

College of Science and Technology

kumarlab.net

Sudhir Kumar 623-225-5230 s.kumar@temple.edu

SERC 602
 1925 N. 12th Street
 Philadelphia, PR 19122

Timetree

A public knowledge-base of the evolutionary timescales of the tree of life.

App Store

AR TIMETREE RESOURCE PUBLICATIONS

- TimeTree 5: An expanded resource for species divergence times

 MBE 39:msac174
- TimeTree: A resource for timelines, timetrees, and divergence times

 MBE 34:1812
- TimeTree2: Species divergence times on the iphone Bioinformatics 27:2023
- TimeTree: A public knowledge-base of divergence times among organisms *Bioinformatics 22:2971*

Flyexpress

www.flyexpress.net

An integrated discovery platform to study coexpressed genes using in situ hybridization images in Drosophila.

myPEG

www.mypeg.info

An integrated platform of evolutionary tools for phylomedicine.

PHYLOGENETIC METHODS YEAR

- Integrating phylogenies with chronology to assemble the tree of life Bioinformatics (in revision)
- Computational reproducibility of molecular phylogenies MBE40:msad165 '23 Molecular timetrees using relaxed clocks and uncertain phylogenies
 - Frontiers in Bioinformatics 3:1225807
- Taming the selection of optimal substitution models in phylogenomics by site subsampling and upsampling MBE 39:msac236
 - TopHap: Rapid inference of key phylogenetic structures from common haplotypes in large genome collections with limited diversity Bioinformatics 38:2719
- Fast and accurate bootstrap confidence limits on genome-scale phylogenies using little bootstraps Nature Comput Sci 1:573
- A new method for inferring timetrees from temporally sampled molecular sequences PLoS Comput Biology 16:e1007046
- Theoretical foundation of the RelTime method for estimating divergence times MBE 35:1770
- Estimating divergence times in large molecular phylogenies PNAS 109:19333
- Prospects for inferring very large phylogenies by using the neighbor-joining method PNAS 101:11030
- Disparity index: A simple statistic to measure and test the homogeneity of substitution patterns between molecular sequences Genetics 158:1321
 - Incomplete taxon sampling is not a problem for phylogenetic inference PNAS 98:10751
- Stepwise algorithm for finding minimum evolution trees MBE 13:584
- A new method of inference of ancestral nucleotide and amino-acid-sequences Genetics 141:1641

YEAR TIMETREES AND SPECIATION

- Completing a molecular timetree of primates Frontiers in Bioinformatics 4:1495417
- The origin of eukaryotes and rise in complexity were synchronous with the rise in oxygen Frontiers in Bioinformatics 3:1233281
- TimeTree 5: An expanded resource for species divergence times '22 MBE 39:msac174
 - Limitations of phylogenomic data can drive inferred speciation rate shifts MBE 39:msac0383
- '15 Tree of life reveals clock-like speciation and diversification MBE 32:835
- Placing confidence limits on the molecular age of the human-chimpanzee divergence PNAS 102:18842
- Temporal patterns of fruit fly (Drosophila) evolution revealed by '04 mutation clocks MBE 21:36
- A molecular timescale for vertebrate evolution Nature 392:917
- Continental breakup and the ordinal diversification of birds and mammals Nature 381:226

MACHINE LEARNING

- Evolutionary sparse learning reveals the shared genetic basis of convergent traits Nature Communications (in revision)
 - STICI: Split-transformer with integrated convolutions for imputation Nature Communications (in revision)
- Discovering fragile clades and causal sequences in phylogenomics by evolutionary sparse learning MBE 41:msae131
- Discovering research articles containing evolutionary timetrees by machine learning Bioinformatics 39:btad035
- '21 Evolutionary sparse learning for phylogenomics MBE 38:4674
- TreeMap: A structured approach to fine mapping of eQTL variants Bioinformatics 37:1125
- Deep model based transfer and multi-task learning for biological image analysis IEEE Transactions on Bia Data 6:322
- A machine learning method for detecting autocorrelation of evolutionary rates in large phylogenies MBE 36:811
- Learning sparse representations for fruit-fly gene expression pattern image annotation and retrieval BMC Bioinformatics 13:107

GENOMIC MEDICINE YEAR

- Methods for estimating personal disease risk and phylogenetic diversity of hematopoietic stem cells MBE 41:msad279
- Clone phylogenetics reveals metastatic tumor migrations, maps, and models Cancers 14:4326
- The durability of immunity against reinfection by SARS-CoV-2: A comparative evolutionary study The Lancet Microbe 12:e666
- An evolutionary portrait of the progenitor SARS-CoV-2 and its 20 dominant offshoots in COVID-19 pandemic MBE 38:3046
 - PathFinder: Bayesian inference of clone migration histories in cancer Bioinformatics 36:i675
- Biological relevance of computationally predicted pathogenicity of noncoding variants Nature Communications 10:330
- Computational enhancement of single-cell sequences for inferring '18 tumor evolution Bioinformatics 34:i917
 - Predicting clone genotypes from tumor bulk sequencing of multiple samples Bioinformatics 34:4017
- Evolutionary diagnosis of non-synonymous variants involved in differential drug response BMC Medical Genomics 8:S6
- Genome-wide profiling of human cap-independent translation-enhancing elements Nature Methods 10:747
- Evolutionary diagnosis method for variants in personal exomes Nature Methods 9:855
- Performance of computational tools in evaluating the functional impact of laboratory-induced amino acid mutations Bioinformatics 28:2093
- Understanding human disease mutations through the use of interspecific genetic variation Human Molecular Genetics 10:2319

YEAR GENOME EVOLUTION

- Analyses of allele age and fitness impact reveal human beneficial alleles to be older than neutral controls *eLife 13:RP93258*
- On estimating evolutionary probabilities of population variants BMC Evolutionary Biology 19:133
- Adaptive landscape of protein variation in human exomes

 MBF 35:2015
- 16 A molecular evolutionary reference for the human variome MBE 33:245
- 3 Signatures of natural selection on mutations of residues with multiple posttranslational modifications *MBE 31:1641*
- Comparison of embryonic expression within multigene families using the FlyExpress discovery platform reveals more spatial than temporal divergence **Developmental Dynamics 241:150**
- Rampant purifying selection conserves positions with posttranslational modifications in human proteins **MBE 28:1565**
- Signatures of nitrogen limitation in the elemental composition of the proteins involved in the metabolic apparatus *Proceedings of the Royal Society B-Biological Sciences 276:2605*
- '06 Signatures of ecological resource availability in the animal and plant proteomes *MBE 23:1946*
- Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome *Genetics* 168:373
- Neutral substitutions occur at a faster rate in exons than in noncoding DNA in primate genomes *Genome Research 13:838*
- Mutation rates in mammalian genomes Proceedings of the National Academy of Sciences (USA) 99:803
- DEST: A novel computational approach for comparing gene expression patterns from early stages of *Drosophila* melanogaster development *Genetics 162:2037*

YEAR PROTEIN DYNAMICS

- Some mechanistic underpinnings of molecular adaptations of SARS-COV-2 spike protein by integrating candidate adaptive polymorphisms with protein dynamics *eLife.92063.1*
- Epistasis creates invariant sites and modulates the rate of molecular evolution MBE 39:msac106

Dynamic coupling of residues within proteins as a mechanistic foundation of many enigmatic pathogenic missense variants *PLoS Comput Biology* 18:e1010006

- Epistasis produces an excess of invariant sites in neutral molecular evolution PNAS 118:e2018767118
- Conformational dynamics of nonsynonymous variants at protein interfaces reveals disease association *Proteins* 83:428
- Signatures of natural selection on mutations of residues with multiple posttranslational modifications *MBE 31:1641*
- '13 Structural dynamics flexibility informs function and evolution at a proteome scale *Evolutionary Applications 6:423*

Reviews & Perspectives

YEAR

- Embracing green computing in molecular phylogenetics

 MBE 39:msac043
- Tumors are evolutionary island-like ecosystems Genome Biology and Evolution 13:evab276
- The bits and bytes of biology: Digitalization fuels an emerging generative platform for biological innovation *Handbook of Digital Innovation 253*

The role of conformational dynamics and allostery in modulating protein evolution *Annual Review of Biophysics* 49:267

Efficient methods for dating evolutionary divergences in *The Molecular Evolutionary Clock* Springer 197

- '18 Neutral theory, disease mutations, and personal exomes MBE 35:1297
- Advances in time estimation methods for molecular data MBE 33:863
- Human genomic disease variants: A neutral evolutionary explanation Genome Research 22:1383

Statistics and truth in phylogenomics MBE 29:457

Stoichiogenomics: The evolutionary ecology of macromolecular elemental composition *Trends in Ecology & Evolution 26:38*

Phylomedicine: An evolutionary telescope to explore and diagnose the universe of disease mutations *Trends in Genetics 27:377*

- Multiple sequence alignment: In pursuit of homologous DNA positions

 Genome Research 17:127
- '05 Molecular clocks: Four decades of evolution Nature Reviews Genetics 6:654
- '03 Genomic clocks and evolutionary timescales Trends in Genetics 19:200

CITATIONS -

Top-100 platinum h-index h-index = 86 (>300,000 citations) Google Scholar

HOT PAPERS

Among the top 0.1% of all the papers published in two years following their release

Bioinformatics 17:1244
Briefings in Bioinformatics 9:299
Briefings in Bioinformatics 5:150

Nature 392:917 MBE 39:msac174; 38:3022; 35:1547 and 34:1812

HIGHLY CITED

Citation count in the 1% of all articles in a 10-year period

PNAS, USA 101:11030 Briefings in Bioinformatics 9:299 Briefings in Bioinformatics 5:150 Bioinformatics 28:2685 The Lancet Microbe 12:e666 Nature 450:203 MBE 39:msac174; 38:3022; 37:1237; 35:1547; 34:1812; 33:1870; 32:835; 30:2725; 28:2731 and 24:1596

TOP CITED -

In Nature's top-100 articles of all time in the published literature

MBE 24:1596 (see Nature [2014] 514:550-553)

www.megasoftware.net

User-friendly software suite for analyzing DNA and protein sequence data from species and populations.

Timeline

of major MEGA software releases

Available on

GUI & Command Line

YEAR MEGA SOFTWARE PUBLICATIONS

- MEGA12: Molecular Evolutionary Genetics Analysis version 12 for adaptive and green computing **MBE** (in review)
- MEGA11: Molecular Evolutionary Genetics Analysis version 11
 MBE 38:3022
- Molecular Evolutionary Genetics Analysis (MEGA) for macOS MBE 37:1237
- MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms *MBE 35:1547*
- MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets **MBE 33:1870**
- MEGA-MD: Molecular Evolutionary Genetics Analysis Software with mutational diagnosis of amino acid variation *Bioinformatics 30:1305*
- MEGA-CC: Computing core of Molecular Evolutionary Genetics
 Analysis program for automated and iterative data analysis
 Bioinformatics 28:2685
- MEGA2: Molecular Evolutionary Genetics Analysis software Bioinformatics 17:1244
- '94 MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers Bioinformatics 10:189

Education

Our research laboratory hosts students pursing doctoral dissertations, masters' projects, and undergraduate interns. They receive one-on-one research and development mentoring. We have developed degree and certificate programs for all the undergraduate students at Temple University, which are:

B.S. degree in Genomic Medicine
B.S. degree in Data Science (Genomics and Bioinformatics)
B.S. certificate in Genomic Medicine

YEAR EDUCATION

- Yisualizing genomic medicine: An introduction to general biology

 The American Biology Teacher 86:265
 - Of phylogenies and tumors: Cancer as a model system to teach evolution The American Biology Teacher 86:62
- 222 Storyboarding for biology: An authentic STEAM experience
 The American Biology Teacher 82:328
- How to build a super predator: From genotype to phenotype
 The American Biology Teacher 83:138
- Molecular memories of a cambrian fossil *The American Biology*Teacher 82:586
- Adventures in evolution: The narrative of tardigrada, trundlers in time *The American Biology Teacher 81:543*

Lab Members

Postdoctoral, Doctoral, MS

Rohan Alibutud John Allard Sarah Chung Jack Craig Lisa Schmelkin Sudip Sharma

Undergraduate & Intern

Kelly Abramowitz Louise Dupont Sid Jaggi Hardik Sharma Brandon Khoa Son Deyana Tabatabaei Anushka Tejeswi

Technologist

Maxwell Sanderford Glen Stecher Michael Suleski

Books

Masatoshi Nei & Sudhir Kumar

S. Blair Hedges & Sudhir Kumar

