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 Cases  abound  in  which  nearly  identical  traits  have  appeared  in  distant  species  facing 
 similar  environments.  These  unmistakable  examples  of  adaptive  evolution  offer 
 opportunities  to  gain  insight  into  their  genetic  origins  and  mechanisms  through 
 comparative  analyses.  Here,  we  present  a  novel  comparative  genomics  approach  to  build 
 genetic  models  that  underlie  the  independent  origins  of  convergent  traits  using 
 evolutionary  sparse  learning.  We  test  the  hypothesis  that  common  genes  and  sites  are 
 involved  in  the  convergent  evolution  of  two  key  traits:  C4  photosynthesis  in  grasses  and 
 echolocation  in  mammals.  Genetic  models  were  highly  predictive  of  independent  cases 
 of  convergent  evolution  of  C4  photosynthesis.  These  results  support  the  involvement  of 
 sequence  substitutions  in  many  common  genetic  loci  in  the  evolution  of  convergent 
 traits  studied.  Genes  contributing  to  genetic  models  for  echolocation  were  highly 
 enriched  for  functional  categories  related  to  hearing,  sound  perception,  and  deafness  (  P 
 <  10  -6  );  a  pattern  that  has  eluded  previous  efforts  applying  standard  molecular 
 evolutionary  approaches.  We  conclude  that  phylogeny-informed  machine  learning 
 naturally  excludes  apparent  molecular  convergences  due  to  shared  species  history, 
 enhances  the  signal-to-noise  ratio  for  detecting  molecular  convergence,  and  empowers 
 the discovery of common genetic bases of trait convergences. 

 Organisms  continuously  adapt  to  their  natural  environment.  Under  similar  environmental 

 conditions,  the  same  adaptations  may  evolve  independently  in  clades  across  the  tree  of  life.  For 

 example,  the  convergent  evolution  of  the  ability  to  echolocate  in  some  bats  and  toothed  whales 

 is  an  example  of  adaptation  brought  on  by  major  transitions  to  new  environments  requiring 

 similar  physiological  innovations.  Evolutionary  biologists  have  long  sought  the  common  genetic 

 basis  of  these  convergent  adaptations  under  the  hypothesis  that  the  same  pathways,  genes, 

 and/or  base  substitutions  are  involved  in  these  adaptations.  However,  “  the  extent  to  which 

 convergent  traits  evolve  by  similar  genetic  and  molecular  pathways  is  not  clear  ”  1  .  Despite  many 

 molecular  evolutionary  investigations,  the  strongest  evidence  for  molecular  convergence  thus 

 far  appears  to  be  a  marginally  significant  (FDR-corrected  P  =  0.0486)  enrichment  of  sound 

 perception  genes  in  which  convergent  and  parallel  amino  acid  substitutions  were  observed  2–4  . 

 Although  these  results  hint  at  the  possible  presence  of  some  shared  genetic  basis  in  the  evolution 

 of  echolocation  in  independent  clades,  some  studies  could  not  detect  such  an  enrichment  3  , 

 casting  doubt  on  the  robustness  of  the  results,  the  general  applicability  of  the  methodology,  or 

 even the presence of a common genetic basis. 
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 The  lack  of  consistent  and  statistically  significant  results  may  be  due  to  insufficient  commonality 

 in  the  genetic  bases  of  these  traits,  i.e.,  different  genes  and  different  sites  may  perform  similar 

 functions  in  independent  clades.  Alternatively,  the  lack  of  sufficient  statistical  power  or  inability  to 

 fully  exclude  non-adaptive  convergence  may  be  hampering  efforts  to  detect  genes  and  sites 

 associated  with  the  evolution  of  convergent  traits  5–7  .  Furthermore,  current  state-of-the-art 

 approaches  primarily  reveal  retrospective  patterns,  but  they  do  not  explicitly  model  quantitative 

 genetic  changes  in  convergent  trait  evolution  to  make  statistical  predictions  of  the  presence  or 

 absence of the convergent trait. 

 We  have  addressed  these  challenges  by  building  predictive  genetic  models  of  convergent  trait 

 evolution  using  evolutionary  sparse  learning  (ESL).  ESL  is  supervised  machine  learning  in 

 which  genomic  components  (e.g.,  genes  and  sites)  are  model  parameters,  and  substitutions  in 

 multiple  sequence  alignments  are  observations  8  .  We  developed  a  paired  species  contrast  (PSC) 

 design  to  select  the  training  data  for  machine  learning  to  automatically  mask  neutral 

 (background)  sequence  convergence  that  can  lead  to  spurious  inferences  and  reduce  the  power 

 to  detect  the  genetic  basis  of  convergence  5,6,9  .  Importantly,  ESL-PSC  simultaneously  considers 

 all  genetic  loci  and  their  respective  substitutions  during  computational  analysis,  eliminating 

 biases  due  to  arbitrary  evolutionary  conservation  thresholds  and  convergent  substitution  cut-offs 

 necessary in some other approaches  2,3,7,10,11  . 

 ESL-PSC  produces  a  quantitative  genetic  model  to  predict  the  presence/absence  of  a 

 convergent  trait  in  any  species  based  on  its  genome  sequence.  This  is  needed  to  test  the 

 biological  hypothesis  of  commonality  of  genetic  basis  in  the  independent  evolution  of  the  same 

 trait.  Lists  of  loci  comprising  the  genetic  model  can  be  subjected  to  additional  analysis  to  test  if 

 there  is  an  enrichment  of  functional  categories  relevant  to  the  trait  analyzed  12,13  .  This  approach 

 is  commonly  used  to  establish  the  biological  relevance  of  candidate  loci  derived  from 

 large-scale  scans  for  molecular  convergence  in  the  absence  of  alternatives  2–4,9,14–16  .  We  applied 

 ESL-PSC  to  build  genetic  models  of  convergent  evolution  of  C4  photosynthesis  in  grasses  and 

 of echolocation in mammals because they have been extensively investigated previously  4,17–22  . 

 ESL-PSC for building genetic models of convergent traits 

 We  introduce  ESL-PSC  with  an  analysis  of  protein  sequence  alignments  of  chloroplast  proteins, 

 which  are  well-suited  for  demonstrating  the  predictive  ability  of  the  method  in  a  range  of  grass 

 species  that  have  acquired  C4  photosynthesis  independently.  One  may  alternatively  use 

 ESL-PSC  for  nucleotide  sequence  alignments  with  the  option  to  group  sites  into  exons,  introns, 
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 or  other  types  of  domains  and  functional  annotations,  as  described  in  the  Material  and  Methods 

 section. 

 ESL  uses  logistic  regression  to  infer  a  genetic  model  that  can  predict  trait-positive  and 

 trait-negative  species,  which  we  numerically  encode  as  +1  and  -1,  respectively  8,23  .  In  this 

 analysis,  the  Least  Absolute  Shrinkage  and  Selection  Operator  (LASSO)  compares  alternative 

 genetic  models  by  imposing  penalties  for  including  additional  amino  acid  positions  and  genes 

 into  the  model  while  seeking  high  prediction  accuracy.  ESL-PSC  produces  models  that 

 incorporate  only  those  proteins  whose  member  sites  make  a  significant  contribution  to  the  ability 

 of the genetic model to classify species according to their traits rather than their ancestry. 

 To  train  the  ESL  model,  we  use  a  paired  species  contrast  (PSC)  approach  in  which  a  balanced 

 training  dataset  of  equal  numbers  of  trait-positive  and  trait-negative  species  (those  with  and 

 without  the  trait  of  interest,  respectively)  is  first  selected  such  that  for  every  trait-positive 

 species,  we  include  one  closely-related  trait-negative  species.  In  PSC,  species  pairs  are 

 required  to  be  from  evolutionarily  independent  clades  to  avoid  introducing  evolutionary 

 correlations  among  pairs  due  to  shared  evolutionary  history,  which  is  known  to  cause  spurious 

 associations  5,6,9  .  As  an  example,  we  could  select  trait-positive  species  A  1  and  D  1  and 

 trait-negative species B  1  and C, respectively, to  satisfy the above conditions (  Fig. 1A  )  . 

 PSC  selection  of  training  data  ensures  that  the  most  recent  common  ancestor  (MRCA)  of  each 

 trait-positive  and  trait-negative  species  pair  selected  will  be  more  recent  than  the  MRCA  of 

 either  member  of  the  pair  with  any  of  the  other  species  in  the  analysis.  In  the  above  example, 

 the  MRCA  of  A  1  and  B  1  (Y)  is  more  recent  than  that  of  A  1  and  F  (W).  Also,  ESL-PSC 

 automatically  excludes  all  branches  in  the  phylogeny  that  are  unrelated  to  the  evolution  of  the 

 convergent  trait  (dotted  branches  in  Fig.  1A  ).  This  means  that  the  model  learning  is  directly 

 focused  on  the  molecular  evolutionary  changes  between  trait-positive  and  trait-negative  species 

 (solid  blue  and  red  branches,  respectively).  If  there  are  multiple  species  in  some  trait-positive 

 and  trait-negative  clades,  different  combinations  of  training  sets  may  be  used  to  build  separate 

 genetic  models  followed  by  model  averaging  (see  Material  and  Methods  ).  ESL-PSC  analysis 

 produces  a  list  of  proteins  included  in  the  genetic  model,  the  estimated  relative  importance  of 

 each  locus,  and  an  equation  to  predict  the  presence/absence  of  the  trait  in  a  species  based  on 

 its  genetic  sequences.  Species  not  used  for  training  for  a  given  model  can  be  utilized  for  testing 

 the model. 
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 Figure  1  .  The  paired  species 
 contrast  (PSC)  design.  A  :  An 
 example  phylogeny  with  one  set 
 of  selected  species  (solid  blue 
 and  red  lines).  Extraneous 
 lineages  (black  dotted  lines)  and 
 shared  evolutionary  history  (gray 
 dotted  lines).  B  :  A  schematic 
 depiction  of  the  four  species 
 selected  for  ESL-PSC  analysis. 
 In  the  ESL  experiment,  the 
 response  variable  refers  to  the 
 binary  phenotype,  where  +1 
 represents  the  convergent  trait, 
 and  -1  represents  the  ancestral 
 trait. 

 Genetic Models for Convergent Acquisition of C4 Photosynthesis 

 We  applied  ESL-PSC  to  build  genetic  models  of  photosynthesis  evolution  using  a  64-species 

 alignment  of  67  chloroplast  proteins  22  (see  Material  and  Methods  ).  Many  of  these  grass  species 

 have  convergently  evolved  the  C4  photosynthetic  pathway  for  carbon  concentration  24,25  ,  while 

 others  have  retained  the  ancestral  C3  photosynthetic  pathway.  Previous  studies  of  the  genetic 

 basis  of  C4  evolution  have  found  convergent  amino  acid  substitutions  in 

 Ribulose-1,5-bisphosphate  carboxylase-oxygenase  (RuBisCo)  to  be  strongly  associated  with  C4 

 evolution,  but  Casola  and  Li  22  have  recently  suggested  the  involvement  of  other  chloroplast 

 proteins  as  well.  However,  the  extent  to  which  chloroplast  proteins  other  than  RuBisCo 

 represent a predictable and common evolutionary basis of C4 evolution remains uncertain. 

 There  are  six  clades  in  the  molecular  phylogeny  that  contain  sibling  species  of  both  C4  and  C3 

 phenotypes  (  Fig.  2  ),  which  yielded  six  pairs  of  species  satisfying  the  PSC  design.  Each  pair 

 contained  a  species  with  C4  photosynthesis  and  its  most  closely  related  species  with  C3 

 photosynthesis.  Because  some  clades  contain  multiple  candidate  trait-positive  (C4)  and 

 trait-negative  (C3)  species,  we  selected  the  species  with  the  least  missing  data  in  the  sequence 

 alignment  in  our  first  analysis  (solid  lines  in  Fig.  2  ).  The  lengths  of  individual  protein  sequence 

 alignments  varied  from  30  to  1,528  amino  acids,  with  a  total  of  16,362  positions  in  67 

 chloroplast proteins  22  . 
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 Figure  2.  ESL-PSC  modeling  of 
 convergent  acquisition  of  C4 
 photosynthesis.  A.  Experimental  design. 
 An  evolutionary  tree  of  64  grass  species 
 based  on  the  phylogeny  in  Casola  and  Li  22  . 
 From  the  64  available  species,  6  pairs  of 
 trait-positive  (C4)  and  trait-negative  (C3) 
 species  were  chosen  according  to  the  PSC 
 approach.  Where  multiple  species  met  the 
 topological  requirements  for  a  contrast  pair, 
 we  selected  the  two  species  that  were 
 closest  in  the  evolutionary  distance  and  that 
 had  the  fewest  gaps  in  the  alignments. 
 Selected  species  are  shown  as  solid  line 
 branches,  and  all  other  branches  are 
 depicted  as  dashed  lines.  Solid  lines  begin 
 at  the  internal  node  that  represents  the 
 common  ancestor  of  each  pair,  and  the  black 
 (C4)  and  red  (C3)  branches  represent  the 
 unshared  ancestry  of  each  selected  species. 
 Thus  substitutions  on  these  branches  can  be 
 included  in  ESL-PSC  modeling.  Blue  (C4) 
 and  red  (C3)  dashed  lines  represent 
 alternative  sibling  species  of  the  selected 
 species.  Black  dashed  branches  represent 
 clades  that  are  evolutionarily  independent  of 
 the  contrast  pairs.  These  include  both  C4 
 and  C3  species.  Gray  branches  represent 
 the  evolutionary  history  that  is  shared 
 equally  by  selected  C4  and  C3  species, 
 which  we  expect  to  cancel  out  automatically 
 in the modeling process. 

 In  ESL-PSC  analysis,  sparsity  penalties  must  be  specified  for  the  inclusion  of  sites  and  proteins 

 in  the  genetic  model  built  using  LASSO.  These  penalties  dictate  the  number  of  proteins  and 

 sites  allowed  in  the  genetic  model  8  .  We  used  a  series  of  penalties  and  compared  resulting 

 genetic  models  by  using  a  newly  developed  Model  Fit  Score  (MFS),  which  is  analogous  to  the 

 Brier  score  in  logistic  regression  (see  Methods).  The  genetic  model  with  the  best  MFS  contained 

 included  RuBisCo,  consistent  with  previous  experimental  and  analytical  knowledge  20,22,26,27  .  This 

 model  correctly  assigned  all  six  C4  and  six  C3  species  used  to  train  the  model  and  correctly 

 predicted  97%  of  the  other  C4  species  in  this  dataset  (36  of  37)  and  100%  of  C3  species  (15  of 

 161 

 162 

 163 

 164 

 165 

 166 

 167 

 168 

 169 

 170 

 171 

 172 

 173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2025. ; https://doi.org/10.1101/2025.01.08.631987doi: bioRxiv preprint 

https://paperpile.com/c/IylWFL/tWY9/?noauthor=1
https://paperpile.com/c/IylWFL/B1DX
https://paperpile.com/c/IylWFL/tWY9+F2kzz+7w2J8+QCegN/?noauthor=0,0,0,0
https://doi.org/10.1101/2025.01.08.631987
http://creativecommons.org/licenses/by/4.0/


 15)  for  a  balanced  accuracy  of  98.5%.  An  ensemble  of  genetic  models  with  similar  MFS  scores 

 (  Fig. 3  ) also performed equally well (  Fig. 4A  ). 

 Figure  3  Heat  map  of  Model  Fit  Scores.  20 
 values  for  each  inclusion  penalty  (site  and 
 protein)  were  sampled  from  a  logspace  ranging 
 from  1-99%  of  the  maximum  non-trivial  penalty. 
 A  higher  MFS  suggests  a  higher  risk  of 
 overfitting.  Models  with  the  best  (lowest)  5%  of 
 MFS  are  included  in  predictive  ensembles  (Fig. 
 4, 5). 

 The  best  MFS  model  was  found  to  be  equally  accurate  in  predicting  C4  species  that  are  siblings 

 of  those  used  in  the  training  set,  which  suggests  that  multiple  C4  species  within  a  clade 

 inherited  the  trait  from  a  common  ancestor.  This  is  consistent  with  the  parsimonious 

 reconstruction  of  independent  C4  trait  evolution  28  .  For  this  reason,  genetic  models  built  using 

 different  species  combinations  were  also  highly  accurate  (96%,  Fig.  5B  ).  The  best  MSF  models 

 were  also  highly  predictive  of  the  C4/C3  status  of  species  from  independent  clades  (black 

 dotted  branches  in  Fig.  2  )  that  did  not  contribute  any  species  for  training  the  model  (100% 

 accuracy;  Fig.  4B  ).  This  result  suggests  that  many  of  the  same  substitutions  contributed  to  C4 

 evolution independently. 

 In  addition,  we  found  that  evolutionarily-naive  machine  learning,  which  did  not  use  the  PSC 

 design,  could  only  achieve  64%  accuracy  in  correctly  identifying  C4  species  in  the  independent 

 clades  (black  branches  in  Fig.  2)  .  In  this  experiment,  we  conducted  a  direct  comparison  by 

 selecting  100  input  sets  of  six  C4  and  six  C3  species  from  among  the  siblings  of  the  PSC 

 species,  but  without  respecting  the  PSC  design.  For  these  “naive”  models,  the  prediction 

 accuracy  fell  considerably.  In  particular,  the  average  true  positive  rate  (TPR),  a  measure  of  the 

 ability  of  the  model  to  recognize  C4  species  on  the  basis  of  information  in  convergent  sites,  was 

 only  64%  over  all  of  these  ensembles  compared  with  94%  for  the  ensembles  built  using  the 

 PSC  approach  (  Fig.  4B  ).  This  reduction  in  accuracy  reflects  the  fact  that  non-PSC  models  may 

 incorporate  not  only  sites  whose  residues  are  correlated  with  the  phenotype  due  to  convergent 

 evolution  but  also  sites  correlated  with  the  phenotype  purely  due  to  shared  ancestry  within  the 
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 inputs.  The  latter  type  of  sites  carries  no  information  relevant  to  the  prediction  of  phenotype  in 

 clades  whose  trait-positive  species  have  acquired  the  trait  independently.  This  result  establishes 

 that  our  PSC  design  can  produce  much  better  genotype-phenotype  models  than  naive  machine 

 learning. 

 Figure  4.  Predictive  ability  of  ESL-PSC  genetic  models  of  C4/C3  photosynthesis.  A-D  Sequence 
 prediction  scores  (SPS)  from  model  ensembles  are  shown  for  known  C4  (blue)  and  C3  (red)  species  in 
 kernel  density  estimation  plots.  Negative  SPS  indicates  a  prediction  of  the  C3  phenotype  (trait-negative), 
 and  positive  SPS  indicates  a  prediction  of  the  C4  phenotype.  Predictions  shown  are  for  all  species  (A), 
 species  in  clades  independent  of  the  clades  contributing  species  for  model  training  (B).  Response-flipped 
 null  ESL-PSC  models  of  C4/C3  photosynthesis  (C).  Null  models  were  constructed  by  flipping  the 
 phenotype  response  values  of  3  out  of  6  of  the  input  contrast  pairs.  This  was  done  for  all  10  distinct 
 combinations  of  3  out  of  6  contrast  pairs,  and  all  model  predictions  were  aggregated.  SPSs  from  the  best 
 5%  of  models  by  MFS  are  included.  Pair-randomized  null  ESL-PSC  models  of  C4/C3  photosynthesis  (D)  . 
 Null  models  were  constructed  by  randomly  flipping  or  not  flipping  the  residues  between  each  species 
 contrast  pair  at  every  variable  residue  in  the  MSA.  For  each  of  the  25  alternative  PSC  input  species 
 combinations,  randomized  pair-flipped  alignments  were  generated,  and  model  ensembles  were  produced 
 for each. Aggregated predictions are shown. 

 Studies  of  convergence  in  C4  have  focused  heavily  on  RuBisCo,  the  most  abundant  enzyme, 

 which  has  multiple  sites  of  convergent  amino  acid  substitutions  in  multiple  different  lineages  of 

 plants  20–22,26,29  .  However,  we  tested  the  hypothesis  that  other  chloroplast  proteins  also 

 contributed  to  C4  evolution  by  building  ESL-PSC  models  excluding  RuBisCo  and  testing  model 

 accuracy  in  predicting  the  presence  of  C4.  The  RuBisCo-free  models  had  89%  accuracy, 
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 suggesting  that  the  convergent  basis  of  the  C4  trait  extends  to  other  chloroplast  genes  (  Fig.  5a  ). 
 Interestingly,  these  models  correctly  predicted  C4  photosynthesis  in  Alloteropsis  angusta  ,  which 

 was  the  only  false  negative  for  the  model  containing  RuBisCo.  A.  angusta  is  known  to  have 

 undergone  a  C3  to  C4  transition  independently  from  t  he  other  members  of  its  own  genus, 

 including  A.  paniculata  30  .  We  found  A.  angusta  to  be  lacking  key  amino  acid  substitutions  in 

 RuBisCo  that  are  highly  diagnostic  of  other  C4  species.  Therefore,  chloroplast  proteins  other 

 than  RuBisCo  have  likely  contributed  significantly  to  C4  evolution  in  this  case,  and  more 

 generally.  While  Casola  and  Li  22  hinted  at  such  a  possibility,  their  statistical  analyses  using  a 

 convergence  counting  approach  did  not  find  a  significant  excess  of  convergent  substitutions  in 

 C4  species  as  compared  to  the  background  C3  species.  Therefore,  the  ESL-PSC  framework 

 provided  a  powerful  new  way  to  investigate  the  genetics  of  convergent  traits  and  test 

 hypotheses that have not been possible until now. 

 Figure  5.  Alternative  models.  A:  Predictions 
 from  models  developed  without  the  inclusion  of 
 RuBisCo  are  shown  for  independent  species.  B: 
 Alternative  PSC  combinations  .  100  alternative 
 species  combinations  of  PSC  pairs  were 
 generated,  and  ensemble  models  were 
 constructed  as  above.  Predictions  were 
 aggregated  for  only  the  independent  clades 
 (black  branches  in  Fig.  2  ).  SPSs  from  the  best 
 5%  of  models  by  MFS  are  shown  from  the 
 aggregate of all ensemble models. 

 Convergent Evolution of Echolocation 

 The  independent  acquisition  of  echolocation  in  bats  and  whales  is  among  the  most  well-studied 

 cases  of  convergent  molecular  and  trait  evolution.  We  selected  the  microbat  Myotis  lucifugus 

 and  the  bottlenose  dolphin  Tursiops  truncatus  as  trait-positive  species  (echolocators)  because 

 previous  studies  involving  exome-scale  searches  for  convergence  in  echolocating  mammals 

 have  often  focused  on  the  comparison  of  microbats  and  toothed  whales  2,3,9,31  .  In  the  PSC 
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 design,  we  selected  a  non-echolocating  sister  species  Pteropus  vampyrus  (megabat)  for 

 echolocating  Myotis  lucifugus  and  non-echolocating  Ovis  aries  (sheep)  for  echolocating 

 bottlenose  dolphin  Tursiops  truncatus  (  Fig.  6;  see  Methods  ).  We  retrieved  14,509  protein 

 alignments  from  the  OrthoMaM  database  of  orthologous  protein-coding  sequences  for 

 mammalian genomes  32  . 

 Figure  6.  Echolocation  analysis.  Echolocation  evolved  twice  in  mammals  in  our  dataset.  Therefore  two 
 contrast  pairs  can  be  constructed  (solid  blue  branches,  echolocating;  solid  red  branches, 
 non-echolocating).  A  series  of  15  comparable  sets  of  input  pairs  can  be  constructed  by  using  alternative 
 species  (dashed  blue  and  red  sibling  species)  in  all  possible  combinations.  Species  not  included  in  the 
 contrast  pairs  do  not  affect  the  analysis  (black  dashed  branches).  Shared  ancestry  is  canceled  out  (gray 
 branches). 

 Because  there  were  only  two  clades,  and  thus  only  two  species  pairs,  we  made  inferences  from 

 a  collection  of  ESL  models  obtained  using  a  range  of  sparsity  penalties  (see  Methods  )  and 

 species  combinations  (  Fig.  6  ).  The  collection  of  genetic  models  was  then  used  to  generate  a 

 ranked  list  of  candidate  proteins  associated  with  convergent  evolution  (  Table  S1  ).  Among  the 

 highest-ranked  proteins,  many  were  those  previously  characterized  to  have  signatures  of 

 molecular  convergence  in  echolocators,  including,  Prestin  (SLC26a5),  TMC1,  PJVK  (DFNB59), 

 CDH23,  CASQ1,  and  CABP2  3,17,18,33–35  .  In  some  cases,  specific  amino  acid  sites  within  these 

 proteins  have  been  implicated  in  conferring  the  functional  changes  necessary  for  the 

 echolocation  phenotype,  revealed  by  laboratory  assays  where  mutations  to  residues  found  in 

 echolocating  species  were  observed  to  alter  protein  function  in  a  manner  consistent  with 

 echolocation  3,19  . 

 We  generated  multiple-tests  adjusted  P  -values  to  gauge  the  functional  enrichment  in  the 

 top-ranking  proteins  included  in  the  genetic  models.  We  tested  for  ~20,000  biological  processes 
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 and  phenotypes  (see  Methods  )  and  found  the  top  100  proteins  to  be  highly  enriched  for  the 

 “sensory  perception  of  sound”  genes  (GO:0007605)  with  an  adjusted  P  -value  <  10  -4  (  Table  1  ). 
 This  is  an  improvement  in  the  statistical  significance  of  more  than  two  orders  of  magnitude 

 compared  to  the  best  previous  findings  of  this  term  (adjusted  P  =  0.049)  in  FDR-corrected 

 analyses  4,31  .  Our  enrichment  P  -value  was  highly  significant  even  for  50,  150,  and  200  top 

 proteins  in  the  genetic  models  (  P  <  10  -3  ),  suggesting  that  our  results  are  robust  to  the  size  of  the 

 gene list analyzed. 

 Table  1.  Ontology  term  enrichments.  Enrichment  tests  were  performed  for  Gene,  Phenotype,  and 
 Disease  ontology  terms  for  the  top  100  highest-ranking  trait  proteins  in  our  echolocation  multiple  species 
 combination  ensemble  model  integration  analysis.  In  each  figure,  the  10  ontology  terms  with  the  lowest 
 p-values are shown from each enrichment analysis. 
 Term  P-value  Adjusted P-value 
 Go Biological Process 
 sensory perception of sound (GO:0007605)  < 1×10  -7  < 1×10  -4 

 sensory perception of mechanical stimulus (GO:0050954)  < 1×10  -6  < 1×10  -3 

 MGI Mammalian Phenotype Level 4 
 cochlear inner hair cell degeneration MP:0004398  < 1×10  -6  < 1×10  -3 

 cochlear ganglion degeneration MP:0002857  < 1×10  -6  < 1×10  -3 

 head tossing MP:0005307  < 1×10  -6  < 1×10  -3 

 increased or absent threshold for auditory brainstem 
 response MP:0011967  < 1×10  -6  < 1×10  -3 

 organ of Corti degeneration MP:0000043  < 1×10  -5  < 1×10  -3 

 deafness MP:0001967  < 1×10  -4  < 1×10  -2 

 DisGeNet 
 Sensorineural hearing loss, bilateral  < 1×10  -8  < 1×10  -5 

 Nonsyndromic Deafness  < 1×10  -4  < 1×10  -1 

 This  top-100  gene  list  was  also  significantly  enriched  (adjusted  P  <  1×10  -6  )  for  many  Phenotype 

 Ontology  (PO)  terms  directly  related  to  hearing  and  sound  perception  such  as  “cochlear  inner 

 hair  cell  degeneration”  (MP:0004398),  “increased  or  absent  threshold  for  auditory  brainstem 

 response”  (MP:0011967),  “cochlear  ganglion  degeneration”  (MP:0002857),  and  “increased  or 

 absent  threshold  for  auditory  brainstem  response”  (MP:0011967)  (  Table  1  ).  We  also  found  a 

 highly  significant  enrichment  (adjusted  P  <  4.5×10  -3  )  for  the  top-level  mammalian  PO  term 

 “hearing/vestibular/ear phenotype” (MP:0005377). 
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 As  a  control,  we  built  null  genetic  models  in  which  one  of  the  two  contrast  pairs  had  its  trait 

 status  reversed,  such  that  the  echolocating  dolphin  and  non-echolocating  large  flying  fox  were 

 treated  as  sharing  a  convergent  trait,  while  the  other  two  species  were  treated  as  paired 

 contrast  partners.  This  configuration  has  the  property  that  both  the  shared  phylogenetic  signal 

 and  any  shared  convergent  trait  signal  from  the  genuine  trait  of  echolocation  are  canceled  out. 

 Then,  we  applied  GO  and  PO  enrichment  to  the  top  100  genes  in  the  ESL-PSC  models  as 

 above.  None  of  the  terms  in  Table  1  received  significant  enrichment  (adjusted  P  <  0.05),  as 

 expected  of  the  null  model.  A  recent  study  found  that  the  analysis  of  synonymous  variation  can 

 help  detect  data  contamination  and  other  types  of  error  36  ,  so  we  developed  another  null  test  of 

 ESL-PSC  by  analyzing  only  fourfold  degenerate  sites  expected  to  evolve  largely  neutrally  in 

 mammals. No significant enrichment was found for any of the relevant ontology categories. 

 Overall,  highly  significant  probabilities  for  the  enrichment  of  hearing-related  ontology  terms 

 suggest  that  machine  learning  detects  a  strong  signal  of  convergence  in  hearing-related 

 proteins  in  echolocators.  This  is  the  first  demonstration  of  a  multiple  test-adjusted  highly 

 significant signal for sound perception in a genome-wide comparative analysis of echolocation. 

 DISCUSSION 

 Discovery  of  genotype-phenotype  relationships  is  of  central  importance  in  functional  and 

 evolutionary  genomics.  Repeated  evolution  of  the  same  trait  in  species  of  independent  clades 

 offers  an  opportunity  to  reveal  the  genetic  architecture  shared  by  these  independent  trait 

 evolutions.  We  have  presented  a  novel  comparative  genomics  approach  using  machine  learning 

 (ESL-PSC),  informed  by  molecular  phylogenies,  to  infer  quantitative  genetic  models  of  trait 

 convergences.  The  application  of  ESL-PSC  to  two  distinct,  previously  well-investigated 

 examples  establishes  that  there  is  a  significant  commonality  in  the  genetic  basis  of  trait 

 evolution among species in independent lineages. 

 A  high  predictive  ability  of  ESL-PSC  was  found  for  correctly  classifying  species  with  and  without 

 C4  photosynthesis  in  grass  clades  not  involved  in  training  the  model  (  Fig.  4A,  B  ).  Classical 

 molecular  evolutionary  methods  do  not  commonly  afford  this  type  of  quantitative  prediction.  The 

 high  accuracy  of  genetic  models  of  C4  trait  evolution  in  which  the  well-studied  convergent 

 protein  RuBisCo  was  excluded  is  suggestive  of  the  potential  role  of  additional  chloroplast 

 proteins  in  the  convergent  gain  of  C4  photosynthesis.  These  analyses  also  showed  that  not  all 

 species  with  convergent  traits  harbor  the  same  substitutions  in  the  sites  included  in  genetic 

 modes.  In  fact,  no  more  than  four  out  of  six  C4  species  shared  the  same  amino  acid  residue  in 
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 the  sites  selected  during  ESL  model  building.  Therefore,  ESL  model  building  can  automatically 

 extract  relevant  information  from  incomplete  molecular  convergence  correlated  with  the  trait 

 convergence,  obviating  the  need  to  use  ad  hoc  cut-offs  and  subsetting  data  by  evolutionary 

 conservation  2,3,5,7,37  .  This  makes  ESL-PSC  convergent  evolution  analyses  less  subjective  and 

 more reproducible than other approaches. 

 ESL-PSC  also  identified  genes  involved  in  the  convergent  acquisition  of  echolocation  in 

 mammals.  The  list  of  top  genes  in  ESL  models  was  found  to  be  highly  enriched  for  GO  and  PO 

 categories  involved  in  auditory  processes  at  FDR-corrected  P  -values  that  were  more  significant 

 than  previously  reported,  implying  that  the  machine  learning  approach  to  building  genetic 

 models  can  be  significantly  more  powerful  than  previous  approaches.  While  validation  of 

 ESL-PSC  derived  from  the  enrichment  of  functional  categories  is  arguably  circumstantial,  direct 

 experimental  approaches  are  beyond  the  scope  of  this  investigation.  Further  support  may  be 

 found  by  assessing  the  potential  functional  relevance  of  the  selected  genes  to  determine 

 whether  mutations  in  them  cause  diseases  due  to  relevant  functional  disruptions.  In  the  analysis 

 of  Disease  Ontology  categories,  we  found  a  hearing-related  “Sensorineural  hearing  loss, 

 bilateral”  term  to  be  highly  enriched  in  the  top  genes  (adjusted  P  <  10  -5  ).  Many  other  terms 

 related  to  deafness  contained  a  significantly  greater  than  expected  number  of  genes  (  Table  1  ). 
 No previous study has reported such an enrichment. 

 ESL-PSC  appears  to  extract  commonalities  of  the  genetic  basis  of  trait  convergences  more 

 effectively  than  other  approaches.  However,  we  note  that  species-specific  evolutionary 

 substitutions  may  also  be  involved  in  the  evolution  of  convergent  traits.  These  are  not  the  target 

 of  the  ESL  approach  and  will  not  be  included  in  the  genetic  model.  Also,  molecular 

 convergences  in  the  non-coding  sequences  as  well  as  regulatory  innovations  may  be  involved 

 in  the  evolution  of  convergent  traits  some  of  which  may  be  analyzed  by  their  simultaneous 

 analysis in the ESL-PSC framework. We plan to pursue them in the future. 

 We  expect  ESL-PSC  to  be  useful  as  a  comparative  genomics  tool  for  uncovering  common 

 genetic  elements  involved  in  the  evolution  of  traits  shared  between  species.  We  envision  that 

 ESL-PSC  will  be  applied  to  first  generate  a  candidate  gene  and  site  list,  which  can  be  followed 

 by  a  series  of  hypothesis  tests  regarding  the  commonality  of  the  genetic  basis  of  trait 

 convergences.  These  analyses  will  be  extremely  fast,  as  ESL-PSC  took  only  minutes  in  most  of 

 our  data  analyses.  These  results  can  then  be  followed  up  by  conducting  traditional  molecular 
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 evolutionary  analyses  and  functional  genomic  experiments  to  identify  selective  processes  at 

 play. 
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 Methods 

 Genomic  alignment  data  retrieval  and  processing.  Alignments  of  chloroplast  genes  were 

 retrieved  from  the  supplemental  data  in  ref.  22  .  We  generated  translated  amino  acid  sequences 

 from  the  provided  nucleic  acid  alignments  for  ESL-PSC  analyses.  The  OrthoMaM  data  set  32  of 

 mammalian  one-to-one  orthologous  protein  sequence  alignments  was  downloaded  from 

 https://orthomam.mbb.cnrs.fr/  .  Following  previous  studies  in  which  exome-scale  scans  for 

 convergence  in  echolocating  mammals  were  performed,  we  analyzed  echolocation  in  microbats 

 and  toothed  whales  2–4,9,31  and  used  megabats  and  artiodactyls  as  non-echolocating  sister 

 taxa  2,5,6,9  .  In  their  ESL-PSC  analysis,  we  excluded  sites  containing  missing  data  or  alignment 

 gaps  in  individual  training  sets.  All  multiple  sequence  alignments  (MSAs)  were  one-hot 

 encoded  8  ,  which  transforms  it  into  a  numerical  format  that  is  required  by  the  model-building 

 algorithm.  The  presence  of  the  convergent  trait  was  represented  numerically  by  +1  and  its 

 absence by -1. 

 Building  Genetic  Models.  ESL-PSC  uses  the  Least  Absolute  Shrinkage  and  Selection  Operator 

 (LASSO)  23  logistic  regression,  in  which  coefficients  are  chosen  to  minimize  a  combination  of  the 

 difference  between  observed  and  predicted  response  values  of  the  input  species  (the  logistic 

 loss).  It  uses  an  inclusion  penalty  term  that  scales  with  the  sum  of  the  absolute  values  of  the 
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 model  coefficients  and,  therefore,  induces  sparsity  8  .  We  use  bilevel  sparsity  in  which  separate 

 penalties  are  applied  for  the  inclusion  of  sites  and  groups  of  sites  (e.g.,  proteins).  The  loss 

 function  is  minimized  by  gradient  descent  38  ,  which  is  re-implemented  in  the  myESL  software 

 package  used  for  ESL-PSC  implementation  (  https://github.com/kumarlabgit/ESL-PSC  ).  We 

 estimate  a  new  Model  Fit  Score  (MFS)  for  a  given  genetic  model,  which  is  the  root  mean 

 squared  difference  between  the  input  trait  value  (+1  and  -1)  and  predicted  trait  values  for  all 

 species  used  for  training  the  model.  The  best-fit  genetic  models  have  the  lowest  MFS  value,  i.e., 

 the  input  and  output  of  the  genetic  model  are  the  most  concordant.  This  is  needed  because 

 optimal  inclusion  penalties  are  not  known  beforehand  in  LASSO.  So,  the  genetic  model  with  the 

 best MFS is chosen. 

 In  our  analysis,  the  size  of  the  penalty  for  each  protein  (group  of  sites)  was  globally  controlled 

 by  the  inclusion  penalties,  but  can  also  vary  for  each  individual  group  depending  on  its 

 composition.  Group  penalties  in  applications  of  the  LASSO  method  are  typically  based  on  the 

 square  root  of  the  number  of  columns  belonging  to  the  group  in  dataset  39  .  Applying  this  system 

 produced  models  in  which  proteins  with  fewer  variable  sites  and  lower  total  entropy  were 

 penalized  more  than  those  with  many  variable  sites,  in  the  exome-wide  analysis.  However, 

 highly  conserved  proteins  containing  even  a  few  variable  sites  can  be  important.  Therefore,  we 

 devised  a  penalty  function  for  each  protein  in  which  the  group  penalty  scales  linearly  with  the 

 number  of  variable  sites  plus  a  constant  equal  to  the  median  number  of  variable  sites  across  the 

 proteins  in  the  dataset  (excluding  fully  invariant  proteins).  This  function  was  effective  for  both 

 small-scale (chloroplast exome) and large-scale (mammalian proteome) analyses. 

 Predictive  Model  Ensembles  .  Models  with  similar  MFS  scores  were  combined  to  form 

 ensembles  of  models  for  predictions.  For  all  model  ensembles,  we  used  a  range  of  group  and 

 site  inclusion  penalty  values  from  1%-99%  of  the  maximum  penalty  that  can  be  applied  before  a 

 trivial  solution  in  which  all  model  feature  weights  are  set  to  0  is  obtained.  The  inclusion  penalty 

 values  were  taken  from  a  logspace  over  this  range.  Unless  specified,  we  selected  genetic 

 models with the best MFS or those with the top-5% MFS values. 

 Building  the  Candidate  protein  list  .  We  estimate  the  Group  Sparsity  Score  (GSS)  for  every 

 selected  protein  in  every  model  over  all  inclusion  penalty  combinations.  GSS  is  the  sum  of 

 absolute  values  of  regression  coefficients  for  all  the  selected  positions  in  the  given  protein  8  .  The 

 higher  the  GSS,  the  greater  their  importance.  Proteins  not  included  in  the  genetic  model  receive 

 GSS  =  0.  For  every  candidate  gene,  their  overall  rank  is  the  best  rank  (according  to  their  GSS) 

 they  receive  in  any  of  the  genetic  models,  with  equally  ranked  proteins  being  further  ordered 
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 according  to  the  maximum  GSS  they  attained  in  any  model.  This  yields  an  ordered  list  of 

 proteins  whose  convergent  sites  stand  out  compared  with  the  rest  of  the  proteome  in  number, 

 proportion,  and  strength  of  the  concordance  of  their  convergent  site  patterns  with  the  species 

 phenotypes, without privileging any one of those considerations. 

 When  each  of  the  input  species  has  at  least  one  sibling  species  that  share  its  phenotype  for  the 

 trait  being  studied,  then  different  combinations  of  these  allowable  input  species  can  be  used 

 interchangeably,  and  models  over  all  inclusion  penalty  combinations  can  be  built  for  each  of  the 

 species  combinations.  The  output  candidate  convergent  proteins  are  then  ranked  by  the  number 

 of  species  combinations  for  which  they  received  non-zero  GSS  scores  in  at  least  one  model, 

 with  ties  being  resolved  by  the  number  of  species  combinations  in  which  the  proteins  were 

 ranked in the top 1%, followed by the highest ever rank and highest ever GSS obtained. 

 Ontology  analysis  .  Ontology  enrichment  testing  was  performed  using  Enrichr  40  ,  and  P  -values 

 were  adjusted  for  multiple  testing.  Gene  ontologies  were  obtained  from  GO  41  .  We  tested  for  the 

 biological  process  GO  ontologies  using  the  GO_Biological_Process_2021  set  in  Enrichr  (6,036 

 terms).  Phenotype  ontologies  were  derived  from  MGI  42  .  Enrichr  provides  PO  testing  using  a 

 trimmed  version  of  the  MGI  phenotype  vocabulary.  Which  excludes  the  top  three  levels  of  PO 

 terms  (4,601  terms).  Disease  ontologies  were  derived  from  DisGeNet  (9,828  terms)  43  .  To 

 determine  enrichment  and  overlapping  genes  for  the  top-level  PO  term  “hearing/  vestibular/  ear 

 phenotype”  (MP:0005377),  we  used  the  MouseMine  44  ontology  testing  tool  and  the 

 Benjamini-Hochberg  adjustment  to  obtain  a  multiple  testing  adjusted  P-value.  By  common 

 convention,  enrichments  were  only  considered  valid  if  accounted  for  by  an  overlap  of  at  least  5 

 genes.  Phenotype  ontology  terms  were  retrieved  from  the  Mouse  Genome  Informatics 

 mammalian  phenotype  vocabulary,  and  gene  lists  associated  with  phenotype  ontology  terms 

 were  generated  from  the  Mouse/Human  Orthology  with  Phenotype  Annotations  (downloaded 

 from  http://www.informatics.jax.org/downloads/reports/index.html#pheno).  For  gene  enrichment 

 analyses,  we  found  that  it  was  unnecessary  to  use  ensembles  of  400  models  (20  values  for 

 each  inclusion  penalty)  because  the  gene  ranks  are  based  on  the  maximum  model  weights 

 which  do  not  change  significantly  when  using  a  denser  grid  search  over  the  space  of  inclusion 

 penalty.  Results  shown  here  were  based  on  ensembles  using  4  values  of  each  inclusion  penalty 

 (16 models) in each ensemble for each species combination. 

 Null  Genetic  Model  Ensembles  .  There  are  a  number  of  different  ways  to  test  the  genetic  models 

 produced  by  machine  learning.  We  built  null  genetic  models  by  reversing  trait  designations  of  a 

 subset  of  training  data  such  that  both  the  shared  evolutionary  history  and  shared  basis  of  the 
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 convergent  trait  between  trait-positive  species  were  canceled  out  (  Fig.  3C  ).  For  an  even  number 

 2  n  of  input  species  contrast  pairs,  the  largest  scrambling  of  the  input  phenotype  designations  is 

 achieved  by  flipping  n  pairs.  There  are  ½  2  n  C  n  possible  distinct  null  configurations.  For  a  small  n  , 

 it  is  possible  to  generate  and  combine  all  null  predictions,  but  a  random  subset  of  possible  null 

 configurations  can  be  sampled  when  n  is  large.  Another  type  of  null  model  can  be  constructed 

 by  randomly  flipping  (or  not  flipping)  the  residues  between  the  two  members  of  each  contrast 

 pair  at  each  site  (  Fig.  3D  ).  This  preserves  any  phylogenetic  relationships  present  in  the 

 alignment  but,  when  averaging  over  a  large  number  of  such  pair-randomized  alignments, 

 destroys  the  correlations  that  are  due  to  convergence.  Both  of  these  null  model  experiments  are 

 expected  to  produce  models  whose  prediction  accuracy  on  test  species  not  used  in  model 

 building  is  comparable  to  random  chance.  Protein  lists  developed  by  using  null  genetic  models 

 are  not  expected  to  be  enriched  in  any  functional  ontology  terms  beyond  that  expected  by 

 random chance alone. 

 Data  availability 

 Grass  and  mammalian  protein  sequence  alignment  data  required  to  reproduce  the  analyses  in 

 this article can be found at:  https://github.com/kumarlabgit/ESL-PSC  . 

 Code  availability 

 A  GitHub  repository  containing  scripts  and  software  used  to  perform  the  ESL-PSC  analyses  in 

 this study is available at  https://github.com/kumarlabgit/ESL-PSC  . 
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 Extended data 

 Supplementary Table 1: Echolocation ensemble model top genes 

 Rank  Gene identifier  Ensembl accession number  GSS  # combos ranked in top 1% 

 1  CASQ1  ENSG00000143318  0.1659  16 

 2  TMC1  ENSG00000165091  0.114  16 

 3  ADAMTS1  ENSG00000154734  0.0766  16 

 4  CDH23  ENSG00000107736  0.0713  16 

 5  CELA1  ENSG00000139610  0.1366  16 

 6  GSN  ENSG00000148180  0.0628  16 

 7  PAH  ENSG00000171759  0.0613  16 

 8  TBC1D14  ENSG00000132405  0.0418  16 

 9  SLC26A5  ENSG00000170615  0.097  16 

 10  GIGYF2  ENSG00000204120  0.0914  16 

 11  NDRG2  ENSG00000165795  0.0694  16 

 12  EPYC  ENSG00000083782  0.0847  16 

 13  ODF1  ENSG00000155087  0.0625  16 

 14  HORMAD2  ENSG00000176635  0.0312  16 

 15  TBC1D17  ENSG00000104946  0.061  16 

 16  RTN4RL2  ENSG00000186907  0.0591  16 

 17  RIC3  ENSG00000166405  0.0514  16 

 18  PTCH2  ENSG00000117425  0.036  16 

 19  LINGO2  ENSG00000174482  0.0532  16 

 20  BRINP2  ENSG00000198797  0.0525  16 

 21  CCR8  ENSG00000179934  0.0238  16 
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 22  DUSP2  ENSG00000158050  0.0494  16 

 23  EML5  ENSG00000165521  0.0236  16 

 24  PTBP1  ENSG00000011304  0.0514  16 

 25  GFM1  ENSG00000168827  0.0359  16 

 26  CHD1L  ENSG00000131778  0.0186  16 

 27  HORMAD1  ENSG00000143452  0.0469  16 

 28  DHX16  ENSG00000204560  0.0474  16 

 29  SRRM4  ENSG00000139767  0.0202  16 

 30  NUDCD1  ENSG00000120526  0.0294  16 

 31  ELOVL7  ENSG00000164181  0.0345  16 

 32  PHB2  ENSG00000215021  0.0437  16 

 33  PNPLA5  ENSG00000100341  0.0166  16 

 34  RHO  ENSG00000163914  0.0402  16 

 35  SLC38A2  ENSG00000134294  0.0217  16 

 36  CABP2  ENSG00000167791  0.0402  16 

 37  MYO6  ENSG00000196586  0.0298  16 

 38  RAB22A  ENSG00000124209  0.037  16 

 39  DDX1  ENSG00000079785  0.029  16 

 40  VBP1  ENSG00000155959  0.037  16 

 41  LPGAT1  ENSG00000123684  0.027  16 

 42  ARHGAP36  ENSG00000147256  0.0159  16 

 43  MKL1  ENSG00000196588  0.0184  16 

 44  PTGS1  ENSG00000095303  0.013  16 

 45  CHRNA9  ENSG00000174343  0.0195  16 

 46  MARCH6  ENSG00000145495  0.019  16 
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 47  INTS6L  ENSG00000165359  0.0165  16 

 48  IRF9  ENSG00000213928  0.0115  16 

 49  VTA1  ENSG00000009844  0.0366  15 

 50  MAGEB18  ENSG00000176774  0.0191  15 

 51  SEMA6A  ENSG00000092421  0.0209  15 

 52  FAM117A  ENSG00000121104  0.0701  14 

 53  PECR  ENSG00000115425  0.0242  14 

 54  ATG7  ENSG00000197548  0.0305  14 

 55  ENPP7  ENSG00000182156  0.0156  14 

 56  PSEN2  ENSG00000143801  0.0227  14 

 57  PJVK  ENSG00000204311  0.0208  14 

 58  PER1  ENSG00000179094  0.0225  13 

 59  PHF20L1  ENSG00000129292  0.0274  13 

 60  HSPA12A  ENSG00000165868  0.048  13 

 61  FAM170A  ENSG00000164334  0.0283  13 

 62  TNS1  ENSG00000079308  0.015  13 

 63  LOXHD1  ENSG00000167210  0.0206  13 

 64  NMUR1  ENSG00000171596  0.0131  13 

 65  COQ9  ENSG00000088682  0.0218  13 

 66  YARS  ENSG00000134684  0.0241  13 

 67  VSIG8  ENSG00000243284  0.0204  13 

 68  CCSER1  ENSG00000184305  0.0174  13 

 69  EYA3  ENSG00000158161  0.0514  12 

 70  MREG  ENSG00000118242  0.0445  12 

 71  DTX2  ENSG00000091073  0.0307  12 
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 72  PCYT2  ENSG00000185813  0.0411  12 

 73  SYNC  ENSG00000162520  0.0344  12 

 74  SPEF1  ENSG00000101222  0.0272  12 

 75  NKPD1  ENSG00000179846  0.0233  12 

 76  SEMA5A  ENSG00000112902  0.0155  12 

 77  THEM5  ENSG00000196407  0.0149  12 

 78  PEX11G  ENSG00000104883  0.017  12 

 79  MALT1  ENSG00000172175  0.061  11 

 80  OTUD3  ENSG00000169914  0.0586  11 

 81  DGKH  ENSG00000102780  0.028  11 

 82  HDLBP  ENSG00000115677  0.0275  11 

 83  GRXCR2  ENSG00000204928  0.0402  11 

 84  PIGQ  ENSG00000007541  0.0204  11 

 85  GOLGA1  ENSG00000136935  0.0127  11 

 86  PLTP  ENSG00000100979  0.015  11 

 87  MAML1  ENSG00000161021  0.0142  11 

 88  SOX30  ENSG00000039600  0.118  10 

 89  NUP160  ENSG00000030066  0.034  10 

 90  PLEKHG5  ENSG00000171680  0.0781  10 

 91  SLC26A9  ENSG00000174502  0.0371  10 

 92  FBLIM1  ENSG00000162458  0.0528  10 

 93  MRPS23  ENSG00000181610  0.0474  10 

 94  GPI  ENSG00000105220  0.0392  10 

 95  FANK1  ENSG00000203780  0.025  10 

 96  USB1  ENSG00000103005  0.0419  10 
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 97  PRMT7  ENSG00000132600  0.0156  10 

 98  IL4  ENSG00000113520  0.02  10 

 99  RFX2  ENSG00000087903  0.0203  10 

 100  USH1C  ENSG00000006611  0.0254  10 
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