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New species arise from pre-existing species and inherit similar genomes and 1 

environments. This predicts greater similarity of mutation rates and the tempo of 2 

molecular evolution between direct ancestors and descendants, resulting in 3 

correlation of evolutionary rates within lineages in the tree of life. Surprisingly, 4 

molecular sequence data have not confirmed this expectation, possibly because 5 

available methods lack power to detect correlated rates. Here we present an 6 

accurate machine learning method used to detect correlation of rates in large 7 

phylogenies. By applying this method to multigene and genome-scale sequence 8 

alignments from mammals, birds, insects, metazoans, plants, fungi, and 9 

prokaryotes, we discover extensive correlation in molecular evolutionary rates 10 

throughout the tree of life in both DNA and protein sequences. These findings 11 

suggest concordance between molecular and non-molecular evolutionary patterns 12 

and will foster unbiased and precise dating of the tree of life. 13 

 14 

Phylogenomics has revolutionized our understanding of the patterns and timescale of the 15 

tree of life1,2. Genome-scale data has revealed that rates of molecular sequence change 16 

vary extensively among species3–5. The causes and consequences of evolutionary rate 17 

variation are of fundamental importance in molecular phylogenetics and systematics6–8, 18 

not only to inform about the relationship among molecular, biological, and life history 19 

traits, but also as a prerequisite for reliable estimation of divergence times among species 20 

and genes3,5.  21 

Three decades ago, Gillespie9 proposed that molecular evolutionary rates within a 22 

phylogeny will be correlated due to similarities in genomes, biology and environments 23 

between ancestral species and their immediate progeny. This idea led to statistical 24 

modelling of the variability of evolutionary rates among branches and formed the basis of 25 

the earliest relaxed clock methods for estimating divergence times without assuming a 26 

strict molecular clock3,5,10–12. However, the independent branch rate (IBR) model has 27 

emerged as a strong alternative to the correlated branch rate (CBR) model. IBR posits 28 

that rates vary randomly throughout the tree, such that the evolutionary rate similarity 29 

between an ancestor and its descendant is, on average, no more than that between more 30 

distantly-related branches in a phylogeny5,13. IBR model is now widely used in estimating 31 
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divergence times from molecular data for diverse groups of species, including 32 

mammals13, birds14–16, amphibians17, plants18–24, and viruses13,25,26. If the IBR model best 33 

explains the variability of evolutionary rates, then we must infer a decoupling of molecular 34 

and biological evolution, because morphology, behavior, and other life history traits are 35 

more similar between closely-related species6,27,28 and are correlated with taxonomic or 36 

geographic distance29,30.   37 

Alternatively, the widespread use of the IBR model13–20,22,23,25,26 may be explained 38 

by the fact that the currently available statistical tests lack sufficient power to reject the 39 

IBR model31. This may also explain why some studies report finding extensive branch 40 

rate correlation in many datasets (e.g., Lepage et al.32), but others cannot confirm this 41 

using the same tests (e.g., Linder et al.19). Consequently, many researchers use both 42 

CBR and IBR models for the same species groups13,23,33–43, a practice that often 43 

generates controversy via widely differing time estimates34,37,42,44–46. 44 

Therefore, we need a powerful method to accurately test whether evolutionary 45 

rates are correlated among branches. This method should then be applied to molecular 46 

datasets representing taxonomic diversity across the tree of life to assess the ubiquity of 47 

correlated rates in nature. Here, we introduce a new machine learning approach 48 

(CorrTest) with high power to detect correlation between molecular rates. CorrTest is 49 

computationally efficient, and its application to a large number of datasets establishes the 50 

pervasiveness of rate correlation in the tree of life. 51 

 52 

RESULTS 53 

A machine learning approach for detecting rate correlation 54 

Machine learning is widely used to solve problems in many fields, but has not yet been 55 

used to address challenges in molecular phylogenetics. We employed a supervised 56 

machine learning (McL) framework47 to build a predictive model that distinguishes 57 

between CBR and IBR models. In our McL approach, the input is a molecular phylogeny 58 

with branch lengths (often derived from a multiple sequence alignment), and the output 59 

is a classification that corresponds to whether or not the evolutionary rates are correlated 60 

(CBR or IBR, respectively). We used a logistic regression to build a predictive model. An 61 

overview of our McL approach is presented in Figure 1. 62 
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To build a predictive model, we need measurable properties (features, Fig. 1g and 63 

h) that are derived from the input data. The output is ultimately the assignment of input 64 

data as most consistent with either CBR or IBR models. The selection of informative and 65 

discriminating features is critical for the success of McL. In CorrTest, we derive relative 66 

lineage rates using a given molecular phylogeny with branch lengths48 (Fig. 1e and 1f) 67 

and use these lineage rates to generate informative features. An evolutionary lineage 68 

includes all the branches in the descendant subtree, which is distinct from a branch that 69 

only connects an ancestor to one of its immediate descendants. One cannot use branch 70 

rates as features, because their computation requires the knowledge of node times in the 71 

phylogeny, which cannot be estimated without prior assignment of a branch rate model. 72 

The features that we selected for our McL predictive model were the correlation 73 

between ancestral and descendant lineage rates (ρad), the correlation between the sister 74 

lineages (ρs), and the decay in ρad when one and two parents are skipped (d1 and d2, 75 

respectively). We selected correlation between ancestral and descendant lineage rates 76 

(ρad) as a feature because our analyses of simulated data showed that ρad was much 77 

higher for phylogenetic trees in which molecular sequences evolved under CBR model 78 

(0.96) than the IBR model (0.54, Fig. 2a; Supplementary information). While 79 

“independent rate” should imply a lack of correlation, ρad is not zero for sequences 80 

evolved under the IBR model because the evolutionary rate of an ancestral lineage is 81 

necessarily related to the evolutionary rates of its descendant lineages. While ρad is 82 

greater than zero48, this feature shows distinct patterns for both CBR and IBR models and 83 

is thus a good candidate feature for McL (Fig. 2a). As our second feature, we selected 84 

the correlation between the sister lineages (ρs), because ρs was higher for the CBR model 85 

(0.89) than the IBR model (0.00, Fig. 2b; Supplementary information). Although our 86 

extensive simulations produced some scenarios in which ρs was greater than 0.4 for 87 

datasets that evolved with the IBR model (because ancestral lineage rates include 88 

descendant evolutionary rates) ρs remains a highly discriminating feature for McL. Two 89 

additional features included in McL measure the decay in ρad when one and two parents 90 

are skipped (d1 and d2), respectively, in ρad calculations (Supplementary information). 91 

We expect that ρad will decay slower under CBR than IBR, which was consistent with our 92 

observations (Fig. 2c). 93 
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The selected set of candidate features (ρs, ρad, d1, and d2) can be measured for 94 

any phylogeny with branch lengths (e.g., derived from molecular data) and used to train 95 

the machine learning classifier (Fig. 1i). For this purpose, we need a large set of 96 

phylogenies in which branch rates are correlated (CBR = 1, Fig. 1d) and phylogenies in 97 

which the branch rates are independent (IBR = 0, Fig. 1c). By using the four selected 98 

features for each phylogeny and the associated numerical output state (0 or 1), we can 99 

build a logistic regression that serves as the predictive model (Fig. 1j). However, there is 100 

a paucity of empirical data for which CBR and IBR rates are firmly established. We 101 

therefore trained our McL model on a simulated dataset, a practice that is now widely 102 

used in applications when real world training datasets are few in number and often 103 

containing high levels of error or uncertainty49,50. We used computer simulations to 104 

generate 1,000 phylogenies that evolved with CBR models and 1,000 phylogenies that 105 

evolved with IBR models (Fig. 1a and b). To ensure the general utility of our model for 106 

analyses of diverse data, we sampled phylogenies with varying numbers of species, 107 

degrees of rate correlation, and degrees of independent rate variation (Supplementary 108 

information). The machine learning process generated a predictive model with an 109 

associated correlation score (CorrScore). 110 

We evaluated the sensitivity and specificity of our model using standard receiver 111 

operating characteristic (ROC) curves, which show the sensitivity of our method to detect 112 

rate correlation when it is present (True Positive Rate, TPR) and when it was not present 113 

(False Positive Rate, FPR) at different CorrScore thresholds. The ROC curve for McL 114 

using all four features was the best, which led to the inclusion of all four features in the 115 

predictive model (Fig. 2d; Supplementary information). The area under the ROC 116 

(AUROC) was 99%, with a 95% TPR (i.e., CBR detection) achieved at the expense of 117 

only 5% FPR (Fig. 2d, black line). The area under the precision recall (AUPR) curve was 118 

also extremely high (0.99; Fig. 2d inset), which means that our predictive model detects 119 

correlation among branch rates with very high accuracy and precision. We also performed 120 

standard cross-validation tests and found that that the predictive models retained high 121 

accuracy (>92%, Fig. 1k and Supplementary information). 122 

We developed a conventional statistical test (CorrTest) based on CorrScore (Fig. 123 

2e) that will provide a p-value for researchers to use when deciding whether they should 124 
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reject a null hypothesis that branch rates within a phylogeny are uncorrelated 125 

(independent). A high CorrScore translates into a higher probability that the branch rates 126 

are correlated. At a CorrScore greater than 0.5, the Type I error (rejecting the null 127 

hypothesis of IBR when it was true) was less than 5%. Type I error of 1% (P-value of 128 

0.01) was achieved with a CorrScore greater than 0.83. We found that these CorrScore 129 

score thresholds were applicable even when predictive models were developed 130 

separately and when the number of sequences in the dataset were small (≤100), medium 131 

(100 – 200), large (200 – 300), and very large (> 300) (Supplementary information). 132 

The accuracy obtained using these models (Fig. S1a-c) is similar to those presented in 133 

figure 3d - f. Therefore, we suggest using the general model in CorrTest analysis. 134 

CorrTest performs well in computational tests 135 

We tested the performance of CorrTest on a simulated dataset where the correct rate 136 

model is known (Fig. 1l). This dataset used 91 angiosperms as a model system for 137 

simulating sequence evolution with IBR models (supplementary information)51. 138 

CorrTest correctly diagnosed 95% of these datasets to be evolving with independent 139 

rates. We also tested a large collection of datasets52 generated using diverse evolutionary 140 

parameters including both CBR and IBR models (supplementary information). CorrTest 141 

showed an accuracy greater than 94% in detecting rate autocorrelation for datasets that 142 

were simulated with low and high G+C contents (Fig. 3a), small and large substitution 143 

rate biases (Fig. 3b), and different levels of sequence conservation (Fig. 3c). As 144 

expected, CorrTest performed best on datasets that contain more and longer sequences 145 

(Fig. 3d). In these analyses, we used the correct tree topology and nucleotide substitution 146 

model. We relaxed this requirement and evaluated CorrTest by first inferring a phylogeny 147 

using a dataset53 with  an oversimplified substitution model54. Naturally, many inferred 148 

phylogenies contained topological errors, but we found the accuracy of CorrTest to still 149 

be high as long as the dataset contained >100 sequences of length >1,000 base pairs 150 

(Fig. 3e). CorrTest performed well even when 20% of the partitions were incorrect in the 151 

inferred phylogeny (Fig. 3f). Therefore, CorrTest will be most reliable for large datasets, 152 

but is relatively robust to errors in phylogenetic inference. 153 
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CorrTest versus Bayes factor analysis 154 

We compared the performance of CorrTest with that of the Bayes factor approach. 155 

Because the Bayes factor method is computationally demanding, we limited our 156 

comparison to 100 datasets containing 100 sequences each (Supplementary 157 

information). We computed Bayes factors (BF) by using the stepping-stone sampling 158 

(SS) method (see Materials and Methods). BF-SS analysis detected autocorrelation (P 159 

< 0.05) for 32% of the datasets that actually evolved with correlated rates (Fig. 4a, red 160 

curve in the CBR zone). This is because the marginal log-likelihoods under the CBR 161 

model for 78% of these datasets were very similar to or lower than the IBR model. 162 

Therefore, BF was very conservative in rejecting the null hypothesis (see also ref. 31). In 163 

contrast, CorrTest correctly detected the CBR model for 88% of the datasets (P < 0.05; 164 

Fig. 4b, red curve in CBR zone). For datasets that evolved with IBR model, BF-SS 165 

correctly detected the IBR model for 92% (Fig. 4a, blue curves in the IBR zone), whereas 166 

CorrTest correctly detected 86% (Fig. 4b, blue curve in the IBR zone). Therefore, Bayes 167 

Factor analyses generally perform well in correctly classifying phylogenies evolved under 168 

IBR, but fail to detect the influence of CBR. The power of CorrTest to correctly infer CBR 169 

is responsible for its higher overall accuracy (87%, vs. 62% for BF). Such a difference in 170 

accuracy was observed at all levels of statistical significance (Fig. 4c). In the future, faster 171 

and more advanced BF implementations may allow extensive comparison of traditional 172 

Bayesian and CorrTest approaches, as the Bayesian approaches are still evolving43 and 173 

currently require extensive computation time. Based on the limited comparisons 174 

presented here, we conclude that machine learning enables highly accurate detection of 175 

rate correlation in a given phylogeny and presents a computationally feasible alternative 176 

to Bayes Factor analyses for large datasets.  177 

Correlation of rates is common in molecular evolution  178 

The high accuracy and fast computational speed of CorrTest enabled us to test the 179 

presence of autocorrelation in 16 large datasets from 12 published studies encompassing 180 

diverse groups across the tree life. This included nuclear, mitochondrial and plastid DNA, 181 

and protein sequences from mammals, birds, insects, metazoans, plants, fungi, and 182 

prokaryotes (Table 1). CorrTest rejected the IBR model for all datasets (P < 0.05). In 183 

these analyses, we assumed a time-reversible process for base substitution. However, 184 
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the violation of this assumption may produce biased results in phylogenetic analysis57. 185 

We, therefore, applied an unrestricted substitution model for analyzing all the nuclear 186 

datasets and confirmed that CorrTest rejected the IBR model in every case (P < 0.05). 187 

This robustness stems from the fact that the branch lengths estimated under the time-188 

reversible and the unrestricted model show an excellent linear relationship for these data 189 

(r2 > 0.99). This is the reason why CorrTest produces reliable results even when an 190 

oversimplified model was used in computer simulations (Fig. 3e and f). 191 

These results suggest that the correlation of rates among lineages is the rule, 192 

rather than the exception in molecular phylogenies. This pattern contrasts starkly with 193 

those reported in many previous studies13–24,41. In fact, all but three datasets33,55,56 194 

received very high prediction scores in CorrTest, resulting in extremely significant P-195 

values (P < 0.001). The IBR model was also rejected for the other three datasets (P < 196 

0.05), but their test scores were not as high, likely because they sparsely sample a large 197 

phylogenetic space. For example, the metazoan dataset33 contains sequences primarily 198 

from highly divergent species that shared common ancestors hundreds of millions of 199 

years ago. In this case, tip lineages in the phylogeny are long and their evolutionary rates 200 

are influenced by many un-sampled lineages. Such sampling effects weaken the rate 201 

correlation signal. We verified this behavior via analyses of simulated data and found that 202 

CorrTest’s prediction scores decreased when taxon sampling and density were lowered 203 

(Fig. 5a). Overall, CorrTest detected rate correlation in all the empirical datasets.  204 

Our results establish that the correlated rate model should be the default in 205 

molecular clock analysis, and CorrTest can be used to test the independent rate model 206 

when sufficient numbers of sequences are available. Use of a correlated rate model is 207 

important because model selection has a strong influence on the posterior credible 208 

intervals of divergence times 44. For example, the use of IBR model produces estimates 209 

of divergence time of two major groups of grasses that are 66% older46 and origin of a 210 

major group of mammal (Erinaceidea) to be 30% older35 than estimates under CBR 211 

model. In fact, substantial differences between node age estimates under IBR and CBR 212 

models have been reported in many studies23,34,37,42,44,46. Thus, the use of an incorrect 213 

rate model has a large impact on time estimates, which may not be alleviated by adding 214 
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calibrations44. Knowledge that evolutionary rates are generally correlated within lineages 215 

will foster unbiased and precise dating of the tree of life. 216 

Magnitude of the rate correlation in molecular data 217 

CorrScore is influenced by the size of the dataset in addition to the degree of correlation, 218 

so it is not a direct measure of the degree of rate correlation (effect size) in a phylogeny. 219 

Instead, one should use a Bayesian approach to estimate the degree of rate correlation, 220 

for example, under the Kishino et al.’s autocorrelated rate model58. In this model, a single 221 

parameter (ν) captures the degree of autocorrelation among branches in a phylogenetic 222 

tree. A low value of ν indicates high autocorrelation, so, we use the inverse of v to 223 

represent the degree of rate autocorrelation. MCMCTree59 analyses of simulated 224 

datasets confirmed that the estimated v is linearly related to the true value (Fig. 5b). In 225 

empirical data analyses, we find that the inverse of v is high for all datasets examined, 226 

which suggests ubiquitous high rate correlation across the tree of life.  227 

Many other interesting patterns emerge from this analysis. First, rate correlation is 228 

highly significant not only for mutational rates (= substitution rate at neutral positions), 229 

which are expected to be similar in sister species because they inherit cellular machinery 230 

from a common ancestor, but also amino acid substitution rates, which are more strongly 231 

influenced by natural selection (Table 1). For example, synonymous substitution rates in 232 

the third codon positions and the four-fold degenerate sites in mammals35, which are 233 

largely neutral and are the best reflection of mutation rates60, received high CorrScores 234 

of 0.99 and 0.98, respectively (P < 0.001). Second, our model also detected a strong 235 

signal of correlation for amino acid substitution rates in the same proteins (CorrScore = 236 

0.99). Bayesian analyses showed that the degree of correlation is high in both cases: 237 

inverse of v was 3.21 in 4-fold degenerate sites and 3.11 in amino acid sequences. Third, 238 

mutational and substitution rates in both nuclear and mitochondrial genomes are highly 239 

correlated (Table 1). These results establish that molecular and non-molecular 240 

evolutionary patterns are concordant, because morphological characteristics are also 241 

found to be similar between closely-related species6,27,28 and correlated with taxonomic 242 

or geographic distance29,30. 243 

 In conclusion, we have successfully addressed an enduring question in 244 

evolutionary biology:  are the molecular rates of change between species correlated or 245 
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independent? We have shown that the evolutionary rates of change among closely 246 

related species are correlated in diverse species groups. That is, evolutionary rate 247 

correlation is likely universal, suggesting concordance between the patterns of 248 

evolutionary changes in genomes and higher-level biological attributes. Furthermore, 249 

revealing the existence of pervasive correlation in molecular rates throughout the tree of 250 

life will improve specification of correct rate models that are essential for molecular clock 251 

analyses to provide accurate estimates of evolutionary timing for use in studies of 252 

biodiversity, phylogeography, development, and genome evolution. 253 

 254 

Materials and Methods 255 

CorrTest analyses. All CorrTest analyses were conducted using a customized R code 256 

(available from https://github.com/cathyqqtao/CorrTest). We estimated branch lengths of 257 

a tree topology on sequence alignments using maximum likelihood method (or Neighbor-258 

Joining method when we tested the robustness of our model to topological error) in 259 

MEGA61,62. Then we used those branch lengths to compute relative lineages rates using 260 

RRF48,52 and calculated the value of selected features (ρs, ρad, and two decay measures) 261 

to obtain the CorrScore (see detail calculation in Supplementary information). We 262 

conducted CorrTest on the CorrScore to estimate the P-value of rejecting the null 263 

hypothesis of independent evolutionary rates. No calibration was needed for CorrTest 264 

analyses. 265 

Bayes factor analyses. We computed the Bayes factor via stepping-stone sampling (BF-266 

SS)63 with n = 20 and a = 5 using mcmc3r package43. We chose BF-SS because the 267 

harmonic mean estimator it has many statistical shortcomings32,63,64 and thermodynamic 268 

integration43,65 is less efficient than BF-SS. Still, BF-SS requires a long computational 269 

time, we only finished analyses of 50% of synthetic datasets (Supplementary 270 

information). For each dataset, we computed the log-likelihoods (lnK) of using IBR model 271 

and CBR model. The Bayes factor posterior probability for CBR was calculated as shown 272 

in dos Reis et al. (2018)43. We used only one calibration point at the root (true age with a 273 

narrow uniform distribution) in all the Bayesian analyses, as it is the minimum number of 274 

calibrations required by MCMCTree59. For other priors, we used diffused distributions of 275 
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“rgene_gamma = 1 1”, “sigma2_gamma=1 1” and “BDparas = 1 1 0”. In all Bayesian 276 

analyses, two independent runs of 5,000,000 generations each were conducted, and 277 

results were checked in Tracer66 for convergence. ESS values were higher than 200 after 278 

removing 10% burn-in samples for each run. 279 

Analysis of empirical datasets 280 

We used 16 datasets from 12 published studies of eukaryotes and 2 published studies of 281 

prokaryotes that cover the major groups in the tree of life (Table 1).These were selected 282 

because they did not contain too much missing data (<50%) and represented >80 283 

sequences. When a phylogeny and branch lengths were available from the original study, 284 

we estimated relative rates directly from the branch lengths via the relative rate 285 

framework48 and computed selected features to conduct CorrTest. Otherwise, maximum 286 

likelihood estimates of branch lengths were obtained using the published phylogeny, 287 

sequence alignments, and the substitution model specified in the original article61,62.  288 

To obtain the autocorrelation parameter (v), we used MCMCTree59 with the same 289 

input priors as the original study, but no calibration priors were used in order to avoid 290 

undue influence of calibration uncertainty densities on the estimate of autocorrelation 291 

parameters. We did, however, provide a root calibration because MCMCTree requires a 292 

root calibration. For this purpose, we used the root calibration provided in the original 293 

article or selected the median age of the root node in the TimeTree database67,68 ± 50My 294 

(soft uniform distribution) as the root calibration, as this does not impact the estimation of 295 

v. Bayesian analyses required long computational times, so we used the original 296 

alignments in MCMCTree analyses if alignments were shorter than 20,000 sites. If the 297 

alignments were longer than 20,000 sites, we randomly selected 20,000 sites from the 298 

original alignments to use in MCMCTree analyses. However, one dataset69 contained 299 

more than 300 ingroup species, such that even alignments of 20,000 sites required 300 

prohibitive amounts of memory. In this case, we randomly selected 2,000 sites from the 301 

original alignments to use in MCMCtree analyses (similar results were obtained with a 302 

different site subset). Two independent runs of 5,000,000 generations each were 303 

conducted, and results were checked in Tracer66 for convergence. ESS values were 304 
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higher than 200 after removing 10% burn-in samples for each run. All empirical datasets 305 

are available at https://github.com/cathyqqtao/CorrTest. 306 

Code availability statement  307 

The R source code of CorrTest is available at https://github.com/cathyqqtao/CorrTest    308 

Data availability statement  309 

All empirical datasets, results, and source code for generating each figure are available 310 

at https://github.com/cathyqqtao/CorrTest. All simulated datasets will be provided upon 311 

request.   312 
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Table 1. Results from the CorrTest analysis of datasets from a diversity of species. 554 

 555 

Group Data type 

Taxa 

numbera 

Sequence 

length 

Substitution 

model 

CorrTest 

score P-value 1/νb Reference 

Mammals 
Nuclear 4-fold 

degenerate sites 
138 1,671 GTR + Γ 0.98 < 0.001 3.21 Meredith et al. (2011)35 

Mammals Nuclear 3rd codon 138 11,010 GTR + Γ 0.99 < 0.001 4.42 Meredith et al. (2011)35 

Mammals Nuclear proteins 138 11,010 JTT + Γ 0.99 < 0.001 3.11 Meredith et al. (2011)35 

Mammals Mitochondrial DNA 271 7,370 HKY + Γ 0.98 < 0.001 3.77 Dos Reis, et al. (2012)36 

Birds Nuclear DNA 198 101,781 GTR + Γ 1.00 < 0.001 2.07 Prum et al. (2015)15 

Birds Nuclear 3rd codon 222 1,364 GTR + Γ 1.00 < 0.001 2.11 Claramunt et al. (2015)16 

Birds 
Nuclear 1st and 2nd 

codon 
222 2,728 GTR + Γ 1.00 < 0.001 2.53 Claramunt et al. (2015)16 

Insects Nuclear proteins 143 220,091 LG +  Γ 1.00 < 0.001 8.68 Misof et al. (2015)70 

Metazoans 
Mitochondrial & 

nuclear proteins 
113 2,049 LG + Γ 0.65 < 0.05 40.0 Erwin et al. (2011)33 

Plants Plastid 3rd codon 335 19,449 GTR + Γ 1.00 < 0.001 2.28 Ruhfel et al. (2014)69 

Plants Plastid proteins 335 19,449 JTT + Γ 1.00 < 0.001 2.46 Ruhfel et al. (2014)69  

Plants 
Nuclear 1st and 2nd 

codon 
99 220,091 GTR + Γ 1.00 < 0.001 5.50 Wickett et al. (2014) 71 

Plants 
Chloroplast and 

nuclear DNA 
124 5,992 GTR + Γ 1.00 < 0.001 2.64 Beaulieu et al. (2015)51 

Fungi Nuclear proteins 85 609,772 LG + Γ 0.97 < 0.001 3.78 Shen et al. (2016)72 

Prokaryotes Nuclear proteins 197 6,884 JTT + Γ 0.79 < 0.05 2.54 Battistuzzi et al. (2009)56 

Prokaryotes Nuclear proteins 126 3,145 JTT + Γ 0.83 < 0.05 1.23 Calteau et al. (2014)55 

 556 

aTaxa number is the number of ingroup taxa only. 557 

b1/ν is the inverse of the autocorrelation parameter that is estimated by MCMCTree with 558 

the autocorrelated rate model in the time unit of 100My.  559 
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 561 

 562 

Figure 1. A flowchart showing an overview of the machine learning (McL) approach 563 

applied to develop the predictive model (CorrTest). We generated (a) 1,000 synthetic 564 

datasets that were evolved using an IBR model and (b) 1,000 synthetic datasets that were 565 

evolved using a CBR model. The numerical label (c) for all IBR datasets was 0 and (d) 566 

for all CBR datasets was 1. For each dataset, we estimated a molecular phylogeny with 567 

branch lengths (e and f) and computed ρs, ρad, d1, and d2 (g and h) that served as features 568 

during the supervised machine learning. (i) Supervised machine learning was used to 569 

develop a predictive relationship between the input features and labels. (j) The predictive 570 

model produces a CorrScore for an input phylogeny with branch lengths. The predictive 571 

model was (k) validated with 10-fold and 2-fold cross-validation tests, (l) tested using 572 

external simulated data, and then (m) applied to real data to examine the prevalence of 573 

rate correlation in the tree of life.  574 

 575 
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 577 

 578 

Figure 2. The relationship of (a) ancestral and direct descendent lineage rates and (b) 579 

sister lineage rates when the simulated evolutionary rates were correlated with each other 580 

(red) or varied independently (blue). The correlation coefficients are shown. (c) The decay 581 

of correlation between ancestral and descendant lineages when we skip one intervening 582 

branch (1st decay, d1) and when we skip two intervening branches (2nd decay, d2). Percent 583 

decay values are shown. (d) Receiver Operator Characteristic (ROC) and Precision 584 

Recall (PR) curves (inset) of the CorrTest for detecting branch rate model by using only 585 

ancestor-descendant lineage rates (ρad, green), only sister lineage rates (ρs, orange), and 586 

all four features (all, black). The area under the curve is provided. (e) The relationship 587 

between the CorrScore produced by the machine learning model and the P-value. The 588 

null hypothesis of rate independence can be rejected when the CorrScore is greater than 589 

0.83 at a significant level of P < 0.01, or when the CorrScore is greater than 0.5 at P < 590 

0.05.   591 
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 592 

 593 

Figure 3. The performance of CorrTest in detecting rate correlation in the analysis of 594 

datasets52 that were simulated with different (a) G+C contents, (b) transition/transversion 595 

rate ratios, and (c) average molecular evolutionary rates. Darker color indicates higher 596 

accuracy. The evolutionary rates are in the units of 10-3 substitutions per site per million 597 

years. (d – f) Patterns of CorrTest accuracy for datasets containing increasing number of 598 

sequences. The accuracy of CorrTest for different sequence length is shown when (d) 599 

the correct topology was assumed and (e) the topology was inferred. (f) The accuracy of 600 

CorrTest for datasets in which the inferred the topology contained small and large number 601 

of topological errors.  602 
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 604 

 605 

Figure 4. Comparisons of the performance of CorrTest and Bayes Factor analyses. (a) 606 

Distributions of 2 times the differences of marginal log-likelihood (2lnK) estimated via 607 

stepping-stone sampling method for datasets that were simulated with correlated branch 608 

rates (CBR, red) and independent branch rates (IBR, blue). CBR is preferred (P < 0.05) 609 

when 2lnK is greater than 3.841 (CBR zone), and IBR is preferred when 2lnK is less than 610 

-3.841 (IBR zone). When 2lnK is between -3.841 and 3.841, the fit of the two rate models 611 

is not significantly different (gray shade). (b) The distributions of CorrScores in analyses 612 

of CBR (red) and IBR (blue) datasets. Rates are predicted to be correlated if the 613 

CorrScore is greater than 0.5 (P < 0.05, CBR zone) and vary independently if the 614 

CorrScore is less than 0.5 (IBR zone). (c) The rate of detecting CBR model correctly (True 615 

Positive Rate) at different levels of statistical significance in Bayes factor (stepping-stone 616 

sampling) and CorrTest analyses. Posterior probabilities for CBR in BF-SS analysis are 617 

derived using the log-likelihood patterns in panel a. CorrTest P-values are derived using 618 

the CorrScore pattern in panel b. 619 
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 621 
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 624 

 625 

 626 

Figure 5. (a) The distribution of CorrScore when data have different taxon sampling 627 

densities. The CorrScore decreases when the density of taxon sampling is lower, as there 628 

is much less information to discriminate between CBR and IBR. Red, dashed lines mark 629 

two statistical significance levels of 5% and 1%. (b) The relationship between the inferred 630 

autocorrelation parameter from MCMCTree and the true value. The gray line represents 631 

the best-fit regression line, which has a slope of 1.09. 632 
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