 15869.69 1.46 33927.50 9475.38 3.58
cytb18 10785421 3256511 3.31 7.4
16650996 10856 675 1.53 2.6 11787153 3519742 3.35 7.4
26775.79 17103.20 1.57 46246.42 13490.15 343
cytb19 77622929 19851735 3.91 7.5
158200957 109962370 1.44 1.3 85072 694 21452051 3.97 7.5
280637.01 195762.09 1.43 350912.50 88336.29 3.97

led to much larger apparent averages for the time per node
statistics.

The reported times are total elapsed times. Time entries
have been rounded to the nearest hundredth of a second,
but (in most cases) the actual values were used for the
computations. In most cases nearly all of this time is
that required to compute the set of optimum phylogenetic
trees. For the problems that took less than a second, the
time to input the data was significant. It could vary by
a few tenths of a second depending on which order the
runs were made. We took care to reduce this variation.
For those few problems with a lot of output, the output
time was significant. An extreme example is the Cytc22
data with the dynamic program using single column
discrepancy. Approximately one solution was produced
for each five nodes, and the program used about the
same time formatting output as it did backtracking. A
few cases were run more than once. Long times were
usually repeatable to within 1%. Short times were usually
repeatable to within one-hundredth of a second.

The cytochrome c¢ data set (Table 3) was used exten-
sively for developing the dynamic program. Only minor
changes were made to the program after it was run on the

other data sets. Improvements were made to the static pro-
gram so that it could run larger data sets and to reduce its
output time.

The data sets used in these efficiency computations were
chosen on the basis of their usefulness in systematics stud-
ies in inferring long as well as short term evolutionary his-
tories. For instance, the data sets for Table 2 were selected
because they had a large number of organisms and are
from widely used mitochondrial cytochrome b gene. All
but the last data set in Table 1 are from 13 diverse verte-
brate species for which complete mitochondrial genomes
have been sequenced. The last entry is for 13 birds. Data
in Table 4 is for mitochondrial DNA of humans from dif-
ferent geographic regions. Tables 2, 3, and 4 show how the
running times vary as a function of the number of organ-
isms selected from the data set.

In most cases the total time was determined primarily
by the product of the total number of nodes, the number of
organisms, and the length of the sequence. The total time
in microseconds divided by the product was

0.79 £ 0.19 (0.58 minimum, 1.45 maximum) for
static order without single column discrepancy,

145

P.W.Purdom,Jr et al.

Table 3. The cytcn results

Data Static Dynamic
set None Single Ratio In ratio None Single Ratio In ratio
cytel2 94 49 1.92 14.3
724 664 1.09 1.3 717 678 1.06 0.9
0.16 0.15 1.10 0.45 0.43 1.05
cytel3 258 50 5.16 29.7
1152 844 1.36 44 1230 737 1.67 72
0.25 0.20 1.26 0.65 0.50 1.30
cytcl4 366 14 26.14 55.3
2351 2039 1.15 1.8 1418 649 2.18 10.8
0.54 0.47 1.15 0.76 0.56 1.36
cytels 1183 15 78.87 61.7
8158 5913 1.38 3.6 4847 1914 2.53 10.9
2.36 1.64 1.44 2.09 1.47 1.42
cytcl6 2312 79 29.27 43.6
9033 5130 1.76 6.2 7495 4478 1.67 5.8
2.67 1.51 1.76 391 2.94 1.33
cytel7 8274 891 9.29 2.47
43986 31749 1.39 3.0 28336 22503 1.26 22
15.45 11.44 1.35 14.53 11.63 1.25
cytcl8 35978 892 40.33 35.2
207178 135312 1.53 3.5 153256 52262 2.93 9.0
102.65 72.10 1.42 81.04 59.65 1.36
cytcl9 132034 999 132.17 41.4
976 645 557656 1.75 4.1 603461 93720 6.44 14.0
395.77 236.28 1.68 221.46 122.70 1.80
cytc20 94807 2321 40.85 324
2761955 2511311 1.10 0.6 281694 9644 29.21 26.9
1124.84 1049.92 1.07 86.79 13.25 6.55
cyte2l 890348 10301 86.43 32.6
4500937 3610185 1.25 1.4 815118 31812 25.62 23.8
1927.16 1575.76 1.22 385.30 37.83 10.19
cytc22 1036896 16724 62.00 29.8
16602735 12704028 1.31 1.6 2039985 47845 42.64 25.8
7768.39 5887.91 1.32 811.43 44.61 18.19

0.79 £+ 0.20 (0.57 minimum, 1.56 maximum) for
static order with single column discrepancy,

1.16 + 0.35 (0.51 minimum, 1.85 maximum) for
dynamic order without single column discrepancy,

1.57 + 0.68 (0.64 minimum, 3.59 maximum) for
dynamic order with single column discrepancy.

When the total time was small, the input time drove up the
measured time per node, but this effect is not large since
only cases that used at least 1 s were used to compute
the averages. When the amount of output was large the
output time also drove up the time per node, but this
effect was also not important for most of the runs. The

last two lines are roughly twice the size of the first two
lines. This is associated with the fact that the labelling
algorithm for the static algorithm has a single bottom
up pass while the labelling algorithm for the dynamic
algorithm has a bottom up pass followed by a top down
pass, resulting in twice as much work. Greater use of
incremental calculation in the dynamic algorithm saves a
little time, but makes the program much more complex.

Since the various programs have only moderate dif-
ferences in their time per node, the running time needed
by the various programs is determined primarily by how
many nodes each generates when solving a problem.

For static search, the use of single column discrepancy
leads to only a small improvement in the running time,
and it never increases the time (by more than a few

146

Optimizations for finding evolutionary trees

Table 4. The seqn results

Data Static Dynamic
set None Single Ratio In ratio None Single Ratio In ratio
seql2 30 10 3.00 323
43 43 1.00 0.0 35 41 0.85 —4.5
0.03 0.04 0.92 0.26 0.64 0.41
seql3 33 11 3.00 314
47 47 1.00 0.0 37 52 0.71 94
0.04 0.04 0.95 0.30 0.45 0.67
seql4 36 12 3.00 30.7
70 70 1.00 0.0 79 94 0.84 —4.0
0.05 0.05 0.98 0.39 0.66 0.59
seql5 101 59 1.71 11.6
338 351 1.02 0.3 707 677 1.04 0.7
0.18 0.18 1.00 1.40 1.54 0.91
seql6 174 79 2.20 15.3
273 265 1.03 0.5 481 415 1.16 2.4
0.15 0.14 1.03 0.94 1.34 0.70
seql7 209 141 1.48 74
769 739 1.04 0.6 699 555 1.26 35
0.30 0.32 0.94 1.33 1.48 0.90
seql8 368 220 1.67 8.7
1396 1305 1.07 0.9 973 768 1.27 34
0.58 0.55 1.06 1.42 1.66 0.86
seql9 696 492 1.41 5.3
2789 2789 1.00 0.0 1988 1732 1.15 1.8
1.22 1.22 1.00 2.81 2.89 0.97
seq20 4439 3431 1.29 3.1
7788 7788 1.00 0.0 5114 4637 1.10 1.1
3.65 3.83 0.95 5.64 5.60 1.01
seq21 5568 3468 1.61 5.5
9227 9227 1.00 0.0 7362 5805 1.27 2.7
4.72 4.80 0.98 8.97 8.71 1.03
seq22 4083 1894 2.16 9.2
40571 38177 1.06 0.6 9010 5655 1.59 5.1
27.717 26.88 1.03 10.06 8.03 1.25
seq23 47593 31421 1.51 39
65918 61342 1.07 0.6 69 869 52933 1.32 2.5
36.85 34.55 1.07 61.33 51.03 1.20
seq24 39668 33403 1.19 1.6
70393 62965 1.12 1.0 74941 55710 1.35 2.6
40.00 38.24 1.05 64.38 56.28 1.14
seq25
132335 126519 1.05 0.4
89.62 89.06 1.01

percent). The median factor of improvement was 1.4 and
the maximum was 2.4. The fractional improvement tended
to be larger for the larger problems. A measure that did not
appear to vary systematically with problem size is ratio of
the logarithm of the number of nodes. For static order, the

average value of this ratio is 0.966 % 0.023. Thus, if static
search order without single column discrepancy generates
N nodes, with single column discrepancy it will typically
generate N2 nodes. The actual improvement will vary
greatly depending on the data set.

147

P.W.Purdom,Jr et al.

For dynamic search single column discrepancy leads to
a bigger improvement. The median improvement factor
was 2.9, the maximum was 18.2. The average ratio of the
logarithm of the number of nodes was 0.838 £ 0.136 for
the first pass and 0.892 % 0.070 for the second pass.

It is also interesting to compare the number of nodes
that these algorithms produce with that of a naive algo-
rithm, one that generates all (2n — 5)!! candidate phylo-
genetic trees for n organisms. Since that number increases
(slightly faster than) exponentially with » and since the
number of nodes generated by the various algorithms also
appears to increases exponentially with #n, it is useful to
compare the ratio of the logarithm of the nodes that the
algorithm produces with the logarithm of (2n — 5)!!. The
results for nodes on pass two are:

0.3780 4+ 0.1170 (0.1809 minimum, 0.6056 max-
imum) for static order without single column dis-
crepancy,

0.3638 £ 0.1092 (0.1794 minimum, 0.5682 maxi-
mum) for static order with single column discrep-
ancy,

0.3656 + 0.1188 (0.1682 minimum, 0.5682 maxi-
mum) for dynamic order without single column dis-
crepancy.

0.3046 £ 0.1050 (0.1596 minimum, 0.5310 maxi-
mum) for dynamic order with single column dis-
crepancy.

The number of nodes generated by these various algo-
rithms appear to increase exponentially with the number
of organisms, but the coefficient in the exponent has been
greatly reduced.

The sequences in Table 4 (various human sequences) are
all closely related, a case where single column discrepancy
is expected to be particularly effective. However, all algo-
rithms run fast for this data, so single column discrepancy
does not lead to large improvements in the running time. In
part the improvement is small because Table 4 is based on
DNA sequence data (the other tables are based on amino
acid data) for which the alphabet size is just 4, and sin-
gle column discrepancy is expected to be less helpful with
small alphabets.

It is simple to adapt single column discrepancy to the
version of parsimony where each column has its own
weight. One just needs to use the weight when computing
the contribution of the characters in the difference set.

It is more complex to adapt single column discrepancy
to the version of parsimony where the cost of an edge
depends on the characters that label the two ends of
the edge. Basically, one would need to consider for
each character in the difference set which character

associated with current_tree could be used for the cheapest
attachment. While the idea is simple enough in principle,
carrying it out would require major changes in the
algorithms that we used.

Summary

A carefully done backtracking search can find the opti-
mum parsimony trees much more rapidly than a complete
search. The key idea needed to obtain a big improvement
is to put the organisms into an order such that the most
distantly related organisms are added to the phylogenetic
tree first, so that the phylogenetic trees with just a few or-
ganisms already show most of the optimum cost. Using
this idea with n organisms, reduces the running time by
a factor of about €762 (2.4 x 103 for n = 20), but the
improvement varies a lot depending on particular data.

Itis simple to add single column discrepancy to the basic
backtracking algorithm. This improves the running time
by a factor of about e001n (1.2 for n = 20).

Adding single column discrepancy to a dynamic search
order program improves the running time by a factor of
about e?9%" (2.2 for n = 20).

The question of whether or not it is worth using a
dynamic search order is complicated. Using dynamic
search along with single column discrepancy improves the
asymptotic number of nodes by a factor of about %03
(2.7 for n = 20) compared with static search without
single column discrepancy. This is important for large n.
On the other hand, the greater complexity of dynamic
search increases time per node by about a factor of 2. The
dynamic algorithm was the fastest for only 10 of the cases
tested. These were many (but not all) of the cases that
needed large amounts of time.

These results suggest that for even greater speed, one
should consider algorithms that use a dynamic search
order near the root of the search tree, but use a fixed
order for the deeper levels. This approach should lead to
a noticeable reduction in the number of nodes while not
significantly increasing the time per node. Experiments are
needed to verify that this approach works well in practice.

Saving time is not particularly important except when
you are using a lot of it. The algorithms in this paper are
particularly useful when 7 is large. They are also useful for
smaller problems when doing a computationally intensive
bootstrap analysis to assess the robustness of the inferred
phylogenetic tree (Felsenstein, 1993).

Acknowledgements

This research was partially supported by funds from
Arizona State University to SK, and research grants to
PWP (NSF), SK (NIH) and Masatoshi Nei (NSF, NIH).

148

Optimizations for finding evolutionary trees

Table A. Some characteristics of the data sets used

Data Number Sequence Useful Maxium Optimum Extra Solutions
set of length sequence characters discrepancy discrepancy
organisms length in column

atp6 13 214 120 8 459 59 1
atp8 13 50 43 9 201 1 2
coxl 13 510 89 7 268 117 2
cox2 13 224 80 7 260 68 1
cox3 13 258 72 7 215 72 1
cytb 13 337 85 7 507 85 1
ndhl 13 311 124 7 475 99 2
ndh2 13 340 222 9 1033 119 2
ndh3 13 112 56 8 230 19 1
ndh4 13 452 233 9 965 158 1
ndh4l 13 50 211 7 211 37 2
ndhS 13 565 294 10 1368 205 1
ndh6 13 116 81 8 325 31 1
ratite 13 370 63 4 132 28 1
cytb12 12 376 96 7 313 89 1
cytb13 13 376 106 7 348 74 1
cytb14 14 376 108 7 369 74 1
cytb15 15 376 110 8 398 69 2
cytb16 16 376 112 8 420 72 1
cytb17 17 376 114 8 441 70 1
cytb18 18 376 115 8 446 68 2
cytb19 19 376 118 8 480 67 1
cytel2 12 23 15 5 24 3 222
cytel3 13 23 15 6 28 5 222
cytcl4 14 23 18 6 33 1 222
cytel5 15 23 18 6 34 1 666
cytel6 16 23 18 6 36 1 1202
cytel7 17 23 19 6 38 0 4938
cytcl8 18 23 19 6 39 0 31350
cytcl9 19 23 19 6 43 1 61428
cytc20 20 23 20 6 48 1 4662
cyte2l 21 23 21 6 56 2 13986
cyte22 22 23 23 6 61 0 13986
seql2 12 637 21 3 28 5 14
seql3 13 637 21 3 28 9 14
seql4 14 637 21 3 28 9 42
seqlS 15 637 24 3 36 9 420
seql6 16 637 25 3 39 16 210
seql7 17 637 30 3 47 12 210
seql8 18 637 32 3 50 12 210
seql9 19 637 32 3 51 13 420
seq20 20 637 33 3 53 12 630
seq21 21 637 33 3 53 13 1470
seq22 22 637 35 4 60 15 1260
seq23 23 637 37 4 67 19 3780
seq24 24 637 41 4 71 15 3780
seq25 25 637 4 73 7560
Appendix the number of informative columns in the data set, (5) the

maximum number of distinct characters in any column of
Table A gives a brief description of the data used for the data set, (6) the discrepancy of the optimum solutions
timing the various algorithms. The columns are: (1) the for the data set (using only the informative columns),
data set name, (2) the number of organisms in the data (7) the additional discrepancy that results from using all
set, (3) the length of each sequence in the data set, (4) columns, and (8) the number of optimum solutions.

149

P.W.Purdom,Jr et al.

The following gives a reference, a brief description,
and a list of organisms for the data sources for the
measurements. Refer to the reference for more details. We
use the same organism names that the cited source uses.

When the data set name ends with a two digit number,
various numbers of organisms where used. The nth set
consists of the first n of the listed organisms. The first
13 data sets (Kumar, 1996; Nei, 1996; Russo et al., 1996)
have the same list of organisms, so the list is given just
once (under ndh6).

atp6: ATP subunit 6, mitochondrial (mt) amino acid
sequence.

atp8: ATP subunit 8, mt amino acid sequence.

cox1: Cytochrome c oxidase subunit 1, mt amino
acid sequence.

cox2: Cytochrome c oxidase subunit 2, mt amino
acid sequence.

cox3: Cytochrome c¢ oxidase subunit 3, mt amino
acid sequence.

cytb: Cytochrome b, mt amino acid sequence.
ndhl: NADH subunit 1, mt amino acid sequence.
ndh2: NADH subunit 2, mt amino acid sequence.
ndh3: NADH subunit 3, mt amino acid sequence.
ndh4: NADH subunit 4, mt amino acid sequence.
ndh4l: NADH subunit 4L, mt amino acid sequence.
ndh5: NADH subunit 5, mt amino acid sequence.

ndh6: NADH subunit 6, mt amino acid sequence.
Fin-back whale, Blue Whale, Cow, Rat, Mouse,
Opossum, Chicken, African clawed frog, Rainbow
trout, Loach, Carp, Lamprey, Sea Urchin. See
(Kumar, 1996; Nei, 1996; Russo et al., 1996) for
species names and the GenBank accession numbers
for the complete mitochondrial genomes.

ratites (Cooper et al., 1992): Nucleotide sequences
of the mitochondrial 12S ribosomal RNA sequences
from flightless birds. Three moas, two kiwis, emu,
cassowary, ostrich, rhea, and Tinamou.

cytbn (Yoder et al., 1996) (12 < n < 19): Cy-
tochrome b, mt amino acid sequence. Organisms
used: Human, Common Chimpanzee, Gorilla,
Orangutan, Common Gibbon, Agile Gibbon, Rhe-
sus Monkey, Guereza Monkey, Proboscis Monkey,
Squirrel Monkey, Aye-aye, Fat-tailed Lemur, Co-
querel Lemur, Mouse Lemur, Golden Crown Sifaka,
Ruffed Lemur, Collared Lemur, Red Crowned

Lemur, Greater Bush Baby.

cytcn (Foulds et al., 1979) (12 < n < 22): Cy-
tochrome c¢ mitochondrial amino acid sequence
(only variable positions included). Organsims used:
Human, Monkey, Horse, Dog, Pig, Whale, Rabbit,
Bat, Seal, Mouse, Zebra, Kangaroo, Chicken,
Penguin, Duck, Pigeon, Emu, Ostrich, Turtle, Frog,
Tuna, Carp.

seqn (Vigilant et al., 1992) (12 < n < 25): Mito-
chondrial D-loop DNA sequences from different
humans: W. Pygmy(1), W. Pygmy(2), W. Pygmy(4),

!Kung(7), !'Kung(8), !Kung(9), !Kung(10),
'Kung(11), !'Kung(13), !Kung(15), !Kung(16),
'Kung(17), !Kung(18), !'Kung(19), !Kung(22),

Asian(23), Yoruban(24), Yoruban(25), Yoruban(26),
Asian(28), Yoruban(29), E. Pygmy(32), W.
Pygmy(37), W. Pygmy(38), W. Pygmy(39).

References

Cooper,A., Mourer-Chauvire,C., Chambers,G.K., von-Haeseler,A.,
Wilson,A.C. and Paabo,S. (1992) Independent origins of New
Zealand Moas and Kiwis. Proc. Natl Acad. Sci. USA, 89, 8741—
8744.

Day,W.H., Johnson,D.S. and Sankoff,D. (1986) Computational
complexity of inferring phylogenies by compatibility. Sysz. Zool.,
35, 224-229.

Felsenstein,J. (1993) PHYLIP: Phylogeny Inference Package, ver-
sion 3.5. University of Washington, Seattle, WA.

Fitch, WM. (1971) Toward defining the course of evolution: mini-
mum change for a specific tree topology. Syst. Zool., 20, 406—
416.

Foulds,L.R., Hendy,M.D. and Penny,D. (1979) A general approach
to proving the minimality of phylogenetic trees illustrated by an
example with a set of 23 vertebrates. J. Mol. Evol., 13, 151-166.

Graham,R.L. and Foulds,L.R. (1982) Unlikelihood that minimal
phylogenies for a realistic biological study can be constructed
in reasonable computational time. Math. Biosci., 60, 133—142.

Hartigan,J.A. (1973) Minimum evolution fits to a given tree.
Biometrics, 29, 53-65.

Hendy,M.D. and Penny,D. (1982) Branch and bound algorithms to
determine minimal evolutionary trees. Math. Biosci., 89, 277—
290.

Kumar,S. (1996) Patterns of nucleotide substitution in mitochon-
drial protein coding. Genetics, 143, 537-548.

Kumar,S., Tamura,K. and Nei,M. (1993) MEGA: Molecular Evolu-
tionary Genetics Analysis, version 1.0. Pennsylvania State Uni-
versity, University Park, PA.

Maddison,W.P. and Maddison,D.R. (1993) MacClade: Analysis
of Phylogeny and Character Evolution. Sinauer Associates,
Sunderland, MA.

Nei,M. (1996) Phylogenetic analysis in molecular evolutionary
genetics. Ann. Rev. Genet., 30, 371-403.

Russo,C.A.M., Takezaki,N. and Nei,M. (1996) Efficiencies of dif-
ferent tree-building methods in recovering a known vertebrate
phylogeny. Mol. Biol. Evol., 13, 525-536.

150

Optimizations for finding evolutionary trees

Swofford,D.L. (1998) PAUP*: Phylogenetic Analysis Using Parsi-
mony and other methods, University of Illinois, Champaign, IL.

Taylor,W.R. (1996) Multiple protein sequence alignment: algo-
rithms and gap insertion. In Doolittle,R.F. (ed.), Methods in En-
zymology, vol 266. Academic Press, San Diego.

Vigilant,L., Stoneking,M., Harpending,H., Hawkes,K. and

Wilson,A.C. (1992) African populations and the evolution of
human mitochondrial DNA. Proc. Natl Acad. Sci. USA, 89,
8741-8744.

Yoder,A.D., Cartmill,M., Ruvolo,M., Smith,K. and Vilgalys,R.
(1996) Ancient single origin for Malagasy primates. Proc. Natl
Acad. Sci. USA, 93, 5122-5126.

151

