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Abstract

Motivation: As the number and diversity of species and genes grow in contemporary datasets, two common assump-
tions made in all molecular dating methods, namely the time-reversibility and stationarity of the substitution process,
become untenable. No software tools for molecular dating allow researchers to relax these two assumptions in their
data analyses. Frequently the same General Time Reversible (GTR) model across lineages along with a gamma (þC)
distributed rates across sites is used in relaxed clock analyses, which assumes time-reversibility and stationarity of the
substitution process. Many reports have quantified the impact of violations of these underlying assumptions on mo-
lecular phylogeny, but none have systematically analyzed their impact on divergence time estimates.

Results: We quantified the bias on time estimates that resulted from using the GTRþC model for the analysis of
computer-simulated nucleotide sequence alignments that were evolved with non-stationary (NS) and non-reversible
(NR) substitution models. We tested Bayesian and RelTime approaches that do not require a molecular clock for esti-
mating divergence times. Divergence times obtained using a GTRþC model differed only slightly (�3% on average)
from the expected times for NR datasets, but the difference was larger for NS datasets (�10% on average). The use
of only a few calibrations reduced these biases considerably (�5%). Confidence and credibility intervals from
GTRþC analysis usually contained correct times. Therefore, the bias introduced by the use of the GTRþC model to
analyze datasets, in which the time-reversibility and stationarity assumptions are violated, is likely not large and can
be reduced by applying multiple calibrations.

Availability and implementation: All datasets are deposited in Figshare: https://doi.org/10.6084/m9.figshare.
12594638.

Contact: s.kumar@temple.edu

1 Introduction

Biological evolution at the molecular level is inherently complex.
Nucleotide and amino acid substitution patterns vary from species
to species, locus by locus and over time (Arenas, 2015; Nei and
Kumar, 2000; Yang, 2014). Considerable attention has been paid
to developing substitution models that better reflect the process of
molecular evolution, resulting in increasingly complex, realistic
evolutionary models for phylogenomic studies (Arenas, 2015;
Yang, 2014). Markov models thoroughly describe the substitution
processes that embrace the presence of biased base/amino acid com-
positions, differences in transition/transversion rates, non-
uniformity of evolutionary rates among sites and differences in

substitution patterns among genomic regions (Arenas, 2015; Tao
et al., 2020).

Widely used substitution models in molecular phylogenetics as-
sume time-reversibility and stationarity of the substitution processes
over the whole phylogenetic tree (Galtier and Gouy, 1998; Jayaswal
et al., 2011; Yang, 2014). The time-reversibility assumption requires
that the instantaneous rate of change from base i to base j is equal to
that of base j to i (Nei and Kumar, 2000). For large datasets, this as-
sumption is expected to be frequently violated, and an unrestricted
model is usually a better fit (Yang, 1994, 2014). Although this com-
plexity is well appreciated in molecular evolutionary research,
including phylogenetics and systematics, a vast majority of research-
ers employ a General Time Reversible (GTR) class of substitution
models (Fig. 1).
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The GTR model provides for different rates for all the transitions
and transversional substitutions as well as the unequal frequency of
bases. In addition to time-reversibility, the use of a GTR model
in phylogenetic methods, as implemented in most of the software
packages, automatically assumes that the substitution process does
not change over time; i.e. it is stationary. This translates into as-
suming that the rates of different types of base substitutions are the
same across evolutionary lineages and over time. Violation of this
stationarity assumption is evident from differences in base compos-
ition across sequences (e.g. Galtier and Gouy, 1998; Kumar and
Gadagkar, 2001; Rosenberg and Kumar, 2003; Tamura and Kumar,
2002). Studies of empirical data have shown that unequal base com-
positions can mislead methods of phylogenetic inference by group-
ing sequences according to the base compositions instead of their
phylogenetic relationships (Galen et al., 2018; Galtier and Gouy,
1995; Lockhart et al., 1994; Rosenberg and Kumar, 2003).
Therefore, many models and methods that avoid the stationarity as-
sumption have been developed (Blanquart and Lartillot, 2006,
2008; Foster, 2004; Galtier and Gouy, 1998; Tamura and Kumar,
2002; Yang, 1994).

Therefore, we expect that the use of the GTR model for substitu-
tion rates and phylogenetic inference would cause bias because it is
an oversimplification of the correct model. This bias is known to im-
pact phylogenetic inference (Galen et al., 2018; Huang et al., 2010;
Philippe et al., 2017; Singh et al., 2009), but there is little known
about its impact on the estimates of molecular divergence times. In
an analysis of bias caused by the use of simple substitution models
from the GTR class of models, Tao et al. (2020) reported that the
complexity of the substitution model has a rather limited biasing ef-
fect in empirical data analysis. They found that the actual bias in the
time estimates (TEs) became very small when even a few clock cali-
brations are applied. The main focus of this study is to examine if
this trend holds when we consider datasets that violate the underly-
ing assumptions of time-reversibility and stationarity made in all the
current molecular dating analyses.

In the following, we quantified the bias that results from using
the GTR substitution model, along with a provision to account for
the rate variation among sites by using a Gamma distribution
(GTRþC), to analyze computer-simulated nucleotide sequence
alignments that were evolved without reversibility or stationarity of
substitution process. Datasets were simulated for phylogenies in

which evolutionary rates varied extensively among lineages with or
without autocorrelation among lineages (Rannala and Yang, 2007;
Tao et al., 2019).

We applied Bayesian and RelTime relaxed clock methods
(Rannala and Yang, 2007; Tamura et al., 2012) for divergence time
estimation. We report that the bias of TEs caused by the use of
a GTRþC model with assumptions of stationarity and time-
reversibility to analyze datasets that violate these assumptions.
Results are presented for analyses using only a root calibration, as
well as those in which multiple internal calibrations were assumed
to be known.

2 Materials and methods

2.1 Data simulation
We conducted computer simulations to generate nucleotide se-
quence alignments in which the substitutional process was reversible
(GTR), non-reversible (NR), or non-stationary (NS). All our analy-
ses were conducted by using a model timetree derived from the
bony-vertebrate clade in the Timetree of Life (Hedges and Kumar,
2009), from which we randomly sampled 100 taxa (Figs 2 and 3).

We simulated 50 model trees in which the evolutionary rates
among branches were autocorrelated (AR datasets) and another 50
in which the rates varied independently (IR datasets); see Tamura
et al. (2012) for more details. We used INDELible (Fletcher and
Yang, 2009) to generate 150 alignments using 50 AR phylogenies
such that three datasets were produced from each phylogeny. For
one set of data, the nucleotide substitution followed a GTR model
with stationarity and reversibility (GTR–AR dataset). In the second,
the substitution process was not time reversible (NR–AR). And, in
the third, the substitution process was NS (NS–AR). Similarly, 150
alignments were produced by using IR phylogenies, which resulted
in 50 GTR–IR, 50 NR–IR and 50 NS–IR datasets (Fig. 3).

The GTR alignments were simulated under the GTRþC
(a¼1.0) model with 1000 base pairs (bp), a base composition of
pT ¼ 0.3, pC ¼ 0.2, pA ¼ 0.3, and pG ¼ 0.2 and substitution rate
parameters a¼0.2, b¼0.4, c¼0.6, d¼0.8, e¼1.2, and f¼1. The
NR sequences were simulated under the unrestricted model, with
4000 bp, and substitution rate parameters T!C¼0.1, T!A¼0.2,
T!G¼0.3, C!T¼0.4, C!A¼0.5, C!G¼0.6, A!T¼0.1,
A!C¼0.2, A!G¼0.3, G!T¼0.4, G!C¼0.5 and G!A¼1.

The NS alignments were simulated under the three different
GTRþC (a¼1.0) models (mGTR1, mGTR2, and mGTR3), with
different base composition and rate matrix for different parts of the
phylogeny (Fig. 2). Alignments were 4000 bp long. For mGTR1, we
used a base composition of pT ¼ 0.3, pC ¼ 0.2, pA ¼ 0.3, and pG ¼
0.2, and substitution rate parameters a¼0.2, b¼0.4, c¼0.6,
d¼0.8, e¼1.2, and f¼1; for mGTR2, we used a base composition
of pT ¼ 0.05, pC ¼ 0.45, pA ¼ 0.05, and pG ¼ 0.45, and substitution
rate parameters a¼0.1, b¼0.2, c¼0.3, d¼0.4, e¼0.6, and f¼1;
for mGTR3, we used a base composition of pT ¼ 0.45, pC ¼ 0.05,
pA ¼ 0.45, and pG ¼ 0.05, and substitution rate parameters
a¼0.15, b¼0.3, c¼0.45, d¼0.5, e¼0.75, and f¼1.

2.2 Estimation of divergence times
2.2.1 Bayesian approach

All Bayesian analyses (300 datasets of 100 sequences each) were car-
ried out with the program MCMCTree (Yang, 2007). The correct
topology of the 100 taxa tree assumed (Fig. 2) to avoid confounding
phylogeny inference errors with divergence time estimation bias. We
used the AR model to analyze 150 AR datasets and the IR model for
the 150 IR datasets; this was done to avoid confounding the bias
due to the misspecification of the branch rates model with the bias
due to the violation of stationarity and time-reversibility
assumptions.

For all the analyses, we assigned to the overall rate (l) a gamma
hyperprior G(1, 1) with mean 1/1¼1 substitutions per site per time
unit (100 MY) or 10�8 substitutions per site per year. To the rate
drift parameter (r2), we assigned another a gamma hyperprior G(1,

Fig. 1. A survey of substitution models selected in 141 research articles that pub-

lished timetrees in year 2015–2017. More than 130 studies (>98%) used models

that have more free parameters than the K80 model. All studies assumed stationar-

ity and time-reversiblity of evolutionary processes, with the GTRþC and

GTRþCþI being the most preferred models. K80, HKY, TrN and GTR represent

Kimura-2-parameter (Kimura, 1980), Hasegawa–Kishino–Yano (Hasegawa et al.,

1985), Tamura–Nei (Tamura and Nei, 1993) and GTR model (Tavaré, 1986), re-

spectively. Model þC(þI) means that either a gamma distribution for incorporating

rate variation across sites is used, or a proportion of sites are assumed to be invari-

ant across sequences, or both are used along with the corresponding substitution

model
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1) with mean 1, allowing large rate variation like the ones simulated
here (Tamura et al., 2012). The sequence likelihood was calculated
under the GTR substitution model with a C distribution of site rates
(five categories; Yang, 1994). The approximate likelihood method
(dos Reis and Yang, 2011; Thorne et al., 1998) was used in max-
imum likelihood (ML) estimation of branch lengths and the Hessian

matrix. The parameters of the birth–death sampling process were

fixed at k¼ 2, l¼2, and q¼0.6 (Yang and Rannala, 2006). For
each analysis, two runs were performed, each consisting of 5 � 106

iterations after a burn-in of 5 � 104 iterations and sampling every
200, resulting in a total of 5 � 104 samples from the two runs. We
checked for convergence by comparing the posterior mean estimates
between runs and by plotting the time series traces of the samples.

We used two different calibration strategies to investigate the impact

Fig. 2. Phylogeny of 100 taxa showing calibrated nodes. The tree has been scaled to time on the basis of TEs from the Timetree of Life (Hedges and Kumar, 2009).

Calibrations are represented for three nodes (red dots). We used a uniform distribution U(min, max) for the three calibrations: (1) root calibration U(444.6, 464.6); (2)

Calibration-2 U(166.2, 186.2); (3) Calibration-3 U(157, 177). For the NS alignments, a NS process was added by changing the base composition and rate matrix for two line-

ages, starting at the ascending branches of node 2 (mGTR2) and node 3 (mGTR3)
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of calibrations on time inference: a uniform root calibration only,
and a uniform root calibration with another two additional uniform
internal calibrations—three uniform calibrations (Fig. 2).

2.2.2 RelTime analysis under relative rate framework

All RelTime analyses were carried out in MEGA-CC software that
was prototyped in MEGA X (Kumar et al., 2012, 2018). For ensur-
ing a direct comparison, we first used the ML method to estimate
branch lengths under the GTRþC model with the correct topology
by using RAxML (Stamatakis, 2014). Then, each phylogeny with
branch length was used to infer a timetree by applying the RelTime
method. Timetrees were computed using two different calibration
strategies applying uniform constraints: a root calibration only and
three calibrations (Fig. 2).

2.3 Measurements of accuracies
All comparisons of TEs from simulated data and correct times
involved normalized values that were obtained by dividing given
node time by the sum of node times in the tree. This procedure
avoids normalization biases that may be caused by using any one
node as an anchor. The percent difference in TEs (DTE) is the differ-
ence between the estimated time and the true time divided by the
true time and multiplied by 100. For comparison of model-match
and -mismatch cases, DTE is the difference between the estimated
and the GTR data TE divided by the GTR data TE and multiplied
by 100.

2.4 Measurements of coverage probability
We calculated the coverage probability of each node for each data-
set. The coverage probability of a node was the proportion of data-
sets in which the Bayesian highest posterior density intervals (HPDs)
or RelTime confidence intervals (CIs) of that node contained the
true time. This was done for all datasets with only one root calibra-
tion and with three calibrations. True times were normalized to the

sum of true times, and lower and upper bounds of HPDs (or CIs)
were normalized to the sum of estimated node times.

2.5 Measurements of branch length linearity
Because the same phylogeny was used to simulate GTR, NR and NS
datasets, their inferred branch lengths were directly comparable. For
each phylogeny simulated under AR or IR rate scenario, we com-
pared the branch lengths inferred using the GTRþC model in
RAxML for GTR and NR data and GTR and NS data. The coeffi-
cient of determination of linear regression through the origin (R2)
was used to determine the linearity of inferred branch lengths. A
higher R2 value indicated a better linear relationship.

3 Results and discussion

We first present results from analyses without applying internal cali-
brations, which is essential to learn about the intrinsic time structure
in the data because calibrations generally impose strong constraints
on node ages. We then show results from analyses using a few in-
ternal calibrations, which allow us to examine whether the use of
multiple calibrations reduce the bias in times obtained by using the
GTRþC model.

3.1 Impact of violating the time-reversibility

assumption
The use of the GTRþC model is expected to cause bias in estimat-
ing divergence times for the NR datasets because the analysis
assumed the time-reversibility of the substitution process (model-
mismatch). This bias is explored by comparing the TEs inferred by
using the GTRþC model for GTR and for NR datasets simulated
using the same phylogeny (50 replicates with autocorrelated and 50
with independent branch rates).

Fig. 3. A flowchart showing an overview of the simulation procedure used to generate datasets. We generated 150 alignments of 100 taxa from 50 phylogenies simulated using

the AR model (50 GTR, 50 NR, and 50 NS) and 150 alignments from 50 phylogenies simulated using the IR model (50 GTR, 50 NR, and 50 NS)
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In Bayesian analyses, these estimates showed a high similarity
(Fig. 4A and B). The mean absolute percent error (MAPE) was
3.97% when rates were autocorrelated and 1.42% when rates were
independent among branches, i.e. the bias is surprisingly small for
AR as well as IR datasets. The differences between TEs estimated
from GTR and NR datasets (DTEs) showed a slightly higher disper-
sion for AR datasets as compared with the IR datasets (Fig. 4C).

Figure 5 compares the dispersions of DTEs between the true
times and the times obtained when the models matched (Fig. 5A)
and the times obtained when there was a model-mismatch for the
NR datasets (Fig. 5B). Both of these comparisons show very similar
shapes and trends for AR as well as IR datasets. Therefore, the viola-
tion of the assumption of the time-reversibility of the Markov pro-
cess does not seem to have a strong biasing impact in the Bayesian
analyses.

Similar results were observed for RelTime estimates. Again, the
bias was small (Fig. 6), with MAPE equal to 4.74% when rates were
autocorrelated and 1.44% when rates were independent. Moreover,
DTEs between TEs for NR and GTR datasets showed a low and
similar dispersion for both IR and AR datasets (Fig. 6C). However,
the RelTime estimates showed greater noise (SDs) as compared with
the Bayesian node times. It is not surprising because we assumed
correct priors (e.g. tree prior and evolutionary rate model) in
Bayesian analyses. In contrast, the RelTime method does not require
such prior knowledge in estimating divergence times.

Tao et al. (2020) showed that one reason for the robustness of
relaxed clock methods to model mis-specification was that the

estimates of branch lengths under simple and complex models are
often linearly related. In the relative rate framework underlying the
RelTime method, divergence times are a function of the ratio of lin-
ear combinations of branch lengths. So, we examined the relation-
ship of inferred branch lengths for GTR and NR phylogenies in
which a GTR model was used for the inference. We found an excel-
lent linear relationship for an AR and an IR dataset (Fig. 7A and B,
R2 ¼ 0.97 and 0.98 for AR and IR dataset, respectively), which is
similar to that reported in Tao et al. (2020). The pattern of linearity
of branch lengths was observed across the majority of AR and IR
datasets (Fig. 7C). These results indicated similar relative branch
lengths were produced when the assumed model matched or did not
match the actual evolutionary process, and therefore, similar diver-
gence TEs. This linear relationship provides a fundamental reason
for the results seen for RelTime (Fig. 6) and Bayesian (Figs 4 and 5)
methods.

3.2 Impact of the violation of the non-stationarity

assumption
Next, we explored the bias of TEs caused by the use of the GTRþC
model to analyze data in which the substitution process was not sta-
tionary over time or among lineages (NS datasets). The results of
Bayesian analyses showed that the bias on TEs caused by the use of
the GTRþC model is again small (Fig. 8A and B). MAPE between
TEs estimated from NS and GTR data was 9.92% when branch
rates were autocorrelated and 7.38% when branch rates were

Fig. 4. Comparison of Bayesian TEs obtained by using the GTRþC model for analyzing GTR (model-match) and NR (model-mismatch) datasets simulated (A) with rate auto-

correlation, AR, and (B) without rate autocorrelation, IR. Each data point represents the average of normalized times from 50 simulations (61 SD—gray line). The MAPE is

shown in the upper left corner of these panels. The black 1:1 line shows the trend if the estimates were equal. (C) Distributions of the normalized differences between GTR and

NR data TEs for AR (black-dashed curve) and IR (gray curve) branch rates. For visual clarity, the distribution in (C) was truncated, removing a few outliers

Fig. 5. Distributions of the normalized differences between estimated and true node times for GTR, NR, and NS datasets—Bayesian approach (root calibration only).

Comparisons of AR (black-dashed curve) and IR (gray curve) performance for (A) GTR, (B) NR and (C) NS datasets. For visual clarity, the distribution in (A–C) was trun-

cated, removing a few outliers
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independent. The dispersion of node TEs was higher for AR datasets
than IR datasets (Fig. 8C). However, overall, the bias is greater for
NS datasets than the NR datasets (compare Figs 4 and 8), with con-
sistent problems observed for some TEs. In particular, TEs from the
lineages in which the base composition and rate matrix changed

were misestimated. Furthermore, in comparison to NR datasets
(Fig. 4C), we found that DTEs had a considerably larger dispersion
for NS data (Fig. 8C).

As for the accuracy of Bayesian times, we found that the distri-
butions of DTEs between the estimated and true TEs showed slightly

Fig. 6. Comparison of RelTime estimates obtained by using the GTRþC model for GTR (model-match) and NR (model-mismatch) datasets simulated (A) with rate autocor-

relation, AR, and (B) without rate autocorrelation, IR. Each data point represents the average of normalized times from 50 simulations (61 SD—gray line). The MAPE is

shown in the upper left corner of these panels. The black 1:1 line shows the trend if the estimates were equal. (C) Distributions of the normalized differences between GTR and

NR TEs for AR (black-dashed curve) and IR (gray curve) datasets. For visual clarity, distribution in (C) was truncated, removing a few outliers

Fig. 7. Branch length comparisons for GTR and NR datasets. Branch lengths were inferred by using the GTRþC model for (A) an AR dataset and (B) an IR dataset simulated

under the GTR model (x-axis, model-match case) and the NR model (y-axis, model-mismatch case). They all show good linear relationships. The gray-dashed line is the best-

fit linear regression through the origin. The slope (Y) and coefficient of determination (R2) are shown. (C) The dispersion of the linear trends of branch lengths. Boxes show the

variation of the coefficient of determination of the linear regression (through the origin, R2) between branch lengths inferred using the GTRþC model for 50 GTR and 50 NR

datasets simulated under AR and IR scenarios

Fig. 8. Comparison of Bayesian TEs obtained by using the GTRþC model for GTR (model-match) and NS (model-mismatch) datasets simulated (A) with rate autocorrelation,

AR, and (B) without rate autocorrelation, IR. Each data point represents the average of normalized times from 50 simulations (61 SD—gray line). The MAPE is shown in the

upper left corner of these panels. The black 1:1 line shows the trend if the estimates were equal. (C) Distributions of the normalized differences between GTR and NS data TEs

for AR (black-dashed curve) and IR (gray curve) datasets. For visual clarity, the distribution in (C) was truncated, removing a few outliers
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larger dispersion for NS than for NR and GTR datasets under AR
and IR models (Fig. 5A versus C). Therefore, the violation of the as-
sumption of stationary of the substitution process is likely to have a
somewhat considerable biasing impact in the Bayesian time
inference.

The results of RelTime analyses showed a pattern that resembled
the Bayesian methods, as similar TEs were obtained when the
GTRþC model was used on GTR datasets (model-match) and
when the GTRþC model was used on NS datasets (model-mis-
match, Fig. 9). However, the overall bias on TEs caused by the use
of the GTRþC model was slightly larger for RelTime. The MAPE
of TEs inferred from NS data was, on average, 12.56% for AR data-
sets (Fig. 9A) and 11.5% for IR datasets (Fig. 9B). In comparison to
NR data (Fig. 5C), the DTEs between TEs estimated from NS data
and GTR data displayed a larger dispersion (Fig. 9C).

We also examined the relationship of inferred branch lengths for
GTR and NS phylogenies, in which the assumption of stationarity
was violated, and a GTRþC model was used for branch lengths in-
ference. There was a very high correlation (Fig. 10A and B, R2 ¼
0.96 and 0.96 for AR and IR dataset, respectively). However, the
linear trend was weaker as compared with that for the NR data and
displayed higher variation (compare Figs 7 and 10). This slightly
weaker linear relationship appears to be the reason for the results
that higher biased estimates were produced by the use of the
GTRþC model for NS data than NR data. This is particularly

interesting, because figures 8A, 9A and 10A show very similar
trends, indicating that the bias in estimating relative branch lengths
is recapitulated in the TEs produced by both Bayesian and RelTime
approaches.

3.3 Improvements offered by the use of calibrations
We also estimated divergence times using two internal calibrations
shown in Figure 2 to examine whether the use of multiple calibra-
tions constrained the TEs and reduced the possible error caused by
the use of GTRþC. As expected, the biased estimates improved
when we use calibrations strategically positioned on the nodes that
experienced a change in the substitution model and base compos-
ition in the phylogeny.

In comparison to analyses with only the root calibration, the
MAPE for the NS data was reduced to 8.08% and 6.33% for AR
and IR datasets, respectively. For the NR case, the MAPE was
reduced to 3.65% for AR datasets, and it remained almost identical
(1.46%) for IR datasets (Fig. 11A, B, D and E). Furthermore, DTEs
from NR and NS data showed a higher correspondence to those
from GTR data (Fig. 11C and F) than in the analyses using a root
calibration only (Figs 4C and 8C).

The accuracy of Bayesian TEs remained similar when internal
calibrations were used (Fig. 12A–C), although DTEs displayed
slightly lower dispersion. Overall, DTEs showed a high correspond-
ence to those in the analyses using a root calibration only (Fig. 5A–

Fig. 9. Comparison of TEs obtained by using the GTRþC model for GTR and NS datasets—RelTime approach (root calibration only). (A) AR datasets. (B) IR datasets. Each

data point represents the average of normalized times from 50 simulations (61 SD—gray line). The MAPE is shown in the upper left portion of each plot. The black line repre-

sents equality between estimates. (C) Distributions of the normalized differences between GTR and NS TEs for AR (black-dashed curve) and IR (gray curve) datasets. For vis-

ual clarity, the distribution in (C) was truncated, removing a few outliers

Fig. 10. Branch lengths comparisons between GTR and NS data. Branch lengths inferred using the GTRþC model for (A) an AR dataset and (B) an IR dataset simulated under

the GTR model (x-axis, model case) and the NS model (y-axis, model case) show a good linear relationship. The gray-dashed line is the best-fit linear regression through the

origin. The slope (Y) and coefficient of determination (R2) are shown. (C) The dispersion of the linear trends of branch lengths. Boxes show the variation of the coefficient of

determination of the linear regression (through the origin, R2) between branch lengths inferred using the GTRþC model for 50 GTR and 50 NS datasets simulated under AR

and IR scenarios
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C), excluding NS-AR data, which displayed a significantly reduced

dispersion.

3.4 Effect of calibrations in the RelTime estimates
When compared with the Bayesian method, we found that the bias
on TEs was considerably reduced when RelTime was used, particu-

larly the bias on NR data TEs (Fig. 13A, B, D, and E). When internal
calibrations were applied, RelTime TEs inferred from GTR data

showed higher similarity to those obtained by using NR and NS

data (Fig. 13). The MAPE for NR data was reduced to 1.41% when
rates were autocorrelated, and to 1.21% when rates were independ-
ent, the MAPE in the NS case was even further reduced to 5.0% and
5.2% for AR and IR data, respectively. Furthermore, DTEs from
NR and NS data showed a high correspondence to those from GTR
data (Fig. 13C and F). These results indicate that the use of internal
calibrations can correct bias caused by the use of the GTRþC
model in analyses of sequence alignments evolved under NS and NR
substitution processes. The accuracy of RelTime TEs became higher
when internal calibrations were used, as RelTime DTEs displayed a

Fig. 11. Comparison of TEs obtained by using the GTRþC model for GTR, NR, and NS datasets—Bayesian approach (three calibrations). (A–C) NR datasets. (D–F) NS data-

sets. (A, B, D, and E) Each data point represents the average of normalized times from 50 simulations (61 SD—gray line), generated using. The MAPE is shown in the upper

left portion of each plot. The black line represents equality between estimates. Distributions of the normalized differences (C) between GTR and NR TEs, and (F) between

GTR and NS TEs for AR (black-dashed curve) and IR (gray curve) datasets. For visual clarity, the distribution in (C) and (F) was truncated, removing a few outliers

Fig. 12. Distributions of the normalized differences between estimated and true times on nodes for GTR, NR, and NS datasets—Bayesian approach (three calibrations).

Comparisons of AR (black-dashed curve) and IR (gray curve) performance for (A) GTR, (B) NR, and (C) NS datasets. For visual clarity, the distribution in (A–C) was trun-

cated, removing a few outliers
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reduced dispersion, particularly for NS data (Fig. 14). Although the
bias caused by the use of the GTRþC model to analyze NR and NS
data was reduced, RelTime TEs still displayed a larger dispersion.

3.5 Evaluation of coverage probability in Bayesian and

RelTime approaches
Next, we estimated coverage probabilities that quantified how often
the actual node times were contained in the 95% HPDs for Bayesian

analyses or 95% CIs for RelTime analyses. We found that Bayesian
HPDs obtained using the GTRþC model contained the actual node
times for the majority of nodes for GTR data (Fig. 15A, median
coverage probability ¼ 0.96). This was expected because the used
substitution model matched the actual evolutionary process. When
the data were simulated under NR and NS models, we also found
that HPDs obtained using the GTRþC model often included the
true times (Fig. 15A, median coverage probability ¼ 0.94 and 0.92
for NR and NS datasets, respectively). More interestingly,

Fig. 13. Comparison of TEs obtained by using the GTRþC model for GTR, NR and NS datasets—RelTime approach (three calibrations). (A–C) NR datasets. (D–F) NS data-

sets. (A, B, D, and E) Each data point represents the average of normalized times from 50 simulations (61 SD—gray line). The MAPE is shown in the upper left portion of

each plot. The black line represents equality between estimates. Distributions of the normalized differences (C) between GTR and NR TEs, and (F) between GTR and NS TEs

for AR (black-dashed curve) and IR (gray curve) datasets. For visual clarity, the distribution in (C) and (F) was truncated, removing a few outliers

Fig. 14. Distributions of the normalized differences between estimated and true times on nodes for GTR, NR, and NS datasets—RelTime approach (three calibrations).

Comparisons of AR (black-dashed curve) and IR (gray curve) performance for (A) GTR, (B) NR, and (C) NS datasets. For visual clarity, the distribution in (A–C) was trun-

cated, removing a few outliers
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distributions of coverage probabilities across all the nodes for NR
and NS datasets (model-mismatch cases) were very similar to the
one for GTR datasets (model-match case, Fig. 15A).

Similar distributions of coverage probabilities between matched
and mismatched cases were also observed in RelTime analyses
(Fig. 15B). These results indicate that the use of the GTRþC model
on datasets that evolved under much more complex processes is un-
likely to impact the estimation of HPDs or CIs, resulting in a consist-
ent conclusion for biological hypothesis testing. However, the
overall coverage probability of RelTime CIs was slightly lower than
the Bayesian HPDs. It may be because we assumed that correct pri-
ors (e.g. tree prior and evolutionary rate model) were known and
used them in the Bayesian method, which maximized its perform-
ance. In contrast, the RelTime method does not use any such prior
knowledge in estimating divergence times.

4 Conclusion

In this study, we have analyzed the bias on divergence time estima-
tion caused by the use of the GTRþC model to analyze sequence
alignments that violate the basic assumptions in phylogenetic analy-
ses: time-reversibility and stationarity of substitution processes. Our
results reveal that violating the time-reversibility assumption may
only have a limited effect on the accuracy of divergence TEs. In con-
trast, the use of sequences with considerable variation in base com-
positions among sequences, in which the assumption of model
stationarity is violated, has a greater effect on the accuracy and pre-
cision of divergence TEs.

Fortunately, we may expect an improvement of accuracy and
precision if we use reliable calibrations that are strategically posi-
tioned on the phylogeny. Comparable trends were observed for
node TEs between RelTime and Bayesian analyses, although overall
RelTime estimates showed a larger dispersion and higher error.

Our results are mostly consistent with the conclusion of Tao
et al. (2020) that show that the complexity of the substitution model
has only a modest impact on divergence TEs. The primary reason
for the good performance of the GTRþC for analyzing sequences
that evolved under NS and NR processes is the high linearity be-
tween the branch lengths produced by the mismatched model with
those from the correct model. The similar relative branch lengths
can be transformed to similar divergence times estimates because the
divergence times are a function of the ratio of linear combinations
of branch lengths. The present results show that using the GTRþC
model to analyze sequence alignments, whose basic assumptions are
violated, may be sufficient in a majority of time inference tasks.

Nevertheless, accounting for time-irreversibility and non-
stationarity is still an important aspect of the determination of sub-
stitution rates and other phylogenetic inference.
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Tavaré,S. (1986) Some probabilistic and statistical problems in the analysis of

DNA sequences. Am. Math. Soc. Lect. Math. Life Sci., 17, 57–86.

Thorne,J.L. et al. (1998) Estimating the rate of evolution of the rate of molecu-

lar evolution. Mol. Biol. Evol., 15, 1647–1657.

Yang,Z. (1994) Estimating the Pattern of Nucleotide Substitution. J. Mol.

Evol., 39, 105–111.

Yang,Z. (2014) Molecular Evolution: A Statistical Approach. Oxford

University Press, Oxford.

Yang,Z. (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol.

Biol. Evol., 24, 1586–1591.

Yang,Z. and Rannala,B. (2006) Bayesian estimation of species divergence

times under a molecular clock using multiple fossil calibrations with soft

bounds. Mol. Biol. Evol., 23, 212–226.

i894 J.Barba-Montoya et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/Supplem
ent_2/i884/6055914 by Tem

ple U
niversity user on 02 January 2021


	l
	l
	l
	l
	l
	l
	l
	l

