
Assessing Rapid Relaxed-Clock Methods for Phylogenomic

Dating

Jose Barba-Montoya 1,2, Qiqing Tao 1,2, and Sudhir Kumar 1,2,3,*

1Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
2Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
3Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia

*Corresponding author: E-mail: s.kumar@temple.edu.

Accepted: 4 November 2021

Abstract

Rapid relaxed-clock dating methods are frequently applied to analyze phylogenomic data sets containing hundreds to thousands of

sequences because of their accuracy and computational efficiency. However, the relative performance of different rapid dating

methods is yet to be compared on the same data sets, and, thus, the power and pitfalls of selecting among these approaches remain

unclear. We compared the accuracy, bias, and coverage probabilities of RelTime, treePL, and least-squares dating time estimates by

applying them to analyze computer-simulated data sets in which evolutionary rates varied extensively among branches in the

phylogeny. RelTime estimates were consistently more accurate than the other two, particularly when evolutionary rates were

autocorrelated or shifted convergently among lineages. The 95% confidence intervals (CIs) around RelTime dates showed appro-

priate coverage probabilities (95% on average), but other methods produced rather low coverage probabilities because of overly

narrow CIs of time estimates. Overall, RelTime appears to be a more efficient method for estimating divergence times for large

phylogenies.
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Introduction

Phylogenomic data sets encompassing many species and

genes are now routinely assembled for building molecular

timetrees, thanks to many advances in sequencing technolo-

gies (dos Reis et al. 2016; Tao, Tamura, and Kumar 2020).

These data sets can be challenging to analyze using Bayesian

dating methods because of their large calculation time and

high computer memory requirements. So, many rapid non-

Bayesian molecular dating methods are used to infer diver-

gence times of data sets containing hundreds and thousands

of sequences and lineages (reviewed in Tao, Tamura, and

Kumar 2020). Both rapid and Bayesian methods allow branch

evolutionary rates to be heterogeneous across the phylogeny

Significance

Many studies now report using RelTime, treePL, and least-squares dating (LSD) approaches to analyze phylogenomic

data sets that usually contain hundreds or thousands of sequences and genes. However, the performance of these

methods has not been thoroughly compared. Therefore, researchers need a comparative assessment of rapid methods

to determine the advantages of preferring one approach over another in certain evolutionary situations. This article

presents accuracy, bias, and coverage probabilities of time estimates produced by applying rapid methods to com-

puter-simulated data sets in which evolutionary rates varied extensively throughout the phylogeny. The RelTime

method produced estimates with higher accuracy, lower bias, and confidence intervals suitable for biological hypoth-

esis testing.
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(Sanderson 1997, 2002; Tamura et al. 2012, 2018; Tao,

Tamura, and Kumar 2020). Computational requirements of

rapid methods are a small fraction of that required by

Bayesian methods (dos Reis et al. 2016; Tao, Tamura, and

Kumar 2020). Two fast relaxed-clock methods are being ap-

plied more often than all others. One is the RelTime method

based on the relative rate framework (RRF) (Tamura et al.

2012, 2018) as implemented in MEGA (Tamura et al.

2021). The other is the penalized likelihood (PL) method, first

implemented in r8s (Sanderson 2002, 2003) and now avail-

able in other software, including treePL (Smith and O’Meara

2012) and chronopl/chronos (ape R package, Paradis 2013).

RelTime and treePL have been used for node dating in hun-

dreds of research articles in the last five years.

In brief, the PL approach estimates divergence times using

an optimization algorithm that minimizes (smooths) the

squared differences between ancestral and descendant

branch rates in a phylogenetic tree (Sanderson 1997, 2002).

PL applies a penalty to rate changes between adjacent

branches while maximizing the likelihood of the data, thus

allowing estimation of both rates and times. Implementation

of this method in treePL includes a global smoothing param-

eter estimated through a cross-validation procedure, which

controls the magnitude of penalizing rate changes relative

to the likelihood (Smith and O’Meara 2012). The penalized

likelihood score is then maximized, allowing the estimation of

branch-specific rates and divergence times across the phylo-

genetic tree (Sanderson 2002). The CIs of treePL time esti-

mates, which represent the uncertainty of estimates, are

often obtained via a bootstrap procedure (Sanderson 1997,

2003; Thorne and Kishino 2005; Yang 2014).

In contrast, the RelTime approach is based on RRF, which

also relaxes the molecular clock but does not require a global

parameter for rate smoothing. Instead, RRF solved a system of

equations providing relationships of ratios of lineage rates and

lengths for every node in the phylogeny (Tamura et al. 2018).

In RRF, an evolutionary lineage encompasses the stem branch

and the clade originating from it, which is different from PL in

which branch rates are considered. Ultimately, RRF produces

analytical formulas for directly estimating lineage rates and

node times as a function of branch lengths in the phylogeny.

This analytical formulation has been utilized to derive equa-

tions to estimate CIs (no bootstrapping) for node times in a

way that incorporates both rate heterogeneity among line-

ages and errors in branch length estimates (Tao, Tamura,

Mello, et al. 2020).

Many studies have tested the RelTime method and com-

pared its accuracy with Bayesian methods. These studies ap-

plied RelTime in the analysis of empirical data sets as well as

data sets simulated under a variety of evolutionary scenarios

for large data sets (Tamura et al. 2012, 2018; Mello et al.

2017; Battistuzzi et al. 2018; Barba-Montoya et al. 2020;

Beavan et al. 2020; Tao, Tamura, and Kumar 2020). They

report comparable performance of RelTime and Bayesian

methods, with and without applying internal calibrations. In

contrast, testing of treePL’s performance for large data sets

has been somewhat limited. For example, Smith and O’Meara

(2012) suggested that treePL estimated times were overall as

accurate as of its predecessor r8s (Sanderson 2003) and that it

performed better than PATHd8, which assumes a molecular

clock (Britton et al. 2007). However, r8s implementation was

tested in Tamura et al. (2012) and found not to perform as

well as RelTime in some situations. Other evaluations of PL

methods have been made for phylogenies with a small num-

ber of sequences (Sanderson 1997; Ho et al. 2005).

Some studies have reported similar performance between

treePL and Bayesian methods, but they used internal calibra-

tions, making it difficult to assess the relative power of the

time structure imposed by calibrations versus that inferred by

the PL approach (Smith and O’Meara, 2012; Gunter et al.

2016; Carruthers et al. 2020). Moreover, the performance

of treePL using phylogenies in which branches evolved with

uncorrelated rates has not been evaluated. Furthermore,

there is a need to assess the accuracy of treePL’s divergence

time estimates node-by-node and their CIs’ coverage proba-

bilities (CPs).

Importantly, the performance of RelTime and treePL has

not been compared thoroughly on the same data sets or un-

der a variety of evolutionary rate heterogeneity models.

Researchers need such comparisons to determine if there

are advantages to preferring a method in certain evolutionary

situations. Therefore, we have compared the accuracy of both

RelTime and treePL by analyzing data sets generated by com-

puter simulations in which branch evolutionary rates varied

greatly following autocorrelated and uncorrelated rate mod-

els. We focused our investigation on dating analyses in which

no time constraints were used, except for a single root cali-

bration. This choice allowed us to directly examine the power

of PL and RRF frameworks in dealing with rate variation with-

out the aid of internal calibrations (see the Discussion).

In addition to evaluating the accuracy and bias, we have

compared CPs of the CIs produced by RelTime and treePL. This

is important because the bootstrap approach to estimate CIs

around treePL estimates can only account for errors in branch

length estimates, which ignores variances caused by the het-

erogeneity of rates among lineages (Thorne and Kishino 2005;

Yang 2014). This contrasts with the analytical method avail-

able for RelTime that accounts for variances contributed by

errors associated with branch length estimation and rate var-

iation among branches (Tao, Tamura, Mello, et al. 2020).

In addition to treePL and RelTime, we have included an

evaluation of an LSD approach (To et al. 2016) because its

statistical basis is different from the RRF and PL approaches.

The LSD method assumes the noise in molecular rates to be

approximately normally distributed and independent among

branches. In LSD, CIs are calculated by resampling the branch
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FIG. 1.—Phylogenies used in this study. Phylogeny of 446 taxa showing calibrated nodes (A), the tree has been scaled to time based on the time

estimates from the Timetree of Life (Hedges and Kumar, 2009). Calibrations are represented for two nodes. 1) A uniform distribution U(min, max) for the

rooting ingroup calibration U(444.6, 464.6 Ma) was applied in both RelTime and treePL analyses. For LSD, the calibration was fixed to 454 Ma (closed black

dot). 2) In treePL analysis, a max constraint (527 Ma) was applied on the root (open black dot). In RelTime and LSD, the rooting outgroup was excluded from

the analysis. Simulated ML phylogenies with branch lengths for CR (B), RR50 (C), and AR (D) replicates. Note that branch lengths from RR50 (C) and AR (D)

ML phylogenies display a large rate variation. Phylogeny of 111 taxa showing calibrated nodes (E), the tree has been scaled to time based on the time

estimates from Beaulieu et al. (2015). Calibrations are represented for two nodes. 1) A uniform distribution for the rooting ingroup calibration U(135, 145

Ma) was applied in both RelTime and treePL analyses. For LSD, the calibration was fixed to 140 Ma (closed black dot). 2) In the treePL analysis, a max

constraint (317 Ma) was applied on the root (open black dot). In RelTime and LSD, the rooting outgroup was excluded from the analysis. Simulated ML

phylogenies with branch lengths for (F) 3� and (G) 6� rate difference replicates. Faster molecular rates were simulated by independently drawing rates for

the orange branches from a lognormal distribution with a mean 3� and 6� higher (orange curves) than all other branches in the tree (gray curves) (F and G).

Assessing Rapid Relaxed-Clock Dating Methods GBE

Genome Biol. Evol. 13(11) https://doi.org/10.1093/gbe/evab251 Advance Access publication 9 November 2021 3

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/13/11/evab251/6423996 by Tem

ple U
niversity user on 01 D

ecem
ber 2021



lengths of the estimated timetrees to build a set of trees for CI

inference; it uses a Poisson distribution to generate resampled

branch lengths.

In the following, we present results from our comparison

of the accuracy, bias, and coverage probabilities of time esti-

mates produced by applying these three rapid methods to

computer-simulated data sets in which evolutionary rates var-

ied extensively throughout the phylogeny.

Results

Impact of Rate Variation Process on Time Estimates

We quantified the accuracy and bias of time estimates pro-

duced by RelTime, treePL, and LSD for data sets in which

sequences were evolved with constant and variable evolution-

ary rates. We used data sets previously simulated by Tamura

et al. (2012). Their model timetree consisted of 446 species

derived from the bony-vertebrate clade in the Timetree of Life

(Hedges and Kumar 2009) (fig. 1A). One hundred sequence

alignments were generated under molecular clock as a base-

line (CR data sets; fig. 1B). Another 100 alignments were

generated by varying rates independently on each branch

by 650% of the overall rate (RR50 data sets; fig. 1C). And,

finally, 100 data sets were selected in which the rate variation

was autocorrelated (AR data sets; fig. 1D).

We also used data sets previously simulated by Beaulieu

et al. (2015) for a model timetree of 111 taxa (fig. 1E) derived

from the analysis of the age of land plant clades. Assuming

autocorrelated rates among lineages, Beaulieu et al. (2015)

simulated scenarios in which four clades in the phylogeny

evolved three times higher rate than the remaining taxa (3�
data sets; fig. 1F). They also simulated a more extreme six

times rate difference scenario (6� data sets; fig. 1G). The

simulation system and model parameters used are presented

in the Materials and Methods.

Accuracy of Individual Node Times

We first present results for data sets simulated using the

model tree in figure 1A. When the evolutionary rates were

constant (CR), the distribution of differences between RelTime

estimated times and true times (DTEs) was centered close to

zero, with a median equal to –0.3% (fig. 2A). The distribution

around zero seems symmetrical, but some recent node times

were estimated with larger errors.

The distribution of treePL DTEs was neither symmetrical

nor centered close to zero (fig. 2A). Many node times were

underestimated, resulting in an overall tendency to underes-

timate times (median DTE¼ –3%; fig. 2A). That is, treePL was

sensitive to even small amounts of rate deviation from a strict

molecular clock caused by the stochastic nature of the evolu-

tionary process. In contrast, LSD DTE distribution was cen-

tered on zero (fig. 2A).

When evolutionary rates varied independently from branch

to branch (RR50 data sets), the performance of treePL dete-

riorated. The tail of the DTE distribution became longer

(fig. 2B). In RelTime and LSD, the distribution of DTEs was still

symmetrical, although slightly off-center (fig. 2B). Dispersions

of DTEs for RR50 data sets were greater than CR data sets

because of greater rate variation among lineages in the RR50

phylogenies (compare fig. 1B and C).

The performance of treePL for AR data sets was much

worse than RR50 data sets, as the median underestimate

grew to –36% (fig. 2C). Overall, the acute rate variation cre-

ated by the autocorrelation of branch rates made it more

challenging to estimate dates (compare fig. 1C and D). But
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LSD median = -16%
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FIG. 2.—Distributions of the differences between estimated and true node times (DTEs) for CR (A), RR50 (B), and AR (C) data sets for times inferred by

RelTime (blue curve) treePL (red curve) and LSD (green curve). The distribution in A–C was truncated for visual clarity, which excluded a few outliers. The

median of each distribution is shown and the arrows mark modes of treePL and LSD distributions for the AR data set in panel C. The standard deviations for

RelTime, treePL, and LSD, respectively, are as follows in panel (A) 13, 24, 7; (B) 23, 112, 15; and (C) 23, 57, 82.
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sets. Each data point represents the average of time estimates from 100 simulations (6 SD—gray bars). The slope and coefficient of determination (R2) for
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the effect on treePL and LSD performance was much more

severe. RelTime DTE distribution maintained symmetry, unlike

LSD and treePL that produced strong left-leaning distributions

with modes >–50% underestimates. The underestimation of

DTEs was much lower for RelTime than treePL and LSD

(fig. 2C). Therefore, RelTime dealt with rate heterogeneity

better than the other two for the data sets analyzed here.

Bias in the Estimates of Node Times

For each node, the average of estimated times across 100

replicate data sets was used to assess bias. The slope of aver-

age node time estimates from the three methods was very

close to one when regressed against the true node times for

the CR data sets (fig. 3A–C). For RR50 data sets, the slope was

close to one for all three methods (fig. 3D–F), but treePL

estimates displayed a larger dispersion (fig. 3E). For AR data

sets, RelTime estimates showed a slightly curvilinear relation-

ship due to underestimation of intermediate divergence times

(fig. 3G). These underestimates were likely the reason for the

shift in DTEs distribution seen in figure 2C, which corresponds

to a�15% underestimation. For the same data sets (AR), the

relationship of time estimates from treePL was much more

curvilinear, causing a large bias (fig. 3H). The dispersion of

treePL time estimates was also much larger than RelTime

(compare fig. 3G and H). LSD time estimates did not show

a curvilinear relationship (fig. 3I) but a rather large dispersion.

This corresponds to the off-center trend observed in

figure 2C.

We examined the distribution of inferred times from 100

replicate data sets for randomly selected deep, intermediate,

and shallow nodes to assess time estimates’ bias in different

phylogeny regions (fig. 3J–L). We found that the dispersion

and bias of treePL time estimates for CR and RR50 were larger

than RelTime and LSD at all node depths (fig. 3J–L). For AR

phylogenies, both treePL and LSD generated a much larger

dispersion than RelTime throughout the phylogeny (fig. 3J–L).

Coverage Probabilities of Confidence Intervals

The accuracy of CIs was measured by coverage probabilities

(CP). CP is the proportion of 100 data sets containing the

actual node times in the CIs generated by the given method

(RelTime, treePL, or LSD). The median CP of RelTime was

greater than 0.9 for CR, RR50, and AR data sets (fig. 4A),

meaning that the estimated CIs contained true time for more

than 90% of the data sets in all three cases. In contrast, CPs

were much lower for treePL and LSD. For CR data sets, the

treePL and LSD CPs were 0.87 and 0.84, respectively (fig. 4B

and C). The performance for RR50 data sets was worse for

LSD (0.43, fig. 4C) and remained low for treePL (0.86,

fig. 4B). The performance of CIs for AR data sets was poor

for treePL (0.49, fig. 4B) and LSD (0.11, fig. 4C). These results

are partly due to the biased time estimates produced by treePL

and LSD (fig. 3H–J). They are also due to overly narrow CIs of

estimated times. We calculated normalized CI widths (NCIW)

for node times as CI width divided by true time and then

multiplied by 100. In the CR case, the relative widths of CIs

were similar for RelTime and treePL, with a median NCIW of

45% and 55%, respectively (fig. 4D and E). For the same CR

data sets, the median NCIW for LSD was much narrower

(18%, fig. 4F), which resulted in lower CPs.

The difference becomes much greater for phylogenies with

extensive rate variation, as RelTime CIs were wider than treePL

and LSD. The median NCIW of RelTime estimates was 97%

for RR50 and 164% for AR cases (fig. 4D). For treePL, the

median NCIW was substantially lower than RelTime; 65% and

82% for RR50 and AR case, respectively (fig. 4E). For LSD, the

median NCIW was very small (�18%, fig. 4F). We note that

LSD did not generate CI for all the nodes in the phylogeny

because the timetree contained many multifurcations at

which the NCIW was equal to zero. Therefore, the lower

coverage probability for treePL and LSD was due to narrower

CIs and more biased time estimates (fig. 3B, C, E, F, H, and I).

Impact of Significant Lineage-Specific Rate Shifts on Time
Estimates

The model tree in figure 1E was used to simulate major

lineage-specific rate shifts. Figure 1F and G shows the impact

of rate shifts in which some rates increased three times (3�
data sets) or six times (6� data sets). That is, some lineages

evolved convergently faster than others in the tree, which has

been shown to impact divergence time estimates from

Bayesian methods (Beaulieu et al. 2015). We quantified the

accuracy, bias, and CPs of time estimates produced by

RelTime, treePL, and LSD for these data sets.

Accuracy of Individual Node Times

We compared the distributions of DTEs produced by RelTime,

TreePL, and LSD (fig. 5). For RelTime, there is no significant

difference in time estimates from 3� and 6� data sets. Both

RelTime distributions were centered around zero (fig. 5A and

B, blue curve). However, treePL and LSD DTEs for both 3�and

6� data sets deviated significantly from zero. They showed a

much larger dispersion, with 6� data sets displaying even

larger bias and dispersion. The treePL and LSD DTE distribu-

tions were bimodal and tended to underestimate times

(fig. 5A and B, red and green curves). Therefore, the median

DTEs were considerably higher for treePL (–44% and –70%

for 3� and 6� data sets, respectively) and LSD (–30% for 3�
and –43% for 6�) as compared with RelTime (–3% for 3�
and –1% for 6� data sets).

Bias in the Estimates of Node Times

We averaged absolute times across 100 data sets for each

node and regressed them against the true times. In both 3�
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and 6� cases, RelTime time estimates were slightly biased

because the slopes of average node time estimates were

somewhat smaller than one (fig. 6A and D). In contrast,

treePL (fig. 6B and E) and LSD estimates (fig. 6C and F)

were more biased. For treePL and LSD estimates, the slope

was much lower than one for 3� data sets (0.71 and 0.79,

respectively, fig. 6B and C) and even lower for 6� data sets

(0.57 and 0.73, respectively, fig. 6E and F). The large differ-

ence in time estimates between 3� and 6� data sets indicates

that treePL and LSD are not robust to significant lineage-
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specific rate shifts. Interestingly, LSD and treePL estimates also

showed two trends (fig. 6B, C, E, and F), corresponding to the

bimodal pattern in DTEs (fig. 5).

The distribution of time estimates from 100 replicate data

sets for individual shallow, intermediate, and deep nodes

from RelTime, treePL, and LSD are shown in figure 6G–I.

RelTime time estimates displayed a large dispersion for shal-

low and intermediate nodes, but estimates were centered

around the true node time (fig. 6G and H). For the same

nodes, treePL and LSD displayed lower dispersions but highly
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biased distributions far from the true node times (fig. 6G and

H). For deep nodes, all three methods produced times with

distributions centered close to the true node time (fig. 6I).

Coverage Probabilities of Confidence Intervals

For both 3� and 6� data sets, RelTime produced excellent

CPs. The median CP was 96% and 99% for 3� and 6�,

respectively (fig. 7A). This was not the case for treePL and

LSD estimates; CIs contained the actual node times in a very

small proportion of nodes, as the median CP was less than

10% for 3� and 0% for 6� data sets (fig. 7B and C). This is

due to the biased estimates and narrow CIs produced by

treePL and LSD. For treePL, the median NCIW were similar

for 3� (30%) and 6� (23%) data sets (fig. 7E). The perfor-

mance of LSD was even worse (6–8%; fig. 7F). As noted

earlier, LSD did not generate CIs for many node times involved

in multifurcations.

A Comparison of Branch Rates

We also examined the accuracy of branch rate estimates from

RelTime, treePL, and LSD by comparing the distributions of

the differences between the estimated and true branch rates

(DREs) for a randomly selected phylogeny from each

simulation scenario (CR, RR50, AR, 3�, and 6�). The branch

rate estimates were computed as the maximum likelihood

(ML) branch lengths divided by branch length in time units

(ancestor–descendent node times). For CR phylogenies, DREs

for three methods had a similar distribution that was slightly

off-center with a median overestimate of<14% (fig. 8A). For

the phylogenies in which evolutionary rates were variable

(RR50, AR, 3� and 6�), the DREs for RelTime showed similar

patterns but with larger dispersions. In contrast, DREs for

treePL and LSD deviated much more from zero. They showed

a large dispersion for variable rate phylogenies (fig. 8B–E).

Overall, RelTime rates were more accurate, which is reason-

able because node times were estimated more accurately.

Discussion

We have reported the relative performance of the three meth-

ods investigated (RelTime, treePL, and LSD), which depends

on the conditions used for simulating sequence data sets. All

three methods perform well in estimating node times when

evolutionary rates are constant or vary independently among

branches. But major differences exist for phylogenies with

autocorrelated rates for which RelTime performed better.

This result will make RelTime more appealing for analyzing

empirical data sets because extensive autocorrelation of
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molecular rates has been reported in diverse taxonomic

groups across the tree of life (Tao et al. 2019). RelTime also

did better for some phylogenies in which rates shifted con-

vergently among lineages.

RelTime also produced CIs with expected coverage proba-

bilities, that is, close to 95% success for 95% CIs. In contrast,

LSD and treePL yielded CIs with very low CP when rates vary

across the phylogeny, making them unsuitable for biological

hypothesis testing. The treePL CIs are overly narrow CIs be-

cause they were produced using the bootstrap approach. The

bootstrap approach only accounts for the errors associated

with branch lengths estimation (Thorne and Kishino 2005;

Yang 2014). It fails to consider branch rate variation in esti-

mating CIs, which causes CI widths for time estimates from

the analysis of CR data sets to be similar to those with exten-

sive rate variation (RR50 and AR) (fig. 4D–F). The resampling

of branch lengths to compute CIs in LSD also does not incor-

porate the variance due to branch rate variation, which results

in narrow CIs for CR, RR50, and AR phylogenies (fig. 4D–F).

In contrast, RelTime uses analytical equations to properly

incorporate the errors associated with branch lengths and the

rate variation in CI calculation. Therefore, CIs produced by

RelTime are much wider for RR50 and AR data sets than those

in the CR case (fig. 4D–F). These wide intervals are closer to

the correct intervals because the expectation of coverage

probability of 0.95 is met much better by RelTime CIs.

Moreover, the use of the bootstrap approach makes treePL

much slower than RelTime and LSD. For example, CI calcula-

tions for data sets containing �450 taxa required more than

10 days to finish in treePL, whereas LSD and RelTime require

only �35 and 0.13 s, respectively.

Surprisingly, treePL did not perform well for AR data sets,

even though the autocorrelation of branch rates is inherent in

the PL framework. This prompted us to analyze some AR data

sets in the original PL software, r8s (Sanderson 2003). We

found r8s to perform better than treePL for an AR data set

in which treePL performed the worst (average DTE was 25%

for r8s and 75% for treePL for the phylogeny), suggesting

that PL implementation in treePL may contribute to its poor

performance. In the future, it will be useful to conduct a more

extensive comparison of r8s and treePL. But RelTime estimates

were significantly better than PL estimates (r8s and treePL) for
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AR data sets, whereas RelTime and treePL performed similarly

for RR50 data sets.

One possible explanation for the difference in the perfor-

mance of RelTime and PL approaches for AR phylogenies is

that AR phylogenies have a much larger local rate variation

than RR50 phylogenies (e.g., fig. 1C vs D). This is because the

probability of rate shift was sampled from a lognormal distribu-

tion in simulating autocorrelated rates, which results in some

clades having much higher rate shifts than their parent clades.

When the phylogeny is big, there is a higher chance of having

clades with large rate changes. Importantly, unlike the RR50

cases where the rates of branches descending from the

branches experienced the extreme rate shift can vary indepen-

dently and randomly, the rates of the descendant branches will

remain extreme because they inherit the large rate change from

their ancestor in the AR evolution. When this happens, AR phy-

logenies show a similar structure as the phylogenies in 3� and

6� rate-shift cases. Using a single, global smoothing parameter

to penalize the rate change in phylogenies with large localized

rate differences seems unsuitable. In contrast, RelTime does not

use a global rate smoothing to control the rate change; rather, it

minimizes the rate change between sister lineages and ancestor-

descendant lineages at each node in the tree (Tamura et al.

2018). This local rate smoothing seems to give RelTime more

flexibility to tolerate large rate shifts, resulting in better rate and

time estimates. As for the lower performance of LSD for phy-

logenies with autocorrelated rates, it is likely because LSD is

explicitly designed for phylogenies without correlated rates (To

et al. 2016).

In practice, we expect the performance differences among

the three rapid methods to decrease when multiple well-

constrained calibrations can be applied. In the present study,

we used only one root calibration because the focus was on

assessing the power of each investigated method independent

of the time structure introduced by the calibration priors. It is

useful to note that RelTime implementation in MEGA can use

probability densities to accommodate calibration uncertainties

(Tao, Tamura, Mello, et al. 2020), but treePL and LSD currently

only allow calibration boundaries. Ultimately, the use of multiple

well-constrained and reliable calibrations is expected to produce

better time estimates with higher precision (narrower CIs).

It is important to note that our investigation has been fo-

cused on dating a specified phylogeny, thereby assuming no

uncertainty in phylogenetic relationships. The addition of this

uncertainty may increase the variance of divergence time esti-

mates for some nodes (Ho and Phillips 2009). Therefore, it is a

common practice to generate a reliable phylogeny before es-

timating dates. If the inferred tree is inaccurate, time esti-

mates for many nodes will be meaningless because they

would not correspond to actual evolutionary divergence

events (Tao, Tamura, and Kumar 2020). In any case, one

may apply dating methods to alternative, fully resolved phy-

logenetic tree topologies and evaluate the robustness of time

estimation to uncertainties in the tree topology (dos Reis et al.

2015). Nevertheless, evaluation of the impact of the phyloge-

netic uncertainty on time estimates is beyond the scope of the

current study but will be pursued in future work.

Finally, based on our simulation results, we propose some

simple guidelines for rapid molecular dating based on the

objective of the molecular dating study. If the primary focus

is to estimate divergence times only, one should first test if the

evolutionary rates are autocorrelated, for example, by using

Tao et al. (2019) method. If so, then RelTime should be con-

sidered; otherwise, one may use RelTime, LSD, or treePL. On

the other hand, if one needs to estimate divergence times

with CIs, then RelTime is preferred for all empirical data anal-

yses (correlated and uncorrelated branch rates) because of

RelTime’s high coverage probabilities, accurate times, and

much faster speed. It is useful to note that RelTime’s CIs are

broader because the analytical approach employed accounts

for the variance associated with the branch lengths estimation

and the variance due to rate heterogeneity in CI calculation,

which is not the case for treePL and LSD CIs.

Moreover, several recent studies using empirical (Mello

et al. 2017; Battistuzzi et al. 2018; Tao, Tamura, Mello,

et al. 2020) and simulated data (Barba-Montoya et al. 2020;

Mello et al. 2021) have reported RelTime to perform as well as

Bayesian methods for dating phylogenies with and without

calibrations. Therefore, we find that RelTime can be of general

use for dating phylogenies, large and small. Whenever feasi-

ble, both RelTime and Bayesian methods should be used, and

the results compared because no technique is almighty. The

concordance of biological inference from methods developed

using different frameworks shows the robustness of results to

intrinsic assumptions. Such a test will not impose much addi-

tional computational expense because RelTime is orders of

magnitude faster than Bayesian methods.

Materials and Methods

Computer Simulated Data Sets

Simulation of Data Sets under Different Rate Variation
Processes

We used data sets previously simulated by Tamura et al.

(2012). The model timetree consisted of 446 species derived

from the bony-vertebrate clade in the Timetree of Life (Hedges

and Kumar 2009) (fig. 1A). We chose 100 gene alignments in

which the rates were clock-like (CR data sets, fig. 1B). We also

selected another 100 data sets in which the rates varied inde-

pendently on each branch by 650% of the overall rate (RR50

data sets; fig. 1C). Another 100 data sets chosen were those in

which the rate variation was autocorrelated (AR data sets),

such that the rate of a descendant branch was drawn from

a lognormal distribution around the mean rate of the ancestral

branch. For the 100 AR data sets (fig. 1D), autocorrelation

parameter �¼ 1 was used (Kishino et al. 2001). All data sets

were generated using SeqGen (Rambaut and Grassly 1997)
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under the Hasegawa–Kishino–Yano model (Hasegawa et al.

1985) and heterogeneous sets of evolutionary parameters,

including sequence lengths (258 to 9353 sites), evolutionary

rates (range 1.35–2.60 substitutions per site per billion years),

GþC-content bias (GþC contents range 39–82%), and

transition/transversion rate bias (transition/transversion ratio,

range 1.9–6.0). For more details, refer to Tamura et al. (2012).

Simulation of Data Sets with Significant Lineage-Specific
Rate Heterogeneity

We used data sets previously simulated by Beaulieu et al.

(2015) using a model timetree of 111 taxa (fig. 1E) derived

from the analysis of the age of land plant clades. The age of

crown angiosperms in the model timetree was fixed to be 140

Ma (fig. 1E, closed black dot). Assuming an AR among line-

ages, Beaulieu et al. (2015) simulated scenarios in which four

clades in the phylogeny evolved three times higher rate than

the remaining taxa (fig. 1F). They also simulated a more ex-

treme six times rate difference (fig. 1G). Faster branch-specific

molecular rates were simulated by independently drawing

rates for the branches of four clades within angiosperms

(fig. 1F and G; orange branches) from a lognormal distribution

with a mean of 3� higher and 6� higher than all other

branches in the tree. The inferred parametric shape of the

lognormal distribution of rates from the analysis of land plants

(mean ¼ 5� 10�4, Standard Deviation ¼ 0.75) was used as a

baseline for increasing the rate of the four clades. Using the

model timetree shown in figure 1E, 100 data sets with 3� and

100 data sets with 6� rate acceleration were generated and

used to simulate sequence alignments of 1,000 sites using

SeqGen (Rambaut and Grassly 1997). A general time reversible

model of nucleotide substitution was assumed (Tavar�e 1986),

applying the inferred parameters from the analysis of land

plants. For more details refer to Beaulieu et al. (2015).

Dating by RelTime (Relative Rate Framework)

All RelTime analyses used MEGA-CC for macOS (Stecher et al.

2020). They were prototyped in MEGA X (Kumar et al. 2012,

2018). We used correct species relationships (figs 1A and E) to

avoid confounding the influence of phylogeny accuracy with

the performance in estimating time. For all data sets (CR,

RR50, AR, 3�, and 6�), branch lengths were calculated using

the ML approach and the correct substitution model in MEGA-

CC. This phylogeny was then used to infer node times and CIs.

To generate trees with absolute times for comparative pur-

poses, we assumed the correct ingroup root node dates. For

CR, RR50, and AR, a uniform distribution U(444.6, 464.6 Ma)

was specified for the tree in figure 1A (closed black dot). The

3� and 6� timetrees were computed using a root calibration

only (rooting ingroup node; fig. 1E, closed black dot), specified

using a uniform distribution U(135, 145 Ma). Dates for all taxa

in the outgroup were excluded because RelTime analysis does

not produce estimates in the outgroup (for an explanation,

refer to Tamura et al. 2012, 2018).

Dating by treePL (Penalized Likelihood)

The PL dating analysis was conducted in treePL (Smith and

O’Meara 2012). As in RelTime analysis, each ML phylogeny

with branch lengths was used as an input for PL dating anal-

ysis. The best-fit smoothing parameter was specified empiri-

cally for each ML phylogeny using a CV test implemented in

treePL (Sanderson 2003; Smith and O’Meara 2012). First, the

best optimization parameters for each ML phylogeny were

determined by prime command. Then, each of the ML phy-

logenies was subjected to a CV test under the following

parameters: cvstart ¼ 106; cvstop ¼ 10�12; cvmultstep ¼
0.1; and the parameters determined by running the prime

command. Finally, every ML phylogeny was subjected to a

“thorough” dating analysis using the best-fit smoothing pa-

rameter inferred in the CV test.

CR, RR50, and AR timetrees were computed applying one

calibration on the ingroup node, specified assigning a uniform

distribution U(444.6, 464.6 Ma) and a maximum (correct) age

constraint of 527 Ma on the rooting outgroup node to ensure

that the height of the inferred timetrees matches the model

tree height. To generate CIs for the PL dated nodes, we gen-

erated 500 bootstrap replicates for each simulated sequence

alignment using the model tree (fig. 1A) as a constraint in

RAxML (Stamatakis 2014). Each ML bootstrap tree was then

individually dated using treePL under the same parameters as

the single age estimation analysis described above. Then, the

500 dated bootstrap trees were imported into TreeAnnotator

(Bouckaert et al. 2019) to calculate the 95% CI for each node.

The 3� and 6� timetrees were computed applying one

calibration on the ingroup node, specified assigning a uniform

distribution U(135, 145 Ma) and a maximum (correct) age

constraint of 317 Ma on the rooting outgroup node to ensure

that the height of the inferred timetrees matches the model

tree height. One thousand bootstrap replicates for each sim-

ulated sequence alignment using the model tree (fig. 1E) as a

constraint in RAxML (Stamatakis 2014) were computed to

generate CIs for the node dates. Each ML bootstrap tree

was then individually dated using treePL under the same

parameters as the single age estimation analysis. Then, 95%

CI for each node was calculated in TreeAnnotator (Bouckaert

et al. 2019) by using the 1,000 dated bootstrap trees.

Dating by LSD (Least-Squares)

The least-squares dating analysis was conducted in LSD-

v0.3beta (To et al. 2016). Each ML phylogeny with branch

lengths was used as an input for LSD dating analysis to infer

node times and CIs. LSD timetrees were estimated excluding

the outgroup, assuming correct root node dates and tip dates

were set to zero Ma. For CR, RR50, and AR analyses, the root

calibration was fixed to 454 Ma for the tree in figure 1A
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(closed black dot). For 3� and 6� data sets, timetrees were

computed using a root calibration only (tree in fig. 1E, closed

black dot), specified using a point calibration of 140 Ma. CIs

for the estimated dates were calculated by resampling the

branch lengths of the estimated trees 1,000 times to generate

a set of simulated trees for CI inference. This method of CI

calculation does not involve bootstrap resampling of sites or

ML estimation of branch lengths, so it is considerably faster.

Measurements of Accuracy, Bias, and Coverage
Probabilities

The difference between the estimated and true times was

computed for every node in the inferred timetrees. The dif-

ference was divided by the true time and multiplied by 100 to

generate percent time error (DTE). A positive value of DTE

shows an overestimation, and a negative value underesti-

mates true time. Node time bias is the median of DTEs from

all 100 data sets in the collection (CR, AR, RR50, 3�, or 6�).

The percent error in branch rates (DRE) is the difference be-

tween estimated and the true branch rates divided by the true

branch rates and multiplied by 100. We also computed the

distribution of time estimates from 100 replicate data sets for

randomly selected deep, intermediate, and shallow nodes in

the given phylogeny. Shallow nodes are nodes with two

descending tips, deep nodes are immediate descendants of

the root, and intermediate nodes are nodes whose ages were

�50% of the root age. The CP of CI for a node’s time is the

proportion of data sets in which the CI of the time estimate of

that node contained the true time. We also compared NCIW

for node times as CI width/true-time � 100.
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