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Abstract

A central theme in learning from image data is to develop appropriate representations
for the specific task at hand. Traditional methods used handcrafted local features com-
bined with high-level image representations to generate image-level representations. Thus,
a practical challenge is to determine what features are appropriate for specific tasks. For
example, in the study of gene expression patterns in Drosophila melanogaster, texture fea-
tures based on wavelets were particularly effective for determining the developmental stages
from in situ hybridization (ISH) images. Such image representation is however not suitable
for controlled vocabulary (CV) term annotation because each CV term is often associated
with only a part of an image. Here, we developed problem-independent feature extraction
methods to generate hierarchical representations for ISH images. Our approach is based
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on the deep convolutional neural networks (CNNs) that can act on image pixels directly.
To make the extracted features generic, the models were trained using a natural image
set with millions of labeled examples. These models were transferred to the ISH image
domain. To account for the differences between the source and target domains, we propose
a partial transfer learning scheme in which only part of the source model is transferred.
We employed multi-task learning method to fine-tune the pre-trained models with labeled
ISH images. Experimental results showed that feature representations computed by deep
models based on transfer and multi-task learning significantly outperformed other methods
for annotating gene expression patterns at different stage ranges. We also demonstrated
that the intermediate layers of deep models produced the best gene expression pattern
representations.

Keywords: Deep learning, transfer learning, multi-task learning, image analysis, bioin-
formatics

1. Introduction

A general consensus in image-related research is that different recognition and learning
tasks may require different image representations. Thus, a central challenge in learning
from image data is to develop appropriate representations for the specific task at hand.
Traditionally, a common practice is to hand-tune features for specific tasks, which is time-
consuming and requires substantial domain knowledge. For example, in the study of gene
expression patterns in Drosophila melanogaster, texture features based on wavelets, such
as Gabor filters, were particularly effective for determining the developmental stages from
in situ hybridization (ISH) images (Yuan et al., 2014). Such image representation, often
referred to as “global visual features”, is not suitable for controlled vocabulary (CV) term
annotation because each CV term is often associated with only a part of an image, thereby
requiring an image representation of local visual features (Ji et al., 2008). Examples of
gene expression patterns and the associated CV terms are showed in Figure 1. Current
state-of-the-art systems for CV term annotation first extracted local patches of an image
and computed local features which are invariant to certain geometric transformations (e.g.,
scaling and translation). Each image was then represented as a bag of “visual words”,
known as the “bag-of-words” representation (Ji et al., 2009a), or a set of “sparse codes”,
known as the “sparse coding” representation (Ji et al., 2009b; Sun et al., 2013; Yuan et al.,
2012).

In addition to being problem-dependent, a common property of traditional feature ex-
traction methods is that they are “shallow”, because only one or two levels of feature extrac-
tion was applied, and the parameters for computing features are usually not trained using
supervised algorithms. Given the complexity of patterns captured by biological images,
these shallow models of feature extraction may not be sufficient. Therefore, it is desirable
to develop a multi-layer feature extractor (Guo and Schuurmans, 2013; Zhang and Huan,
2012; Zhang et al., 2011), alleviating the tedious process of manual feature engineering and
enhancing the representation power.

In this work, we proposed to employ the deep learning methods to generate representa-
tions of ISH images. Deep learning models are a class of multi-level systems that can act
on the raw input images directly to compute increasingly high-level representations. One
particular type of deep learning models that have achieved practical success is the deep
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Stage BDGP images Spatial keywords Stage Fly-FISH images Spatial keywords

7-8 dorsal ectoderm P
hindgut A
mesectoderm P
procephalic ectoderm A
trunk mesoderm P2
ventral ectoderm P2

6-7 segmented pattern
subset blastoderm nuclei
zygotic
blastoderm nuclei
expressed
pair-rule pattern

9-10 inclusive hindgut P
mesectoderm P
procephalic ectoderm P
trunk mesoderm P
ventral ectoderm P

8-9 segmented pattern
subset blastoderm nuclei
zygotic
blastoderm nuclei
expressed
segment polarity pattern

Figure 1: Gene expression patterns and the associated temporal stages and body part key-
words in the BDGP (Tomancak et al., 2002) (left) and Fly-FISH (Lécuyer et al.,
2007) (right) databases for the gene engrailed in two stage-ranges.

convolutional neural networks (CNNs) (LeCun et al., 1998). These models stack many lay-
ers of trainable convolutional filters and pooling operations on top of each other, thereby
computing increasingly abstract representations of the inputs. Deep CNNs trained with
millions of labeled natural images using supervised learning algorithms have led to dra-
matic performance improvement in natural image recognition and detection tasks (Girshick
et al., 2014; Krizhevsky et al., 2012; Simonyan and Zisserman, 2014).

However, learning a deep CNN is usually associated with the estimation of millions of
parameters, and this requires a large number of labeled image samples. This bottleneck
currently prevents the application of CNNs to many biological problems due to the limited
amount of labeled training data. To overcome this difficulty, we proposed to develop generic
and problem-independent feature extraction methods , which involves applying previously
obtained knowledge to solve different but related problems. This is made possible by the
initial success of transferring features among different natural image data sets (Donahue
et al., 2014; Razavian et al., 2014; Zeiler and Fergus, 2014). These studies trained the
models on the ImageNet data set that contains millions of labeled natural images with
thousands of categories. The learned models were then applied to other image data sets
for feature extraction, since layers of the deep models are expected to capture the intrinsic
characteristics of visual objects.

In this article, we explored whether the transfer learning property of CNNs can be
generalized to compute features for biological images. We proposed to transfer knowledge
from natural images by training CNNs on the ImageNet data set. We then proposed to
fine-tune the trained model with labeled ISH images, and resumed training from already
learned weights using multi-task learning schemes. To take this transfer learning idea one
step further, we proposed another approach with partial transfer of parameters from pre-
trained VGG model to be fine-tuned on the labeled ISH images. Specifically, we truncated
the pre-trained VGG model at some intermediate layer followed by one max pooling and
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Figure 2: Pipeline of deep models for transfer learning and multi-task learning. The network
was trained on the ImageNet data containing millions of labeled natural images
with thousands of categories (top row). The pre-trained parameters are then
transferred to the target domain of biological images. We first directly used the
pre-trained model to extract features from Drosophila gene expression pattern
images. We then fine-tuned the trained model with labeled ISH images. We then
employed the fine-tuned model to extract features to capture CV term-specific
discriminative information (bottom row).

two fully connected layers to obtain the new CNN model. The three models were then all
used as a feature extractors to compute image features from Drosophila gene expression
pattern images. The resulting features were subsequently used to train and validate our
machine learning method for annotating gene expression patterns. The overall pipeline of
this work is given in Figure 2.

Experimental results show that our approach of using CNNs outperformed the sparse
coding methods (Sun et al., 2013) for annotating gene expression patterns at different stage
ranges. In addition, our results indicated that the transfer and fine-tune of knowledge by
CNNs from natural images is very beneficial for producing high-level representations of
biological images. Furthermore, we showed that the intermediate layers of CNNs produced
the best gene expression pattern representations. This is because the early layers encode
very primitive image features that are not enough to capture gene expression patterns.
Meanwhile, the later layers captured features that are specific to the training natural image
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set, and these features may not be relevant to gene expression pattern images. Our result
also showed that partial transfer of parameters led to improved performance, as compared
to the complete transfer scheme.

2. Deep Models for Transfer Learning and Feature Extraction

Deep learning models are a class of methods that are capable of learning hierarchy of
features from raw input images. Convolutional neural networks (CNNs) are a class of deep
learning models that were designed to simulate the visual signal processing in central nervous
systems (Bengio et al., 2013; Krizhevsky et al., 2012; LeCun et al., 1998). These models
usually consist of alternating combination of convolutional layers with trainable filters and
local neighborhood pooling layers, resulting in a complex hierarchical representations of
the inputs. CNNs are intrinsically capable of capturing highly nonlinear mappings between
inputs and outputs. When trained with millions of labeled images, they have achieved
superior performance on many image-related tasks (Krizhevsky et al., 2012; LeCun et al.,
1998; Simonyan and Zisserman, 2014).

A key challenge in applying CNNs to biological problems is that the available labeled
training samples are very limited. To overcome this difficulty and develop a universal rep-
resentation for biological image informatics, we proposed to employ transfer learning to
transfer knowledge from labeled image data that are problem-independent. The idea of
transfer learning is to improve the performance of a task by applying knowledge acquired
from different but related task with a lot of training samples. This approach of transfer
learning has already yielded superior performance on natural image recognition tasks (Don-
ahue et al., 2014; Oquab et al., 2014; Razavian et al., 2014; Zeiler and Fergus, 2014).

In this work, we explored whether this transfer learning property of CNNs can be gen-
eralized to biological images. Specifically, the CNN model was trained on the ImageNet
data containing millions of labeled natural images with thousands of categories and used
directly as feature extractors to compute representations for ISH images. In this work, we
applied the pre-trained VGG model (Simonyan and Zisserman, 2014) that was trained on
the ImageNet data to perform several computer vision tasks, such as localization, detection
and classification. There are two pre-trained models in Simonyan and Zisserman (2014),
which are “16” and “19” weight layers models. Since these two models generated similar
performance on our ISH images, we used the “16” weight layers model in our experiment.
The VGG architecture contains 36 layers. This network includes convolutional layers with
fixed filter sizes and different numbers of feature maps. It also applied rectified non-linearity,
max pooling to different layers.

More details on various layers in the VGG weight layer model are given in Figure 3.
Since the output feature representations of layers before the third max pooling layer involve
larger feature vectors, we used each Drosophila ISH image as input to the VGG model and
extracted features from layers 17, 21, 24, and 30 to reduce the computational cost. We
then flattened all the feature maps and concatenated them into a single feature vector. For
example, the number of feature maps in layer 21 is 512, and the corresponding size of feature
maps is 28× 28. Thus, the corresponding size of feature vector for this layer is 401,408.
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Figure 3: Detailed architecture of the VGG model. “Convolution”, “Max pooling” and
“ReLU” denote convolutional layer, max pooling layer and rectified linear unit
function layer, respectively. This model consists of 36 layers. We extracted
features from layers 17, 21, 24, and 30.

3. Deep Models for Partial Parameter Transfer

To account for the differences between natural and biological images, we proposed a new
transfer learning scheme, known as partial parameter transfer, to only transfer part of the
parameters learned from natural images to biological images. To be specific, we started
from a pre-trained VGG model, and then truncated this VGG model at some intermediate
layer. We then stacked one max pooling and two fully connected layers to obtain the new
CNN model. The multi-task learning strategy was then used to fine-tune the modified CNN
model from labeled ISH images. We first identified the most discriminative intermediate
layer for gene expression annotation as a pivot layer. Then we kept the layers below this
pivot layer, and added max pooling and fully connected layers, where the parameters are
optimized during the fine-tuning stage using multi-task learning (Szegedy et al., 2014). The
pipeline of our method is illustrated in Figure 4.

Note that this method is different from the fine-tuning method with multi-task learning
we proposed before. We previously used the whole set of pre-trained architecture and
parameters to obtain representations of ISH images. However, in this new scheme, we only
retained several lower layers, which are mainly representative of local information. The
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Figure 4: Illustration of the partial transfer learning scheme. “Conv”, “Max pooling”,
“ReLU” and “Full” denote the convolutional layer, max pooling layer ,rectified
linear unit layer and fully connected layer, respectively. The network was trained
on the ImageNet data containing millions of labeled natural images with thou-
sands of categories (left). The pre-trained parameters are partially transferred to
the target domain of biological images. In particular, we truncated the pre-trained
CNN model at layer 21, and attached one max pooling and two fully connected
layers to obtain the new CNN model. Then we used multi-task learning approach
to fine-tune the modified CNN model using labeled ISH images (right).

intuition behind this method is that the higher layers of the pre-trained CNN model are
usually more adjusted to label information of the training natural images, and these layers
may not be informative enough for reflecting label information of gene expression pattern
images. The proposed model with partial transfer learning could not only capture the
common characteristics of images by pre-training, but also be representative for ISH images
specifically from fine-tuning.
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4. Deep Models for Multi-Task Learning

In addition to the transfer learning scheme described above, we also proposed a multi-
task learning strategy in which a CNN is first trained in the supervised mode using the
ImageNet data and then fine-tuned on the labeled ISH Drosophila images. This strategy is
different from the pre-trained model we used above. To be specific, the pre-trained model is
designed to recognize objects in natural images while we studied the CV term annotation of
Drosophila images instead. Although the leveraged knowledge from the source task could
reflect some common characteristics shared in these two types of images such as corners or
edges, extra efforts are also needed to capture the specific properties of ISH images. The
Drosophila gene expression pattern images are organized into groups, and multiple CV term
annotations are assigned to multiple images in the same group. This multi-image multi-
label nature poses significant challenges to traditional image annotation methodologies.
This is partially due to the fact that there are ambiguous multiple-to-multiple relationships
between images and CV term annotations, since each group of images are associated with
multiple CV term annotations.

In this paper, we proposed to use multi-task learning strategy (Guo and Xue, 2013; Fei
and Huan, 2013; He and Zhu, 2012) to overcome the above difficulty. To be specific, we first
employed a CNN model that is pre-trained on natural images to initialize the parameters of
a deep network. Then, we fine-tuned this network using multiple annotation term prediction
tasks to obtain CV term-specific discriminative representation. The pipeline of our method
is illustrated in Figure 2. We have a single pre-trained network with the same inputs but
with multiple outputs, each of which corresponds to a term annotation task. These outputs
are fully connected to a hidden layer that they share. Because all outputs share a common
layer, the internal representations learned by one task could be used by other tasks. Note
that the back-propagation is done in parallel on these outputs in the network. For each
task, we used its individual loss function to measure the difference between outputs and the
ground truth. In particular, we are given a training set of k tasks {Xi, y

j
i }mi=1, j = 1, 2, . . . , k,

where Xi ∈ Rn denotes the i-th training sample, m denotes the total number of training
samples. Note that we used the same groups of samples for different tasks, which is a
simplified version of traditional multi-task learning. The output label yji denotes the CV
term annotation status of training sample, which is binary with the form

yji =

{
1 if Xi is annotated with the j-th CV term,
0 otherwise.

To quantitatively measure the difference between the predicted annotation results and
ground truth from human experts, we used a loss function in the following form:

loss(y, ŷ) = −
m∑
i=1

k∑
j=1

(
yji logf(ŷ

j
i ) + (1− yji )log(1− f(ŷji ))

)
,

where

f(q) =

{ 1
1+e−q if q ≥ 0

1− 1
1+e−q if q < 0,

and y = {yji }
m,k
i,j=1 denotes the ground truth label matrix over different tasks, and ŷ =

{yji }
m,k
i,j=1 is the output matrix of our network through feedforward propagation. Note that
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ŷji denotes the network output before the softmax activation function. This loss function
is a special case of the cross entropy loss function by using sigmoid function to induce
probability representation (Bishop, 1995). Note that our multi-task loss function is the
summation of multiple loss functions, and all of them are optimized simultaneously during
training.

5. Biological Image Analysis

The Drosophila melanogaster has been widely used as a model organism for the study
of genetics and developmental biology. To determine the gene expression patterns during
Drosophila embryogenesis, the Berkeley Drosophila Genome Project (BDGP) used high
throughput RNA in situ hybridization (ISH) to generate a systematic gene expression image
database (Tomancak et al., 2002, 2007). In BDGP, each image captures the gene expression
patterns of a single gene in an embryo. Each gene expression image is annotated with a
collection of anatomical and developmental ontology terms using a CV term annotation to
identify the characteristic structures in embryogenesis. This annotation work is now mainly
carried out manually by human experts, which makes the whole process time-consuming
and costly. In addition, the number of available images is now increasing rapidly. Therefore,
it is desirable to design an automatic and systematic annotation approach to increase the
efficiency and accelerate biological discovery (Frise et al., 2010; Ji et al., 2008; Kumar et al.,
2002, 2011; Pruteanu-Malinici et al., 2011; Puniyani et al., 2010; Zhang et al., 2013).

Table 1: Statistics of the data set used in this work. The table shows the total number of
images for each stage range and the numbers of positive samples for each term.

Stages
Number # of positive samples for each term
of images No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10

4-6 4173 953 438 1631 1270 1383 1351 351 568 582 500
7-8 1953 782 741 748 723 753 668 510 340 165 209
9-10 2153 899 787 778 744 694 496 559 452 350 264
11-12 7441 2945 2721 2056 1932 1847 1741 1400 1129 767 1152
13-17 7564 2572 2169 2062 1753 1840 1699 1273 1261 891 1061

Prior studies have employed machine learning and computer vision techniques to au-
tomate this task. Due to the effects of stochastic process in development, every embryo
develops differently. In addition, the shape and position of the same embryonic part may
vary from image to image. Thus, how to handle local distortions on the images is cru-
cial for building robust annotation methods. The seminal work in Zhou and Peng (2007)
employed the wavelet-embryo features by using the wavelet transformation to project the
original pixel-based embryonic images onto a new feature domain. In subsequent work,
local patches were first extracted from an image and local features which are invariant to
certain geometric transformations (e.g., scaling and translation) were then computed from
each patch. Each image was then represented as a bag of “visual words”, known as the
“bag-of-words” representation (Ji et al., 2009a), or a set of “sparse codes”, known as the
“sparse coding” representation (Sun et al., 2013; Yuan et al., 2012). All prior methods used
handcrafted local features combined with high-level methods, such as the bag-of-words or
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sparse coding schemes, to obtain image representations. These methods can be viewed as
two-layer feature extractors. In this work, we proposed to employ the deep CNNs as a
multi-layer feature extractor to generate image representations for CV term annotation.

We showed here that a universal feature extractor trained on problem-independent data
set can be used to compute feature representations for CV term annotation. Furthermore,
the model trained on problem-independent data set, such as the ImageNet data, can be
fine-tuned on labeled data from specific domains using the error back propagation algo-
rithm. This will ensure that the knowledge transferred from problem-independent images
is adapted and tuned to capture domain-specific features in biological images. Since gener-
ating manually annotated biological images is both time-consuming and costly, the transfer
of knowledge from other domains, such as the natural image world, is essential in achieving
competitive performance.

6. Experiments

6.1 Experimental setup

In this study, we used the Drosophila ISH gene expression pattern images provided by the
FlyExpress database (Kumar et al., 2011; Van Emden et al., 2006), which contains genome-
wide, standardized images from multiple sources, including the Berkeley Drosophila Genome
Project (BDGP). For each Drosophila embryo, a set of high-resolution, two-dimensional
image series were taken from different views (lateral, dorsal, and lateral-dorsal and other
intermediate views). These images were then subsequently standardized semi-manually. In
this study, we focused on the lateral-view images only, since most of images in FlyExpress
are in lateral view.

In the FlyExpress database, the embryogenesis of Drosophila has been divided into
six discrete stage ranges (stages 1-3, 4-6, 7-8, 9-10, 11-12, and 13-17). We used those
images in the later 5 stage ranges in the CV term annotation, since only a very small
number of keywords were used in the first stage range. One characteristic of these images
is that a group of images from the same stage and same gene are assigned with the same
set of keywords. Prior work in Sun et al. (2013) has shown that image-level annotation
outperformed group-level annotation using the BDGP images. In this work, we focused on
the image-level annotation only and used the same top 10 keywords that are most frequently
annotated for each stage range as in Sun et al. (2013). The statistics of the numbers of
images and most frequent 10 annotation terms for each stage range are given in Table 1.

For CV term annotation, our image data set is highly imbalanced with much more
negative samples than positive ones. For example, there are 7564 images in stages 13-
17, but only 891 of them are annotated the term “dorsal prothoracic pharyngeal muscle”.
The commonly-used classification algorithms might not work well for our specific problem,
because they usually aimed to minimizing the overall error rate without paying special
attention to the positive class. Prior work in Sun et al. (2013) has shown that using
under-sampling with ensemble learning could produce better prediction performance. In
particular, we selectively under-sampled the majority class to obtain the same number
of samples as the minority class and built a model for each sampling. This process was
performed many times for each keyword to obtain a robust prediction. Following Sun et al.
(2013), we employed classifier ensembles built on biased samples to train robust models for
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Figure 5: Comparison of annotation performance achieved by features extracted from dif-
ferent layers of deep models for transfer learning over five stage ranges. “Lx”
denotes the hidden layer from which the features were extracted.

annotation. In order to further improve the performance, we produced the final prediction
by using majority voting, since this sample scheme is one of the widely used methods for
fusion of multiple classifiers. For comparison purpose, we also implemented the existing
sparse coding image representation method studied in Sun et al. (2013). The annotation
performance was measured using accuracy, specificity, sensitivity and area under the ROC
curve (AUC) for CV term annotation. For all of these measures, a higher value indicates
better annotation performance. All classifiers used in this work are the ℓ2-norm regularized
logistic regression.

6.2 Comparison of features extracted from different layers

The deep learning model consists of multiple layer of feature maps for representing the input
images. With this hierarchical representation, a natural question is which layer has the most
discriminative power to capture the characteristics of input images. When such networks
were trained on natural image data set such as the ImageNet data, the features computed
in lower layers usually correspond to local features of objects such as edges, corners or
edge/color conjunctions. In contrast, the features encoded at higher layers mainly represent
class-specific information of the training data. Therefore, for the task of natural object
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Figure 6: Comparison of annotation performance achieved by features extracted from dif-
ferent layers of the deep models for multi-task learning over five stage ranges.
“Lx” denotes the hidden layer from which the features were extracted.

recognition, the features extracted from higher layers usually yielded better discriminative
power (Zeiler and Fergus, 2014).

In order to identify the most discriminative features for the gene expression pattern
annotation tasks, we compared the features extracted from various layers of the VGG
network. Specifically, we used the ISH images as inputs to the pre-trained VGG network
and extracted features from layers 17, 21, 24, and 30 for each ISH image. These features
were used for the annotation tasks, and the results are given in Figure 5. We can observe
that for all stage ranges, layer 21 features outperformed other features in terms of overall
performance. Specifically, the discriminative power increases from layer 17 to layer 21,
and then drops afterwards as the depth of network increases. This indicates that gene
expression features are best represented in the intermediate layers of CNN that was trained
on natural image data set. One reasonable explanation about this observation is the lower
layers compute very primitive image features that are not enough to capture gene expression
patterns. Meanwhile, the higher layers captured features that are specific to the training
natural image set, and these features may not be relevant for gene expression pattern images.

Then we proposed to use multi-task learning strategy to fine-tune the pre-trained net-
work with labeled ISH images. In order to show the gains through fine-tuning on pre-trained
model, we extracted features from the same hidden layers that are used for the pre-trained
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Figure 7: Performance comparison of different methods. “SC” and “TL” denote sparse cod-
ing and transfer learning, respectively. “CTL +MTL” and “PTL +MTL” denote
the performance achieved by complete and partial transfer learning, respectively,
with multi-task learning models. We only consider the features extracted from
layer 21 of these two deep models.

model. We reported the predictive performance achieved by features of different layers in
the proposed fine-tuned model in Figure 6. It can be observed from the results that the
predictive performance was generally higher on middle layers in the deep architecture. In
particular, layer 21 outperformed other layers significantly. This result is consistent with
the observation found on the pre-trained model.

6.3 Comparison with prior methods

We also compared the performance achieved by different methods including sparse coding,
transfer learning model and multi-task learning. These results demonstrated that our deep
models with multi-task learning were able to accurately annotate gene expression images
over all embryogenesis stage ranges. To compare our generic features with the domain-
specific features used in Sun et al. (2013), we compared the annotation performance of
our deep learning features with that achieved by the domain-specific sparse coding features.
Deep learning models include transfer learning, multi-task learning combined with complete
transfer learning or partial transfer learning. In this experiment, we only considered the
features extracted from layer 21 since they yielded the best performance among different
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Table 2: Performance comparison in terms of accuracy, sensitivity, specificity, and AUC
achieved by CNN models and sparse coding features for all stage ranges.
“PTL+MTL” and “CTL+MTL” denote the features extracted from layer 21 of
the deep models for multi-task learning with complete and partial transfer learn-
ing, respectively. “SC” and “TL” denote the performance of the sparse coding
and transfer learning features.

Measures Methods Stage 4-6 Stage 7-8 Stage 9-10 Stage 11-12 Stage 13-17

Accuracy

PTL+MTL 0.8197±0.0279 0.8471±0.0225 0.8307±0.0291 0.8099±0.0318 0.8591±0.0301
CTL+MTL 0.7938±0.0381 0.8216±0.0231 0.8318±0.0216 0.8128±0.0325 0.8327±0.0256

TL 0.7521±0.0326 0.7837±0.0269 0.7929±0.0231 0.8094±0.0331 0.8205±0.0304
SC 0.7217±0.0352 0.7401±0.0351 0.7549±0.0303 0.7659±0.0326 0.7681±0.0231

Sensitivity

PTL+MTL 0.8104±0.0391 0.8014±0.0317 0.7794±0.0327 0.8312±0.0297 0.8207±0.0331
CTL+MTL 0.7825±0.0372 0.7829±0.0368 0.7721±0.0412 0.8026±0.0401 0.8185±0.0259

TL 0.7405±0.0293 0.7515±0.0342 0.7876±0.0401 0.7905±0.0389 0.7964±0.0317
SC 0.7321±0.0408 0.7190±0.0331 0.7468±0.0298 0.7576±0.0329 0.7328±0.0235

Specificity

PTL+MTL 0.8591±0.0291 0.8779±0.0206 0.8617±0.0318 0.8673±0.0332 0.8709±0.0317
CTL + MTL 0.8436±0.0376 0.8581±0.0380 0.8422±0.0284 0.8527±0.0252 0.8716±0.0256

TL 0.7915±0.0247 0.8160±0.0316 0.7983±0.0315 0.8342±0.0237 0.8517±0.0306
SC 0.7140±0.0389 0.7605±0.0392 0.7629±0.0298 0.7749±0.0329 0.8005±0.0298

AUC

PTL+MTL 0.8607±0.0415 0.8671±0.0341 0.8736±0.0302 0.8913±0.0246 0.8972±0.0231
CTL + MTL 0.8493±0.0427 0.8565±0.0279 0.8695±0.0276 0.8776±0.0291 0.8824±0.0197

TL 0.8344±0.0439 0.8401±0.0346 0.8508±0.0257 0.8702±0.0271 0.8746±0.0299
SC 0.7687±0.0432 0.7834±0.0358 0.7921±0.0294 0.8061±0.0342 0.8105±0.0280

layers. For the multi-task learning model with partial transfer learning, we truncated the
pre-trained CNN model at layer 21, and immediately stacked one max pooling and two
fully connected layers to obtain the new CNN model. Then we used multi-task learning
approach to fine-tune the modified CNN model from labeled ISH images. The performance
of these four types of features averaged over all terms is given in Figure 7 and Table 2. We
can observe that the deep models for multi-task learning features outperformed the sparse
coding features and transfer learning features consistently and significantly in all cases. To
examine the performance differences on individual anatomical terms, we showed the AUC
values on each term in Figure 8 for different stage ranges. We can observe that our features
extracted from layer 21 of the VGG networks for transfer learning and multi-task learning
outperformed the sparse coding features over all stage ranges for all terms consistently.
These results demonstrated that our generic features of deep models were better at repre-
senting gene expression pattern images than the problem-specific features based on sparse
coding. In addition, we observed that partial transfer of parameters from models trained on
natural images led to better performance than the complete transfer scheme. This showed
that our new partial transfer learning method is effective in transferring knowledge from
natural images to biological images.

In Figure 9, we provided a term-by-term and image-by-image comparison between the
results of the deep model for multi-task learning with partially transfer parameters and
the sparse coding features for the 10 terms in stages 13-17. The x-axis corresponds to
the 10 terms. The y-axis corresponds to a subset of 50 images in stages 13-17 with the
largest numbers of annotated terms. Overall, it is clear that the total number of green and
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Figure 8: Performance comparison of different methods for all stage ranges. “SC”, ‘TL”,
“CTL + MTL” and “PTL + MTL” denote sparse coding, transfer learning,
complete transfer learning and partial transfer learning with multi-task learning
models, respectively.

blue entries is much more than the number of red and pink entries, indicating that, among
all predictions disagreed by these two methods, the predictions by the multi-task learning
features were correct most of the time.

7. Conclusions and Future Work

In this work, we proposed to employ the deep convolutional neural networks as a multi-
layer feature extractor to generate generic representations for ISH images. We used the deep
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Figure 9: Comparison of prediction results between the deep models for multi-task learning
with partial transfer learning and the sparse coding features for the 10 terms in
stages 13-17. The x-axis shows the 10 terms. The y-axis corresponds to a subset of
50 images in stages 13-17 with the largest numbers of annotated terms. The gene
names and the FlyExpress image IDs in parentheses are displayed. The prediction
results of different methods compared with the ground truth are distinguished by
different colors. The white entries correspond to predictions agreed upon by
these two methods, while non-white entries were used to denote different types
of disagreements. Specifically, the green and blue entries correspond to correct
predictions by the multi-task learning features but incorrect predictions by the
sparse coding features. Green and blue indicate positive and negative samples,
respectively, in the ground truth. Similarly, the red and pink entries correspond to
incorrect predictions by the multi-task learning features but correct predictions by
the sparse coding features. Red and pink indicate positive and negative samples,
respectively, in the ground truth.

convolutional neural network trained on large natural image set as feature extractors for ISH
images. We first directly used the model trained on natural images as feature extractors. We
then employed multi-task classification methods to fine-tune the pre-trained and modified
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model with labeled ISH images. Although the number of annotated ISH images is small,
it nevertheless improved the pre-trained model. We compared the performance of our
generic approach with the problem-specific methods. Results showed that our proposed
approach significantly outperformed prior methods on ISH image annotation. We also
showed that the intermediate layers of deep models produced the best gene expression
pattern representations.

In the current study, we focus on using deep models for CV annotation. There are many
other biological image analysis tasks that require appropriate image representations such as
developmental stage prediction. We will consider broader applications in the future. In this
work, we considered a simplified version of the problem in which each term is associated
with all images in the same group. We will extend our model to incorporate the image
group information in the future.
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