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28 Cases abound in which nearly identical traits have appeared in distant species facing
29 similar environments. These unmistakable examples of adaptive evolution offer
30 opportunities to gain insight into their genetic origins and mechanisms through
31 comparative analyses. Here, we present a novel comparative genomics approach to build
32 genetic models that underlie the independent origins of convergent traits using
33 evolutionary sparse learning. We test the hypothesis that common genes and sites are
34 involved in the convergent evolution of two key traits: C4 photosynthesis in grasses and
35 echolocation in mammals. Genetic models were highly predictive of independent cases
36 of convergent evolution of C4 photosynthesis. These results support the involvement of
37 sequence substitutions in many common genetic loci in the evolution of convergent
38 traits studied. Genes contributing to genetic models for echolocation were highly
39 enriched for functional categories related to hearing, sound perception, and deafness (P
40 < 10°); a pattern that has eluded previous efforts applying standard molecular
41 evolutionary approaches. We conclude that phylogeny-informed machine learning
42 naturally excludes apparent molecular convergences due to shared species history,
43 enhances the signal-to-noise ratio for detecting molecular convergence, and empowers

44 the discovery of common genetic bases of trait convergences.
45

46 Organisms continuously adapt to their natural environment. Under similar environmental
47 conditions, the same adaptations may evolve independently in clades across the tree of life. For
48 example, the convergent evolution of the ability to echolocate in some bats and toothed whales
49 is an example of adaptation brought on by major transitions to new environments requiring
50 similar physiological innovations. Evolutionary biologists have long sought the common genetic
51 basis of these convergent adaptations under the hypothesis that the same pathways, genes,
52 and/or base substitutions are involved in these adaptations. However, “the extent to which
53 convergent traits evolve by similar genetic and molecular pathways is not clear’'. Despite many
54 molecular evolutionary investigations, the strongest evidence for molecular convergence thus
55 far appears to be a marginally significant (FDR-corrected P = 0.0486) enrichment of sound
56 perception genes in which convergent and parallel amino acid substitutions were observed®™.
57 Although these results hint at the possible presence of some shared genetic basis in the evolution
58 of echolocation in independent clades, some studies could not detect such an enrichment?,
59 casting doubt on the robustness of the results, the general applicability of the methodology, or

60 even the presence of a common genetic basis.
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61 The lack of consistent and statistically significant results may be due to insufficient commonality
62 in the genetic bases of these traits, i.e., different genes and different sites may perform similar
63 functions in independent clades. Alternatively, the lack of sufficient statistical power or inability to
64 fully exclude non-adaptive convergence may be hampering efforts to detect genes and sites
65 associated with the evolution of convergent traits®”’. Furthermore, current state-of-the-art
66 approaches primarily reveal retrospective patterns, but they do not explicitly model quantitative
67 genetic changes in convergent trait evolution to make statistical predictions of the presence or

68 absence of the convergent trait.

69 We have addressed these challenges by building predictive genetic models of convergent trait
70 evolution using evolutionary sparse learning (ESL). ESL is supervised machine learning in
71 which genomic components (e.g., genes and sites) are model parameters, and substitutions in
72 multiple sequence alignments are observations®. We developed a paired species contrast (PSC)
73 design to select the training data for machine learning to automatically mask neutral
74 (background) sequence convergence that can lead to spurious inferences and reduce the power
75 to detect the genetic basis of convergence®®®. Importantly, ESL-PSC simultaneously considers
76 all genetic loci and their respective substitutions during computational analysis, eliminating
77 biases due to arbitrary evolutionary conservation thresholds and convergent substitution cut-offs

78 necessary in some other approaches?37101,

79 ESL-PSC produces a quantitative genetic model to predict the presence/absence of a
80 convergent trait in any species based on its genome sequence. This is needed to test the
81 biological hypothesis of commonality of genetic basis in the independent evolution of the same
82 trait. Lists of loci comprising the genetic model can be subjected to additional analysis to test if
83 there is an enrichment of functional categories relevant to the trait analyzed'?'®. This approach
84 is commonly used to establish the biological relevance of candidate loci derived from
85 large-scale scans for molecular convergence in the absence of alternatives®*%'*'%. We applied
86 ESL-PSC to build genetic models of convergent evolution of C4 photosynthesis in grasses and

87 of echolocation in mammals because they have been extensively investigated previously*' =22,

gs ESL-PSC for building genetic models of convergent traits

89 We introduce ESL-PSC with an analysis of protein sequence alignments of chloroplast proteins,
90 which are well-suited for demonstrating the predictive ability of the method in a range of grass
91 species that have acquired C4 photosynthesis independently. One may alternatively use

92 ESL-PSC for nucleotide sequence alignments with the option to group sites into exons, introns,
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93 or other types of domains and functional annotations, as described in the Material and Methods

94 section.

95 ESL uses logistic regression to infer a genetic model that can predict trait-positive and
96 trait-negative species, which we numerically encode as +1 and -1, respectively®®. In this
97 analysis, the Least Absolute Shrinkage and Selection Operator (LASSO) compares alternative
98 genetic models by imposing penalties for including additional amino acid positions and genes
99 into the model while seeking high prediction accuracy. ESL-PSC produces models that
100 incorporate only those proteins whose member sites make a significant contribution to the ability

101 of the genetic model to classify species according to their traits rather than their ancestry.

102 To train the ESL model, we use a paired species contrast (PSC) approach in which a balanced
103 training dataset of equal numbers of trait-positive and trait-negative species (those with and
104 without the trait of interest, respectively) is first selected such that for every trait-positive
105 species, we include one closely-related trait-negative species. In PSC, species pairs are
106 required to be from evolutionarily independent clades to avoid introducing evolutionary
107 correlations among pairs due to shared evolutionary history, which is known to cause spurious
108 associations®®®. As an example, we could select trait-positive species A, and D, and

109 trait-negative species B, and C, respectively, to satisfy the above conditions (Fig. 1A).

110 PSC selection of training data ensures that the most recent common ancestor (MRCA) of each
111 trait-positive and trait-negative species pair selected will be more recent than the MRCA of
112 either member of the pair with any of the other species in the analysis. In the above example,
113 the MRCA of A, and B, (Y) is more recent than that of A, and F (W). Also, ESL-PSC
114 automatically excludes all branches in the phylogeny that are unrelated to the evolution of the
115 convergent trait (dotted branches in Fig. 1A). This means that the model learning is directly
116 focused on the molecular evolutionary changes between trait-positive and trait-negative species
117 (solid blue and red branches, respectively). If there are multiple species in some trait-positive
118 and trait-negative clades, different combinations of training sets may be used to build separate
119 genetic models followed by model averaging (see Material and Methods). ESL-PSC analysis
120 produces a list of proteins included in the genetic model, the estimated relative importance of
121 each locus, and an equation to predict the presence/absence of the trait in a species based on
122 its genetic sequences. Species not used for training for a given model can be utilized for testing

123 the model.
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128 & & example phylogeny with one set
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131 = r ) & s £ lineages (black dotted lines) and
132 B SO shared evolutionary history (gray
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135 | C . , selected for ESL-PSC analysis.
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137 w X. J[ response variable refers to the
138 S R C binary phenotype, where +1
139 : s a : represents the convergent ftrait,
140 : .4 E and -1 represents the ancestral
141 : = - - : trait.

149 I

143 Genetic Models for Convergent Acquisition of C4 Photosynthesis

144 We applied ESL-PSC to build genetic models of photosynthesis evolution using a 64-species
145 alignment of 67 chloroplast proteins?? (see Material and Methods). Many of these grass species
146 have convergently evolved the C4 photosynthetic pathway for carbon concentration®2°, while
147 others have retained the ancestral C3 photosynthetic pathway. Previous studies of the genetic
148 basis of C4 evolution have found convergent amino acid substitutions in
149 Ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCo) to be strongly associated with C4
150 evolution, but Casola and Li*? have recently suggested the involvement of other chloroplast
151 proteins as well. However, the extent to which chloroplast proteins other than RuBisCo

152 represent a predictable and common evolutionary basis of C4 evolution remains uncertain.

153 There are six clades in the molecular phylogeny that contain sibling species of both C4 and C3
154 phenotypes (Fig. 2), which yielded six pairs of species satisfying the PSC design. Each pair
155 contained a species with C4 photosynthesis and its most closely related species with C3
156 photosynthesis. Because some clades contain multiple candidate trait-positive (C4) and
157 trait-negative (C3) species, we selected the species with the least missing data in the sequence
158 alignment in our first analysis (solid lines in Fig. 2). The lengths of individual protein sequence
159 alignments varied from 30 to 1,528 amino acids, with a total of 16,362 positions in 67

160 chloroplast proteins?.
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165 Figure 2. ESL-PSC modeling of
166 convergent acquisition of C4
167 photosynthesis. A. Experimental design.
168 An evolutionary tree of 64 grass species
169 based on the phylogeny in Casola and Li %.
170 From the 64 available species, 6 pairs of
171 trait-positive (C4) and trait-negative (C3)
172 species were chosen according to the PSC
173 approach. Where multiple species met the
174 topological requirements for a contrast pair,
175 we selected the two species that were
176 closest in the evolutionary distance and that
177 had the fewest gaps in the alignments.
178 Selected species are shown as solid line
179 branches, and all other branches are
180 depicted as dashed lines. Solid lines begin
181 at the internal node that represents the
182 common ancestor of each pair, and the black
183 (C4) and red (C3) branches represent the
184 ' —C 'a,;'._mgg unshared ancestry of each selected species.
185 | el Thus substitutions on these branches can be
186 o JeeneneeremM s included in ESL-PSC modeling. Blue (C4)
187 : wanl meenermp and red (C3) dashed lines represent
188 : ""!..1::: i ) alternative sibling species of the selected
189 Fﬁ)- mica species. Black dashed branches represent
190 | = s clades that are evolutionarily independent of
191 m N, . the contrast pairs. These include both C4
192 PRREEEEEED == EE and C3 species. Gray branches represent
193 P ead """B.gra the evolutionary history that is shared
194 DI B equally by selected C4 and C3 species,
195 e LI which we expect to cancel out automatically
196 : el veeg " G in the modeling process.
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201 In ESL-PSC analysis, sparsity penalties must be specified for the inclusion of sites and proteins
202 in the genetic model built using LASSO. These penalties dictate the number of proteins and
203 sites allowed in the genetic modell. We used a series of penalties and compared resulting
204 genetic models by using a newly developed Model Fit Score (MFS), which is analogous to the

205 Brier score in logistic regression (see Methods). The genetic model with the best MFS contained

206 included RuBisCo, consistent with previous experimental and analytical knowledge22:2225.2Z This
207 model correctly assigned all six C4 and six C3 species used to train the model and correctly
208 predicted 97% of the other C4 species in this dataset (36 of 37) and 100% of C3 species (15 of
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209 15) for a balanced accuracy of 98.5%. An ensemble of genetic models with similar MFS scores

210 (Fig. 3) also performed equally well (Fig. 4A).

211

212

213

214 Figure 3 Heat map of Model Fit Scores. 20
215 values for each inclusion penalty (site and
216 = protein) were sampled from a logspace ranging
217 2 from 1-99% of the maximum non-trivial penalty.
218 o A higher MFS suggests a higher risk of
219 & overfitting. Models with the best (lowest) 5% of
220 MFS are included in predictive ensembles (Fig.
221 4,5).

222

223

224

225

226 The best MFS model was found to be equally accurate in predicting C4 species that are siblings
227 of those used in the training set, which suggests that multiple C4 species within a clade
228 inherited the ftrait from a common ancestor. This is consistent with the parsimonious
229 reconstruction of independent C4 trait evolution?®. For this reason, genetic models built using
230 different species combinations were also highly accurate (96%, Fig. 5B). The best MSF models
231 were also highly predictive of the C4/C3 status of species from independent clades (black
232 dotted branches in Fig. 2) that did not contribute any species for training the model (100%
233 accuracy; Fig. 4B). This result suggests that many of the same substitutions contributed to C4

234 evolution independently.

235 In addition, we found that evolutionarily-naive machine learning, which did not use the PSC
236 design, could only achieve 64% accuracy in correctly identifying C4 species in the independent
237 clades (black branches in Fig. 2). In this experiment, we conducted a direct comparison by
238 selecting 100 input sets of six C4 and six C3 species from among the siblings of the PSC
239 species, but without respecting the PSC design. For these “naive” models, the prediction
249 accuracy fell considerably. In particular, the average true positive rate (TPR), a measure of the
241 ability of the model to recognize C4 species on the basis of information in convergent sites, was
242 only 64% over all of these ensembles compared with 94% for the ensembles built using the
243 PSC approach (Fig. 4B). This reduction in accuracy reflects the fact that non-PSC models may
244 incorporate not only sites whose residues are correlated with the phenotype due to convergent

245 evolution but also sites correlated with the phenotype purely due to shared ancestry within the
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246 inputs. The latter type of sites carries no information relevant to the prediction of phenotype in
247 clades whose trait-positive species have acquired the trait independently. This result establishes
248 that our PSC design can produce much better genotype-phenotype models than naive machine

249 learning.
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250 Figure 4. Predictive ability of ESL-PSC genetic models of C4/C3 photosynthesis. A-D Sequence
251 prediction scores (SPS) from model ensembles are shown for known C4 (blue) and C3 (red) species in
252 kernel density estimation plots. Negative SPS indicates a prediction of the C3 phenotype (trait-negative),
253 and positive SPS indicates a prediction of the C4 phenotype. Predictions shown are for all species (A),
254 species in clades independent of the clades contributing species for model training (B). Response-flipped
255 null ESL-PSC models of C4/C3 photosynthesis (C). Null models were constructed by flipping the
256 phenotype response values of 3 out of 6 of the input contrast pairs. This was done for all 10 distinct
257 combinations of 3 out of 6 contrast pairs, and all model predictions were aggregated. SPSs from the best
258 5% of models by MFS are included. Pair-randomized null ESL-PSC models of C4/C3 photosynthesis (D).
259 Null models were constructed by randomly flipping or not flipping the residues between each species
260 contrast pair at every variable residue in the MSA. For each of the 25 alternative PSC input species
261 combinations, randomized pair-flipped alignments were generated, and model ensembles were produced
262 for each. Aggregated predictions are shown.

263

264 Studies of convergence in C4 have focused heavily on RuBisCo, the most abundant enzyme,
265 which has multiple sites of convergent amino acid substitutions in multiple different lineages of
266 plants?>-222629  However, we tested the hypothesis that other chloroplast proteins also
267 contributed to C4 evolution by building ESL-PSC models excluding RuBisCo and testing model

268 accuracy in predicting the presence of C4. The RuBisCo-free models had 89% accuracy,
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269 suggesting that the convergent basis of the C4 trait extends to other chloroplast genes (Fig. 5a).
270 Interestingly, these models correctly predicted C4 photosynthesis in Alloteropsis angusta, which
271 was the only false negative for the model containing RuBisCo. A. angusta is known to have
272 undergone a C3 to C4 transition independently from the other members of its own genus,
273 including A. paniculata®. We found A. angusta to be lacking key amino acid substitutions in
274 RuBisCo that are highly diagnostic of other C4 species. Therefore, chloroplast proteins other
275 than RuBisCo have likely contributed significantly to C4 evolution in this case, and more
276 generally. While Casola and Li?* hinted at such a possibility, their statistical analyses using a
277 convergence counting approach did not find a significant excess of convergent substitutions in
278 C4 species as compared to the background C3 species. Therefore, the ESL-PSC framework
279 provided a powerful new way to investigate the genetics of convergent traits and test

280 hypotheses that have not been possible until now.

281
282
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283 Figure 5. Alternative models. A: Predictions
284 075 - ‘ 075 - from models developed without the inclusion of
285 RuBisCo are shown for independent species. B:
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301 Convergent Evolution of Echolocation

302 The independent acquisition of echolocation in bats and whales is among the most well-studied
303 cases of convergent molecular and trait evolution. We selected the microbat Myotis lucifugus
304 and the bottlenose dolphin Tursiops truncatus as trait-positive species (echolocators) because
305 previous studies involving exome-scale searches for convergence in echolocating mammals

306 have often focused on the comparison of microbats and toothed whales?*°%'. In the PSC
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307 design, we selected a non-echolocating sister species Pteropus vampyrus (megabat) for
308 echolocating Myotis lucifugus and non-echolocating Ovis aries (sheep) for echolocating
309 bottlenose dolphin Tursiops truncatus (Fig. 6; see Methods). We retrieved 14,509 protein
310 alignments from the OrthoMaM database of orthologous protein-coding sequences for

311 mammalian genomes®,
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312 Figure 6. Echolocation analysis. Echolocation evolved twice in mammals in our dataset. Therefore two
313 contrast pairs can be constructed (solid blue branches, echolocating; solid red branches,
314 non-echolocating). A series of 15 comparable sets of input pairs can be constructed by using alternative
315 species (dashed blue and red sibling species) in all possible combinations. Species not included in the
316 contrast pairs do not affect the analysis (black dashed branches). Shared ancestry is canceled out (gray
317 branches).

318

319 Because there were only two clades, and thus only two species pairs, we made inferences from
320 a collection of ESL models obtained using a range of sparsity penalties (see Methods) and
321 species combinations (Fig. 6). The collection of genetic models was then used to generate a
322 ranked list of candidate proteins associated with convergent evolution (Table S1). Among the
323 highest-ranked proteins, many were those previously characterized to have signatures of
324 molecular convergence in echolocators, including, Prestin (SLC26a5), TMC1, PJVK (DFNB59),
325 CDH23, CASQ1, and CABP23'"1833-35 |n some cases, specific amino acid sites within these
326 proteins have been implicated in conferring the functional changes necessary for the
327 echolocation phenotype, revealed by laboratory assays where mutations to residues found in
328 echolocating species were observed to alter protein function in a manner consistent with

329 echolocation®®.

330 We generated multiple-tests adjusted P-values to gauge the functional enrichment in the

331 top-ranking proteins included in the genetic models. We tested for ~20,000 biological processes
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332 and phenotypes (see Methods) and found the top 100 proteins to be highly enriched for the
333 “sensory perception of sound” genes (GO:0007605) with an adjusted P-value < 10* (Table 1).
334 This is an improvement in the statistical significance of more than two orders of magnitude
335 compared to the best previous findings of this term (adjusted P = 0.049) in FDR-corrected
336 analyses*®'. Our enrichment P-value was highly significant even for 50, 150, and 200 top
337 proteins in the genetic models (P < 10), suggesting that our results are robust to the size of the

338 gene list analyzed.

339

340 Table 1. Ontology term enrichments. Enrichment tests were performed for Gene, Phenotype, and
341 Disease ontology terms for the top 100 highest-ranking trait proteins in our echolocation multiple species
342 combination ensemble model integration analysis. In each figure, the 10 ontology terms with the lowest
343 p-values are shown from each enrichment analysis.

Term P-value Adjusted P-value
Go Biological Process

sensory perception of sound (GO:0007605) < 1x107 <1x10*
sensory perception of mechanical stimulus (GO:0050954) <1x10° <1x103

MGI Mammalian Phenotype Level 4

cochlear inner hair cell degeneration MP:0004398 <1x10° <1x10
cochlear ganglion degeneration MP:0002857 <1x10° <1x103
head tossing MP:0005307 <1x10° <1x10
increased or absent threshold for auditory brainstem

response MP:0011967 <1x10® <1x10®
organ of Corti degeneration MP:0000043 <1x10° <1x103
deafness MP:0001967 <1x10* < 1x10?
DisGeNet

Sensorineural hearing loss, bilateral <1x10%® <1x10°
Nonsyndromic Deafness <1x10* < 1x10"

344

345 This top-100 gene list was also significantly enriched (adjusted P < 1x10%) for many Phenotype
346 Ontology (PO) terms directly related to hearing and sound perception such as “cochlear inner
347 hair cell degeneration” (MP:0004398), “increased or absent threshold for auditory brainstem
348 response” (MP:0011967), “cochlear ganglion degeneration” (MP:0002857), and “increased or
349 absent threshold for auditory brainstem response” (MP:0011967) (Table 1). We also found a
350 highly significant enrichment (adjusted P < 4.5x107?) for the top-level mammalian PO term

351 “hearing/vestibular/ear phenotype” (MP:0005377).
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352 As a control, we built null genetic models in which one of the two contrast pairs had its trait
353 status reversed, such that the echolocating dolphin and non-echolocating large flying fox were
354 treated as sharing a convergent trait, while the other two species were treated as paired
355 contrast partners. This configuration has the property that both the shared phylogenetic signal
356 and any shared convergent trait signal from the genuine trait of echolocation are canceled out.
357 Then, we applied GO and PO enrichment to the top 100 genes in the ESL-PSC models as
358 above. None of the terms in Table 1 received significant enrichment (adjusted P < 0.05), as
359 expected of the null model. A recent study found that the analysis of synonymous variation can
360 help detect data contamination and other types of error %, so we developed another null test of
361 ESL-PSC by analyzing only fourfold degenerate sites expected to evolve largely neutrally in

362 mammals. No significant enrichment was found for any of the relevant ontology categories.

363 Overall, highly significant probabilities for the enrichment of hearing-related ontology terms
364 suggest that machine learning detects a strong signal of convergence in hearing-related
365 proteins in echolocators. This is the first demonstration of a multiple test-adjusted highly

366 significant signal for sound perception in a genome-wide comparative analysis of echolocation.
367

368 DISCUSSION

369 Discovery of genotype-phenotype relationships is of central importance in functional and
370 evolutionary genomics. Repeated evolution of the same trait in species of independent clades
371 offers an opportunity to reveal the genetic architecture shared by these independent trait
372 evolutions. We have presented a novel comparative genomics approach using machine learning
373 (ESL-PSC), informed by molecular phylogenies, to infer quantitative genetic models of trait
374 convergences. The application of ESL-PSC to two distinct, previously well-investigated
375 examples establishes that there is a significant commonality in the genetic basis of trait

376 evolution among species in independent lineages.

377 A high predictive ability of ESL-PSC was found for correctly classifying species with and without
378 C4 photosynthesis in grass clades not involved in training the model (Fig. 4A, B). Classical
379 molecular evolutionary methods do not commonly afford this type of quantitative prediction. The
380 high accuracy of genetic models of C4 trait evolution in which the well-studied convergent
381 protein RuBisCo was excluded is suggestive of the potential role of additional chloroplast
382 proteins in the convergent gain of C4 photosynthesis. These analyses also showed that not all
383 species with convergent traits harbor the same substitutions in the sites included in genetic

384 modes. In fact, no more than four out of six C4 species shared the same amino acid residue in
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385 the sites selected during ESL model building. Therefore, ESL model building can automatically
386 extract relevant information from incomplete molecular convergence correlated with the trait
387 convergence, obviating the need to use ad hoc cut-offs and subsetting data by evolutionary
388 conservation?**”3" This makes ESL-PSC convergent evolution analyses less subjective and

389 more reproducible than other approaches.

390 ESL-PSC also identified genes involved in the convergent acquisition of echolocation in
391 mammals. The list of top genes in ESL models was found to be highly enriched for GO and PO
392 categories involved in auditory processes at FDR-corrected P-values that were more significant
393 than previously reported, implying that the machine learning approach to building genetic
394 models can be significantly more powerful than previous approaches. While validation of
395 ESL-PSC derived from the enrichment of functional categories is arguably circumstantial, direct
396 experimental approaches are beyond the scope of this investigation. Further support may be
397 found by assessing the potential functional relevance of the selected genes to determine
398 whether mutations in them cause diseases due to relevant functional disruptions. In the analysis
399 of Disease Ontology categories, we found a hearing-related “Sensorineural hearing loss,
400 bilateral” term to be highly enriched in the top genes (adjusted P < 10®°). Many other terms
401 related to deafness contained a significantly greater than expected number of genes (Table 1).

402 No previous study has reported such an enrichment.

403 ESL-PSC appears to extract commonalities of the genetic basis of trait convergences more
404 effectively than other approaches. However, we note that species-specific evolutionary
405 substitutions may also be involved in the evolution of convergent traits. These are not the target
406 of the ESL approach and will not be included in the genetic model. Also, molecular
407 convergences in the non-coding sequences as well as regulatory innovations may be involved
408 in the evolution of convergent traits some of which may be analyzed by their simultaneous

409 analysis in the ESL-PSC framework. We plan to pursue them in the future.

410 We expect ESL-PSC to be useful as a comparative genomics tool for uncovering common
411 genetic elements involved in the evolution of traits shared between species. We envision that
412 ESL-PSC will be applied to first generate a candidate gene and site list, which can be followed
413 by a series of hypothesis tests regarding the commonality of the genetic basis of trait
414 convergences. These analyses will be extremely fast, as ESL-PSC took only minutes in most of

415 our data analyses. These results can then be followed up by conducting traditional molecular
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416 evolutionary analyses and functional genomic experiments to identify selective processes at

417 play.
418
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569 retrieved from the supplemental data in ref.?2. We generated translated amino acid sequences
570 from the provided nucleic acid alignments for ESL-PSC analyses. The OrthoMaM data set* of
571 mammalian one-to-one orthologous protein sequence alignments was downloaded from

572 https://orthomam.mbb.cnrs.fr/. Following previous studies in which exome-scale scans for

573 convergence in echolocating mammals were performed, we analyzed echolocation in microbats
574 and toothed whales**°*" and used megabats and artiodactyls as non-echolocating sister
575 taxa®®®9. In their ESL-PSC analysis, we excluded sites containing missing data or alignment
576 gaps in individual training sets. All multiple sequence alignments (MSAs) were one-hot
577 encoded®, which transforms it into a numerical format that is required by the model-building
578 algorithm. The presence of the convergent trait was represented numerically by +1 and its

579 absence by -1.

580 Building Genetic Models. ESL-PSC uses the Least Absolute Shrinkage and Selection Operator

581 (LASSO)? logistic regression, in which coefficients are chosen to minimize a combination of the
582 difference between observed and predicted response values of the input species (the logistic

583 loss). It uses an inclusion penalty term that scales with the sum of the absolute values of the
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584 model coefficients and, therefore, induces sparsity®. We use bilevel sparsity in which separate
585 penalties are applied for the inclusion of sites and groups of sites (e.g., proteins). The loss
586 function is minimized by gradient descent ¥, which is re-implemented in the myESL software
587 package used for ESL-PSC implementation (https://github.com/kumarlabgit/ESL-PSC). We

588 estimate a new Model Fit Score (MFS) for a given genetic model, which is the root mean

589 squared difference between the input trait value (+1 and -1) and predicted trait values for all
590 species used for training the model. The best-fit genetic models have the lowest MFS value, i.e.,
591 the input and output of the genetic model are the most concordant. This is needed because
592 optimal inclusion penalties are not known beforehand in LASSO. So, the genetic model with the

593 best MFS is chosen.

594 In our analysis, the size of the penalty for each protein (group of sites) was globally controlled
595 by the inclusion penalties, but can also vary for each individual group depending on its
596 composition. Group penalties in applications of the LASSO method are typically based on the
597 square root of the number of columns belonging to the group in dataset®. Applying this system
598 produced models in which proteins with fewer variable sites and lower total entropy were
599 penalized more than those with many variable sites, in the exome-wide analysis. However,
600 highly conserved proteins containing even a few variable sites can be important. Therefore, we
601 devised a penalty function for each protein in which the group penalty scales linearly with the
602 number of variable sites plus a constant equal to the median number of variable sites across the
603 proteins in the dataset (excluding fully invariant proteins). This function was effective for both

604 small-scale (chloroplast exome) and large-scale (mammalian proteome) analyses.

605 Predictive Model Ensembles. Models with similar MFS scores were combined to form
606 ensembles of models for predictions. For all model ensembles, we used a range of group and
607 site inclusion penalty values from 1%-99% of the maximum penalty that can be applied before a
608 trivial solution in which all model feature weights are set to O is obtained. The inclusion penalty
609 values were taken from a logspace over this range. Unless specified, we selected genetic
610 models with the best MFS or those with the top-5% MFS values.

611 Building the Candidate protein list. We estimate the Group Sparsity Score (GSS) for every

612 selected protein in every model over all inclusion penalty combinations. GSS is the sum of
613 absolute values of regression coefficients for all the selected positions in the given protein®. The
614 higher the GSS, the greater their importance. Proteins not included in the genetic model receive
615 GSS = 0. For every candidate gene, their overall rank is the best rank (according to their GSS)

616 they receive in any of the genetic models, with equally ranked proteins being further ordered
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617 according to the maximum GSS they attained in any model. This yields an ordered list of
618 proteins whose convergent sites stand out compared with the rest of the proteome in number,
619 proportion, and strength of the concordance of their convergent site patterns with the species

620 phenotypes, without privileging any one of those considerations.

621 When each of the input species has at least one sibling species that share its phenotype for the
622 trait being studied, then different combinations of these allowable input species can be used
623 interchangeably, and models over all inclusion penalty combinations can be built for each of the
624 species combinations. The output candidate convergent proteins are then ranked by the number
625 of species combinations for which they received non-zero GSS scores in at least one model,
626 with ties being resolved by the number of species combinations in which the proteins were

627 ranked in the top 1%, followed by the highest ever rank and highest ever GSS obtained.

628 Ontology analysis. Ontology enrichment testing was performed using Enrichr®®, and P-values
629 were adjusted for multiple testing. Gene ontologies were obtained from GO*'. We tested for the
630 biological process GO ontologies using the GO_Biological_Process 2021 set in Enrichr (6,036
631 terms). Phenotype ontologies were derived from MGI*?. Enrichr provides PO testing using a
632 trimmed version of the MGI phenotype vocabulary. Which excludes the top three levels of PO
633 terms (4,601 terms). Disease ontologies were derived from DisGeNet (9,828 terms)*. To
634 determine enrichment and overlapping genes for the top-level PO term “hearing/ vestibular/ ear
635 phenotype” (MP:0005377), we used the MouseMine * ontology testing tool and the
636 Benjamini-Hochberg adjustment to obtain a multiple testing adjusted P-value. By common
637 convention, enrichments were only considered valid if accounted for by an overlap of at least 5
638 genes. Phenotype ontology terms were retrieved from the Mouse Genome Informatics
639 mammalian phenotype vocabulary, and gene lists associated with phenotype ontology terms
640 were generated from the Mouse/Human Orthology with Phenotype Annotations (downloaded
641 from http://www.informatics.jax.org/downloads/reports/index.html#pheno). For gene enrichment
642 analyses, we found that it was unnecessary to use ensembles of 400 models (20 values for
643 each inclusion penalty) because the gene ranks are based on the maximum model weights
644 which do not change significantly when using a denser grid search over the space of inclusion
645 penalty. Results shown here were based on ensembles using 4 values of each inclusion penalty

646 (16 models) in each ensemble for each species combination.

647 Null Genetic Model Ensembles. There are a number of different ways to test the genetic models

648 produced by machine learning. We built null genetic models by reversing trait designations of a

649 subset of training data such that both the shared evolutionary history and shared basis of the
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650 convergent trait between trait-positive species were canceled out (Fig. 3C). For an even number
651 2n of input species contrast pairs, the largest scrambling of the input phenotype designations is
652 achieved by flipping n pairs. There are ¥2*"C, possible distinct null configurations. For a small n,
653 it is possible to generate and combine all null predictions, but a random subset of possible null
654 configurations can be sampled when n is large. Another type of null model can be constructed
655 by randomly flipping (or not flipping) the residues between the two members of each contrast
656 pair at each site (Fig. 3D). This preserves any phylogenetic relationships present in the
657 alignment but, when averaging over a large number of such pair-randomized alignments,
658 destroys the correlations that are due to convergence. Both of these null model experiments are
659 expected to produce models whose prediction accuracy on test species not used in model
660 building is comparable to random chance. Protein lists developed by using null genetic models
661 are not expected to be enriched in any functional ontology terms beyond that expected by

662 random chance alone.
663 Data availability

664 Grass and mammalian protein sequence alignment data required to reproduce the analyses in
665 this article can be found at: https://github.com/kumarlabgit/ESL-PSC.

666 Code availability

667 A GitHub repository containing scripts and software used to perform the ESL-PSC analyses in

668 this study is available at https://github.com/kumarlabgit/ESL-PSC.

669

670
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671 Extended data

672 Supplementary Table 1: Echolocation ensemble model top genes

673
Rank Gene identifier Ensembl accession number GSS # combos ranked in top 1%
1 CAsQ1 ENSG00000143318 0.1659 16
2 TMC1 ENSG00000165091 0.114 16
3 ADAMTS1 ENSG00000154734 0.0766 16
4 CDH23 ENSG00000107736 0.0713 16
5 CELA1 ENSG00000139610 0.1366 16
6 GSN ENSG00000148180 0.0628 16
7 PAH ENSG00000171759 0.0613 16
8 TBC1D14 ENSG00000132405 0.0418 16
9 SLC26A5 ENSG00000170615 0.097 16
10 GIGYF2 ENSG00000204120 0.0914 16
11 NDRG2 ENSG00000165795 0.0694 16
12 EPYC ENSG00000083782 0.0847 16
13 ODF1 ENSG00000155087 0.0625 16
14 HORMAD2 ENSG00000176635 0.0312 16
15 TBC1D17 ENSG00000104946 0.061 16
16 RTN4RL2 ENSG00000186907 0.0591 16
17 RIC3 ENSG00000166405 0.0514 16
18 PTCH2 ENSG00000117425 0.036 16
19 LINGO2 ENSG00000174482 0.0532 16
20 BRINP2 ENSG00000198797 0.0525 16

21 CCRS ENSG00000179934 0.0238 16
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22 DUSP2 ENSG00000158050 0.0494 16
23 EMLS5 ENSG00000165521 0.0236 16
24 PTBP1 ENSG00000011304 0.0514 16
25 GFM1 ENSG00000168827 0.0359 16
26 CHD1L ENSG00000131778 0.0186 16
27 HORMAD1 ENSG00000143452 0.0469 16
28 DHX16 ENSG00000204560 0.0474 16
29 SRRM4 ENSG00000139767 0.0202 16
30 NUDCD1 ENSG00000120526 0.0294 16
31 ELOVL7 ENSG00000164181 0.0345 16
32 PHB2 ENSG00000215021 0.0437 16
33 PNPLAS ENSG00000100341 0.0166 16
34 RHO ENSG00000163914 0.0402 16
35 SLC38A2 ENSG00000134294 0.0217 16
36 CABP2 ENSG00000167791 0.0402 16
37 MYO6 ENSG00000196586 0.0298 16
38 RAB22A ENSG00000124209 0.037 16
39 DDX1 ENSG00000079785 0.029 16
40 VBP1 ENSG00000155959 0.037 16
41 LPGAT1 ENSG00000123684 0.027 16
42 ARHGAP36 ENSG00000147256 0.0159 16
43 MKL1 ENSG00000196588 0.0184 16
44 PTGS1 ENSG00000095303 0.013 16
45 CHRNA9 ENSG00000174343 0.0195 16
46 MARCH®6 ENSG00000145495 0.019 16
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47 INTS6L ENSG00000165359 0.0165 16
48 IRF9 ENSG00000213928 0.0115 16
49 VTA1 ENSG00000009844 0.0366 15
50 MAGEB18 ENSG00000176774 0.0191 15
51 SEMAGA ENSG00000092421 0.0209 15
52 FAM117A ENSG00000121104 0.0701 14
53 PECR ENSG00000115425 0.0242 14
54 ATG7 ENSG00000197548 0.0305 14
55 ENPP7 ENSG00000182156 0.0156 14
56 PSEN2 ENSG00000143801 0.0227 14
57 PJVK ENSG00000204311 0.0208 14
58 PER1 ENSG00000179094 0.0225 13
59 PHF20L1 ENSG00000129292 0.0274 13
60 HSPA12A ENSG00000165868 0.048 13
61 FAM170A ENSG00000164334 0.0283 13
62 TNS1 ENSG00000079308 0.015 13
63 LOXHD1 ENSG00000167210 0.0206 13
64 NMUR1 ENSG00000171596 0.0131 13
65 coQ9 ENSG00000088682 0.0218 13
66 YARS ENSG00000134684 0.0241 13
67 VSIG8 ENSG00000243284 0.0204 13
68 CCSER1 ENSG00000184305 0.0174 13
69 EYA3 ENSG00000158161 0.0514 12
70 MREG ENSG00000118242 0.0445 12

71 DTX2 ENSG00000091073 0.0307 12


https://doi.org/10.1101/2025.01.08.631987
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.01.08.631987; this version posted January 9, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

72 PCYT2 ENSG00000185813 0.0411 12
73 SYNC ENSG00000162520 0.0344 12
74 SPEF1 ENSG00000101222 0.0272 12
75 NKPD1 ENSG00000179846 0.0233 12
76 SEMAS5A ENSG00000112902 0.0155 12
77 THEMS ENSG00000196407 0.0149 12
78 PEX11G ENSG00000104883 0.017 12
79 MALT1 ENSG00000172175 0.061 1
80 OTUD3 ENSG00000169914 0.0586 1"
81 DGKH ENSG00000102780 0.028 1"
82 HDLBP ENSG00000115677 0.0275 1"
83 GRXCR2 ENSG00000204928 0.0402 1"
84 PIGQ ENSG00000007541 0.0204 1"
85 GOLGA1 ENSG00000136935 0.0127 1"
86 PLTP ENSG00000100979 0.015 1"
87 MAMLA1 ENSG00000161021 0.0142 1"
88 SOX30 ENSG00000039600 0.118 10
89 NUP160 ENSG00000030066 0.034 10
90 PLEKHG5 ENSG00000171680 0.0781 10
91 SLC26A9 ENSG00000174502 0.0371 10
92 FBLIMA1 ENSG00000162458 0.0528 10
93 MRPS23 ENSG00000181610 0.0474 10
94 GPI ENSG00000105220 0.0392 10
95 FANK1 ENSG00000203780 0.025 10

96 usB1 ENSG00000103005 0.0419 10
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97 PRMT7 ENSG00000132600 0.0156 10
98 IL4 ENSG00000113520 0.02 10
99 RFX2 ENSG00000087903 0.0203 10
100 USH1C ENSG00000006611 0.0254 10
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