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Abstract— Predictive modeling is useful but very challenging
in biological image analysis due to the high cost of obtaining and
labeling training data. For example, in the study of gene inter-
action and regulation in Drosophila embryogenesis, the analysis
is most biologically meaningful when in situ hybridization (ISH)
gene expression pattern images from the same developmental
stage are compared. However, labeling training data with precise
stages is very time-consuming even for developmental biologists.
Thus, a critical challenge is how to build accurate compu-
tational models for precise developmental stage classification
from limited training samples. In addition, identification and
visualization of developmental landmarks are required to enable
biologists to interpret prediction results and calibrate models.
To address these challenges, we propose a deep two-step low-
shot learning framework to accurately classify ISH images using
limited training images. Specifically, to enable accurate model
training on limited training samples, we formulate the task as
a deep low-shot learning problem and develop a novel two-step
learning approach, including data-level learning and feature-level
learning. We use a deep residual network as our base model and
achieve improved performance in the precise stage prediction task
of ISH images. Furthermore, the deep model can be interpreted
by computing saliency maps, which consists of pixel-wise contri-
butions of an image to its prediction result. In our task, saliency
maps are used to assist the identification and visualization of
developmental landmarks. Our experimental results show that
the proposed model can not only make accurate predictions but
also yield biologically meaningful interpretations. We anticipate
our methods to be easily generalizable to other biological image
classification tasks with small training datasets. Our open-source
code is available at https://github.com/divelab/lsl-fly.

Index Terms— Biological image classification, deep two-step
low-shot learning, Drosophila in situ hybridization (ISH) images,
limited training samples, model interpretation and visualization.
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I. INTRODUCTION

IN BIOLOGICAL image analysis tasks, annotation of train-
ing images usually requires specific domain knowledge and

thus is commonly performed by expert biologists. This manual
practice and the incurred cost limit the number of labeled
training samples. Therefore, a recurring theme in biological
image analysis is how to enable efficient and accurate model
training from limited labeled training samples [1]–[4]. For
example, comparative analysis of in situ hybridization (ISH)
gene expression pattern images is a key step in studying gene
interactions and regulations in Drosophila embryogenesis.
Advances in imaging technologies have enabled biologists to
collect an increasing number of Drosophila embryonic ISH
images [5]–[8]. Currently, more than 100 000 Drosophila ISH
images are available for investigating the functions and inter-
connections of genes [9]–[12]. The analysis of gene expression
patterns is most biologically meaningful when images from the
same developmental stage are compared [13]–[15]. Moreover,
identification and visualization of developmental landmarks
in each stage are required to enable biologists to interpret
prediction results.

However, ISH images obtained from high-throughput exper-
iments are commonly annotated with stage range labels,
as shown in Fig. 1, since determining the precise stage for
each ISH image is very hard and time-consuming even for
expert biologists. Currently, most of the comparative analysis
is limited to stage range levels due to the lack of accu-
rate and cost-effective methods for assigning precise stage
labels to images. In [22], a small training set is manually
labeled with precise stages by developmental biologists, and
a computational pipeline is proposed to train classifiers from
this small training set. Specifically, predefined Gabor filters
are used to compute features from ISH images [11], [17]
and linear classifiers are employed to predict the precise
stages of ISH images. In that work, no attempt is made
to explicitly consider and account for the key bottleneck of
limited training samples. Due to the small size of training set
and the methods used, the predictive performance is relatively
poor in that work. In order for the results to be usable by
routine biological studies, an accurate computational model
that can be trained effectively from limited training samples
is highly desirable [18]–[21].

We notice that the Gabor filter features used in [22]
are computed by convolving a set of predefined filters to
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Fig. 1. Examples of Drosophila ISH images in different stage ranges. The images are annotated with stage range labels 1–3, 4–6, 7 and 8, 9 and 10, 11 and
12, and 13–17 [10], [16].

input images. Although the predefined Gabor filters have been
widely used, the filter weights are precomputed and extract
features that do not adapt to each task and data specifically.
In order to enable automated data-driven and task-related
feature extraction, we propose to employ deep convolutional
neural networks (DCNNs) for this task [23]. However, DCNNs
require a large number of training samples to estimate the
filter weights, while most biological applications, including
the precise stage prediction task of ISH images that we
are considering, have only very limited training samples.
Thus, straightforward use of CNNs inevitably results in poor
performance.

In this work, we propose a deep two-step low-shot learning
framework that consists of a set of novel computational
techniques to enable effective deep model training on a small
number of annotated training samples. Although we focus
on ISH image classification and visualization in this work,
the proposed approach is generic and can be easily gener-
alizable to other biological image analysis tasks. Specifically,
we formulate the original classification task with limited train-
ing samples as a deep low-shot learning problem [24]–[26]
and propose a deep two-step low-shot learning approach that
consists of data-level learning and feature-level learning. The
first data-level learning step leverages extra data to facilitate
the training. In the precise stage prediction task of ISH images,
we can access a large number of extra ISH images with stage
range labels, which cannot be directly used to train a precise
stage prediction model. However, these extra ISH images are
obtained from the same experimental pipeline and follow the
same distribution as images in the original small training
set. Therefore, they can be exploited to guide the training.
The second step of our low-shot learning method is feature-
level learning. We propose a regularization method that forces
a high similarity of features extracted from different samples
in the same class. It results in a high-quality feature space,
enabling the extracted features to generalize well on unseen
data. In order to achieve the regularization for classification,
we generate reference sets that contain representative samples
of each class. The proposed feature-level learning step is
to fine-tune the model by adding a similarity loss based
on cosine similarities between features extracted from the
training sample and reference samples. The proposed deep
two-step low-shot learning framework enables us to effectively
train deep learning models with high classification accuracy.
In addition, we explore the interpretation of deep learning
models through saliency maps [27], which indicates pixel-wise

contributions of input images to the prediction results. In the
precise stage prediction task of ISH images, we generate
masked genomewide expression maps (GEMs) [28], [29]
based on saliency maps. The masked GEMs provide bio-
logically meaningful visualizations that help identifying and
visualizing developmental landmarks.

II. DEEP TWO-STEP LOW-SHOT LEARNING FRAMEWORK

In this section, we introduce our deep two-step low-shot
learning framework. We start with the motivation, advantages,
and challenges of applying deep learning on biological image
classification in Section II-A. To overcome the challenges,
we formulate the task as a deep low-shot learning problem
and propose the deep two-step low-shot learning approach
to address it. The two steps, namely data-level learning and
feature-level learning, are described in Sections II-B and II-C,
respectively. In Section II-D, we apply the proposed method
with a deep residual network (ResNet) on the precise stage
prediction task of ISH images. We also introduce the inter-
pretation method for deep learning models and how to use it
to generate biologically meaningful visualizations for our task
in Section II-E.

A. Deep Learning for Biological Image Classification

Many traditional biological image analyses involve a hand-
crafted feature extraction step, which requires expertise and
only focuses on specific types of features. An example is
using the Gabor filter to obtain texture features for the stage
prediction task of ISH images [22]. While handcrafted fea-
tures achieve acceptable performance in practice, they have
two main disadvantages. First, it is expensive and time-
consuming to design these feature extractors. There are a
variety of biological images with different tasks, each of which
needs a redesign of feature extraction methods accordingly.
Second, the performance is limited by human’s knowledge.
However, more accurate analysis is needed to improve our
understanding.

Deep learning has provided a promising way to perform
automatic feature extraction in a data-driven and task-related
manner [30]. Instead of relying on handcrafted feature extrac-
tors, deep neural networks can learn to extract features through
training on annotated data. Specifically, experts are only
required to analyze and annotate a limited amount of data
manually. Then, deep neural networks are able to determine
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features that are important to the task and design correspond-
ing feature extractors. Based on them, the trained networks
can perform the task on unlabeled data automatically in an
efficient and accurate way.

A key challenge of applying deep learning for biological
image analysis is that the number of available annotated data
is very limited, while deep learning models typically require
a large amount of training data. It is usually cost-effective to
perform coarse annotation on large-scale data. Fine annotation
with high accuracy can only be done on a very small portion
of data due to practical limitations of resources. It hinders the
wide use of deep learning.

To address the challenge, we formulate it as a deep low-shot
learning problem. In this problem, a large dataset with coarse
labels and a small dataset with fine labels are available. To be
specific, we denote the large dataset as Dt = {(x t

i , yt
i )}nt

i=1
and the small dataset as Ds = {(xs

i , ys
i )}ns

i=1, where yt
i ∈

{1, 2, . . . , lt } and ys
i ∈ {1, 2, . . . , ls}, respectively. Here, nt

and ns represent the number of annotated data in each dataset
and we have nt � ns . Correspondingly, lt and ls represent the
number of classes in coarse and fine annotations, respectively.
In this setting, it is reasonable to assume lt < ls . Note that
yt

i = 1 does not have the same meaning as ys
i = 1, since coarse

and fine annotations have different label spaces. The data
samples in both datasets, x t

i and xs
i , are from the same distrib-

ution. The task is to develop accurate deep learning models to
perform fine annotation. However, the small ns prevents us to
directly train a deep neural network on Ds , making it necessary
to develop a method that is able to effectively leverage Dt .
To solve this problem, we propose a method combining data-
level learning and feature-level learning, leading to our deep
two-step low-shot learning approach.

B. Data-Level Deep Low-Shot Learning

The first step of our proposed approach is data-level
learning. Namely, we propose a way to leverage the large
dataset Dt and learn from more data, even when these data
have coarse labels only. To introduce our method, we first
review the deep classification networks.

A deep classification network is typically composed of
a feature extraction network and a classification network.
The feature extraction network corresponds to the handcrafted
feature extraction step in traditional methods and the classifi-
cation network performs the task based on extracted features.
We focus on the feature extraction network as extracting
features of high quality is the key to achieving satisfactory
classification performance. Based on good features, the task
can be well solved by using simple machine learning methods,
such as nearest neighbor algorithm and linear classification
methods [31]. Actually, the classification networks in modern
deep classification networks [23], [32] are usually equivalent
to multiclass logistic regression. The classification network
simply serves as a guide for feature extraction network to
extract task-related features from given data.

Note that, in the deep low-shot learning problem defined
in Section II-A, x t

i and xs
i are from the same distribution.

In addition, yt and ys are labels of two different accuracy

levels for the same classification task. With the insights above,
we point out that training a deep classification network for the
coarse annotation task on Dt is able to provide an informative
and useful feature extraction network for the ultimate fine
annotation task.

Therefore, our data-level learning step proposes to first train
a deep classification network on Dt , where a large amount
of annotated data are available. Specifically, the deep clas-
sification network consisting of a feature extraction network
F(·; θ) and a classification network Gt(·; βt) is denoted as
Gt(F(·; θ); βt), where θ and βt represent the parameters in
F(·) and Gt(·), respectively. Note that Gt (·; βt) performs
classification based on coarse labels, whose output layer
has lt nodes. After training Gt(F(·; θ); βt) on Dt , we build
another deep classification network Gs(F(·; θ); βs) to perform
fine annotation. In particular, we employ the same extraction
network F(·; θ) and simply change the classification network
to Gs(·; βs) whose output layer has ls nodes. Finally, we train
Gs(F(·; θ); βs) on Ds . In terms of training, we let the outputs
of the classification network to go through a softmax function
and compute the cross-entropy loss for backpropagation [30].
Taking Gs(F(·; θ); βs) as an example, for one training sample
(xs, ys) in Ds , the softmax function is defined as

pi = exp(oi)∑ls
j=1 exp

(
o j

) , i = 1, 2, . . . , ls (1)

where oi denote the output of the i th node, i.e.,

oi = (
Gs

(
F

(
xs; θ

); βs
))

i
. (2)

Here, pi can be interpreted as the probability that the input
image xs belongs to the i th class. The cross-entropy loss can
be computed by

LCE = −log
(

pys

)
(3)

which simply depends on the predicted probability that xs

belongs to the ys th class.
The key step of data-level learning is to apply the same

feature extraction network in the process. Intuitively, such an
approach enables the task-related knowledge obtained from
Dt to be transferred to Ds . Technically, training F(·; θ) on
Dt provides a good initialization for training Gs(F(·; θ); βs)
on Ds , alleviating the problem of lacking enough training data
for the fine annotation task.

C. Feature-Level Deep Low-Shot Learning

The second step of our proposed approach is feature-
level learning, where we propose a regularization method to
force a high similarity of features extracted from different
samples in the same class. To achieve it, we select several
samples from each class as reference samples and regularize
the feature extraction network to extract similar features from
other samples in the same class. We first describe how to
select reference samples and then introduce the regularization
method.

After the data-level learning step described in Section II-B,
we obtain a deep classification network Gs(F(·; θ); βs) that
has been trained on Ds . Using the softmax function in (1),
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Fig. 2. Illustration of feature-level deep low-shot learning. A training sample and a reference set are fed into the feature extraction network to generate features.
We compute the cosine similarity of features between the input sample and each reference sample and propose the similarity loss LS . Then, the similarity
loss LS and the cross-entropy loss LCE are combined to train the network.

for each training sample (xs, ys) in Ds , we can compute the
probability pys that xs belongs to ys . We set a threshold τ and
select those samples with pys > τ . The setting of τ should
make sure that pys > pi ,∀i ∈ {1, 2, . . . , ls}\{ys}. Specifically,
for each class c = 1, 2, . . . , ls , we obtain a subset of Ds

defined as Ds,c = {(xs
c , c) | pc > pi ,∀i ∈ {1, 2, . . . , ls}\{c}

and pc > τ }. Note that these subsets Ds,c, c = 1, 2, . . . , ls are
mutually exclusive. Then, we randomly select one sample from
each Ds,c to form a reference set Dr = {(xr

c , c)}ls
c=1, which

contains exactly ls reference samples. The last step is iterated
for k times to form k reference sets Dri , i = 1, 2, . . . , k.

The feature-level learning step follows the data-level learn-
ing by fine-tuning Gs(F(·; θ); βs) on Ds with the help of
reference sets Dri , i = 1, 2, . . . , k. When fine-tuning with
one training sample (xs, ys) in Ds , we randomly pick a
reference set Dr = {(xr

c , c)}ls
c=1 from Dri , i = 1, 2, . . . , k.

The feature-level learning aims to force the features extracted
from input images in the same class to be similar, i.e.,
F(xs; θ) and F(xr

ys
; θ) should be similar. In opposite, for

c ∈ {1, 2, . . . , ls}\{ys}, F(xs; θ) and F(xr
c ; θ) should be less

similar. It requires a quantitative way to evaluate the similarity
between features. In this work, we quantify the similarity by
calculating

sim
(
xs, xr

c

) = cosine
(
F

(
xs

)
, F

(
xr

c

))

= F(xs) · F
(
xr

c

)

�F(xs)� × ∥∥F
(
xr

c

)∥∥ . (4)

For each (xr
c , c) ∈ Dr , we can compute the corresponding

sim(xs, xr
c ). Then, we normalize the similarities through a

softmax function

SIM
(
xs, xr

c

) = exp
(
sim

(
xs, xr

c

))
∑ls

i=1 exp
(
sim

(
xs, xr

i

)) , c = 1, 2, . . . , ls (5)

where a large SIM(xs, xr
c ) means that F(xs; θ) and F(xr

c ; θ)
are similar. Finally, we propose the similarity loss

LS = −SIM
(
xs, xr

ys

) + 1

ls − 1

∑

c∈{1,2,...,ls }\{ys}
SIM

(
xs, xr

c

)
. (6)

Minimizing the similarity loss LS will result in max-
imizing SIM(xs, xr

ys ) while minimizing SIM(xs, xr
c ) for

i ∈ {1, 2, . . . , ls}\{ys}. This corresponds to our purpose of
forcing features extracted from input images in the same class
to be similar as well as making those in different classes
distinguishable. Therefore, the similarity loss LS serves as
a feature-level regularization method. When fine-tuning the
deep classification network in the feature-level learning step,
we apply a combined loss function defined as

L = LCE + LS (7)

where LCE is defined by (3). In the feature-level deep low-shot
learning, all parameters feature extraction networks θ and
classification networks βs are updated by optimizing the loss
function (7). In the feature-level learning, cross-entropy loss
is still employed in the loss function, which can guarantee
that the knowledge learned in the data level learning cannot
be forgotten.

An overview of the proposed feature-level learning step is
shown in Fig. 2. The feature-level learning provides better fea-
tures for the fine annotation task and improves Gs(F(·; θ); βs).

D. Deep Two-Step Low-Shot Learning for the Precise
Stage Prediction of ISH Images

Combining data-level learning and feature-level learn-
ing leads to our proposed deep two-step low-shot learning
approach, as shown in Algorithm 1. We apply this approach
to solve the precise stage prediction task of Drosophila ISH
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Fig. 3. Architecture of our deep ResNet in the precise stage prediction task of ISH images. The feature extraction network F(·; θ) contains four residual
blocks. An average pooling with a kernel size of 4 × 4 is employed after the last residual block. As shown in Algorithm 1, the same F(·; θ) is employed
through the whole two-step process. The classification network G(·; β) refers to Gt (·; βt ) and Gs(·; βs ) in the corresponding steps.

Algorithm 1 Deep Two-Step Low-Shot Learning for Biolog-
ical Image Classification
Input:

Dataset with Coarse Labels Dt = {(x t
i , yt

i )}nt
i=1 where yt

i ∈
{1, . . . , lt }
Dataset with Fine Labels Ds = {(xs

i , ys
i )}ns

i=1 where ys
i ∈

{1, . . . , ls}
Threshold τ

Step 1 Data-Level Low-shot Learning:
1. Train Gt(F(·; θ); βt) on Dt .
2. Train Gs(F(·; θ); βs) with the same feature extraction
network F(·; θ) on Ds .

Step 2: Feature-Level Low-shot Learning:
3. Construct reference sets Dri , i = 1, 2, . . . , k from Ds

using Gs(F(·; θ); βs) and τ .
4. Fine-tune Gs(F(·; θ); βs) and update parameters θ and βs

using the loss function defined in Equation (7).

images [22]. In this task, the large dataset with coarse labels
Dt refers to the ISH images with stage range labels, as shown
in Fig. 1. These labels only indicate that the developmental
stage of an ISH image falls into one of the six ranges.
Meanwhile, a small dataset with fine labels Ds is available,
where the data are annotated with precise stages. Here, lt = 6
and ls = 14. The precise stage prediction task can be well
formulated as a deep low-shot learning problem and addressed
by our proposed method.

DCNNs [30] have achieved great success in various image
tasks. Convolutional layers are proved to be capable of per-
forming effective feature extraction. Therefore, we use DCNNs
as our deep learning model for the precise stage prediction
task. In particular, we apply a deep ResNet by adopting the
technique of adding residual connections proposed in [23].
Residual connections are known to facilitate the training of
deep neural networks.

Fig. 3 shows our deep ResNet for the stage prediction task.
Our feature extraction network F(·; θ) contains four residual
blocks, each of which is composed of two convolutional layers
and a residual connection. A convolutional layer contains a
convolution followed by a batch normalization [33] and a

rectified linear unit (ReLU) activation function [34]. A residual
connection is employed to add the inputs to the outputs for two
consecutive convolutional layers and forms a residual block.
The residual connection is simply an identity connection for
the first residual block. For the latter three residual blocks,
we set the stride to 2 for the first convolutional layer, resulting
in outputs of reduced spatial sizes. In this case, we use a
1 × 1 convolutional layer in the residual connection, which
changes the spatial sizes of inputs accordingly to accom-
modate the addition. We apply an average pooling with a
kernel size of 4 × 4 to obtain the extracted features after
the last residual block. The classification networks Gt(·; βt)
and Gs(·; βs) are designed as a single fully connected layer
with 6 and 14 output nodes, respectively. Our deep learn-
ing model is trained by Algorithm 1 and outperforms the
previous state-of-the-art model [22] significantly, as shown
in Section IV.

E. Interpretation and Visualization Using Saliency Maps

Our proposed deep two-step low-shot learning approach
yields deep learning models with high accuracy. We further
introduce an interpretation method for deep learning models
based on saliency maps. Saliency maps quantify the pixel-
wise contributions of an input image to its prediction result by
computing the gradient of the prediction outputs with respect
to the input image [27]. To be specific, to interpret our deep
classification network Gs(F(·; θ); βs) with input image xs ,
we compute the saliency maps for each output node

S
(
xs, i

) = ∂oi

∂xs
, i = 1, 2, . . . , ls (8)

where oi is defined in (2). Suppose that the prediction result
of xs is ys . We pay attention to S(xs, ys) as it tells which
pixels in xs support the prediction result most. In this work,
we use the guided backpropagation positive saliency map for
visualization [35], where only positive gradients are preserved.

In the precise stage prediction task of ISH images, we apply
saliency maps to generate masked GEMs to help identifying
and visualizing developmental landmarks. GEMs provide a
visualization method for precise stage prediction models and
a visualization method for developmental landmark analysis.
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Fig. 4. Illustration of precise stage prediction using Gabor filters [22]. In this approach, 24 filters are generated with four different wavelet scales and six
different filter orientations. The average pooling layer with kernel size 8×8 is employed to reduce the spatial size of the feature maps and extract the invariant
features. Finally, the extracted features are flattened and concatenated together.

Originally, GEMs are generated by aggregating and normaliz-
ing the ISH images from the same stage [28], [29]. We propose
to use saliency maps as masks in generating GEMs, selecting
characteristic pixels from ISH images that contribute to the
prediction results. We show that the resulted masked GEMs
can provide more biologically meaningful visualizations
in Section IV.

III. RELATED WORK

A. Precise Stage Prediction

Currently, the state-of-the-art method [22] for the precise
stage prediction task of ISH images is to extract features using
predefined convolutional filters and train a linear classifier
based on the extracted features. Texture features of differ-
ent scales and orientations can be computed with different
filters. The filter weights are constructed by using log Gabor
filters [11], [17]. Given a set of predefined wavelet scales and
orientations, we can generate corresponding Gabor filters to
extract the specific features by convolving on input images.
The precise stage prediction model in [22] based on Gabor
filter features is shown in Fig. 4.

The Gabor filter features focus on subtle textures, which
enables the classification model to distinguish ISH images
from different stages. However, there are still some limitations
for Gabor filter features as Gabor filters are handcrafted and
cannot learn features automatically for different tasks and
datasets. Moreover, Gabor filters only extract low-level texture
features. Extracting features hierarchically from low level
to high level is appealing for improving the precise stage
prediction accuracy.

B. Few-/Low-Shot Learning

Few-shot learning is proposed to solve classification or
regression problems with very limited training samples.
Specifically, we consider a K -way-N-shot classification prob-
lem, where K is the number of classes and N is the
number of training samples in each class. Therefore, in the
K -way-N-shot classification problem, the training dataset con-
tains K × N samples. In few-shot learning problems, N is
commonly very small like 1 or 5. Recently, few-/low-shot
learning methods were proposed to overcome the challenge
of limited training samples using meta-learning [36], [37],

multitask learning, learn-to-learn [38], embedding [31], [39],
and other technologies [40]–[42]. For meta-learning-based
methods, the model randomly selects K × N samples from
training sets as support set for meta-task in each epoch. The
model can learn the shared knowledge from different meta-
tasks. Therefore, the model can perform well when dealing
with a new meta-task. For multitask-based methods, we have
several highly related tasks and use other tasks to improve the
performance of the model on the task with few training sam-
ples. Based on the strategy of learning parameters, multitask-
based methods can be categorized into two groups: parameter
sharing and parameter tying. For parameter sharing, the model
shares the first few layers from other tasks and learns the final
layers for the target task. For parameter tying, parameters are
constrained to be similar for different tasks. In embedding-
based learning, the model learns general embedding from the
training dataset and computes the similarity between training
and test samples. In this work, we consider a different task
from the traditional K -way-N-shot classification problem.
In our problem, a large dataset with coarse labels and a small
dataset with fine labels are provided. The training size is larger
than that used in traditional few-shot learning but still limited
for deep learning models to achieve satisfying performance.
We aim at developing a model to predict the fine label while
taking advantage of samples with coarse labels in the learning
procedure.

IV. EXPERIMENTAL STUDIES

In this section, we evaluate our proposed deep two-step
low-shot learning framework for the precise stage prediction
task of ISH images on the Berkeley Drosophila Genome
Project (BDGP) dataset. We perform the qualitative evaluation
in terms of the prediction accuracy as well as qualitative
evaluation based on feature visualization and GEMs [28], [29].
Finally, we show the saliency maps and masked GEMs for
interpretation and visualization.

A. Experimental Setup

The BDGP dataset contains 36908 Drosophila ISH images
in the lateral view. Among them, only 3474 ISH images are
annotated with precise stage labels. In addition, all images
are labeled into six stage ranges: 1–3, 4–6, 7 and 8, 9 and
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TABLE I

OVERVIEW OF THE DATASET USED IN THIS STUDY

TABLE II

COMPARISON OF PERFORMANCE BETWEEN DIFFERENT METHODS IN TERMS OF PRECISE STAGE PREDICTION ACCURACY. THE FIRST MODEL IS OUR

BASELINE [22]. THE LAST THREE ROWS CORRESPOND TO RESNET MODELS TRAINED USING THREE DIFFERENT APPROACHES: TRAIN IT

DIRECTLY ON Ds (PLAIN RESNET), TRAIN IT USING DATA-LEVEL LOW-SHOT LEARNING ONLY (DATA-LEVEL), AND TRAIN IT
USING BOTH DATA-LEVEL AND FEATURE-LEVEL LOW-SHOT LEARNING (DATA&FEATURE-LEVEL)

10, 11 and 12, and 13–17, as shown in Fig. 1. According
to Section II-D, we have Dt with nt = 36908 and Ds with
ns = 3474. The details are listed in Table I. Note that, since
the Drosophila embryogenesis is not very meaningful from
stage 1 to stage 3, the precise stage prediction task does
not involving this range. Therefore, there is no precise stage
annotation for this range. All ISH images are standardized by
the pipeline proposed in [28], and the size of processed images
is 128 ×320. To perform evaluation, we randomly select 80%
of images Ds for training and test our proposed model on the
rest images.

We use the previous state-of-the-art model proposed in [22]
that uses Gabor filters as our baseline. For deep learning,
we use the ResNet introduced in Section II-D. To show the
effectiveness of our proposed deep two-step low-shot learning
approach, we compare the performance of our ResNet trained
using three different approaches: train it directly on Ds (Plain
ResNet), train it using data-level low-shot learning only (Data-
level), and train it using both data-level and feature-level low-
shot learning (Data&Feature-level). For all training processes,
we employ the stochastic gradient descent algorithm [30]. The
learning rate starts with 0.001 and is multiplied by 0.1 at the
20th and 30th epochs. The batch size is set to 16.

B. Quantitative Analysis of Predictive Performance

There exists randomness for neural network-based mod-
els due to different weight initialization. To guarantee that
the comparison is fair between different models, we run
each model five times and take the average accuracy as the
evaluation metric. The precise stage prediction accuracy of
each method is reported in Table II. Note that the accuracy

of Plain ResNet is lower than that of our baseline model,
proving that deep learning models can hardly achieve satis-
factory performance with limited training samples. Training
the ResNet with our data-level deep low-shot learning method
addresses this problem effectively and improves the perfor-
mance significantly. By adding the feature-level learning step,
our proposed deep two-step low-shot learning model achieves
better predictive performance and becomes the new state-of-
the-art model for the precise stage prediction task of ISH
images.

In order to analyze the prediction errors of our model,
we compare the confusion matrices of the prediction results.
The confusion matrix is obtained based on the prediction
results. We randomly choose one model from five experiments
for prediction and generate the confusion matrix, as shown
in Fig. 5. We observe that most wrongly predicted samples
are classified into neighboring stages, within the correct stage
ranges. In particular, for deep learning models trained using
our proposed low-shot learning methods, the number of sam-
ples that are categorized into wrong stage ranges is fewer
than the baseline. It indicates that the data-level deep low-
shot learning step effectively incorporates information from
samples with stage range labels and improves the performance
of precise stage prediction.

C. Qualitative Analysis of Predictive Performance

We perform two qualitative analyses on the baseline and
the proposed deep two-step low-shot learning model. First,
we compare the features extracted by Gabor filters with
those generated by the first convolutional layer in the pro-
posed model. Fig. 6 shows the visualizations of the features.
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Fig. 5. Comparison of performance between different methods in terms of confusion matrices. (a) Our baseline [22]. (b)–(d) ResNet models trained using
three different approaches: train it directly on Ds (Plain ResNet), train it using data-level low-shot learning only (Data-level), and train it using both data-
and feature-level low-shot learning (Data&Feature-level), respectively.

Fig. 6. Comparison between feature maps generated by Gabor filters in [22] and those created by our proposed deep two-step low-shot learning model.

Clearly, Gabor filters can only extract predefined low-level
texture features, while our deep learning model is able to
extract data-driven and task-related features automatically. The
Gabor filters contain hard-wired weights to compute texture
features at different scales and orientations. Thus, it is clear
from the visualizations that the resulting features are embry-
onic patterns with different scales and orientations. These
features are not adapted to the image dataset. In comparison,

the features computed by our deep learning methods are
adapted to the stage classification task in which shapes and
boundaries of embryos are important. Thus, we can clearly see
the boundaries of embryos in the features. In addition, we can
see that the germ band has been highlighted in some of the
deep learning computed features, as germ-band movements
are important features to distinguish different developmental
stages.
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Fig. 7. Visualizations of GEMs and masked GEMs generated using different methods for stages 7–12. (a) GEMs generated using prediction results of the
baseline. (b) GEMs generated using prediction results of our proposed two-step low-shot learning model. (c) Overview of the stages of development [43].
(d) Masked GEMs generated using prediction results of our proposed two-step low-shot learning model and corresponding saliency maps. The differences
can better observe when zooming in.

Fig. 8. Examples of saliency maps generated by our proposed two-step low-shot learning model. The first row is the original Drosophila ISH images.
The second row is the corresponding saliency maps. White color indicates that the pixel contributes significantly to the prediction result of the image.

Second, we visualize GEMs [28], [29] generated by the
baseline and our deep two-step low-shot learning model.
Computing GEMs relies on the predictive performance and
accurate precise stage prediction results produce more bio-
logically meaningful GEMs. The first two columns in Fig. 7
compare the GEMs generated using prediction results of the
baseline and our model. According to the third column, we can
see that the developing trend shown in both GEMs is consistent
with that shown in [43]. In addition, since our proposed
method achieves better predictive performance, the gener-
ated GEMs contain more biologically meaningful details as

demonstrated by yellow bounding boxes. The differences can
be better observed when zooming in Fig. 7.

D. Visualization Through Salience Maps and Masked GEMs

As introduced in Section II-E, we can compute saliency
maps to measure the pixel-wise contributions of an input
image to its prediction result. We visualize some saliency maps
generated by our proposed two-step low-shot learning model
in Fig. 8. From the saliency maps, we can infer which pixels
contribute most to the prediction results. We propose to apply
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saliency maps as masks and use these pixels to generate GEMs
instead of using the whole input images. The resulted masked
GEMs are shown in the last column in Fig. 7. The masked
GEMs also show a consistent developing trend as shown in
the third column. Moreover, they provide better visualizations
to help identifying and visualizing developmental landmarks.

V. CONCLUSION

In this work, we propose a deep two-step low-shot learning
framework and apply it on the precise stage prediction task
of ISH images. We first propose to employ deep learning
models to automatically extract data-driven and task-related
features instead of using handcrafted feature extraction meth-
ods. In order to build accurate deep learning models from
limited training samples, we formulate the task as a deep low-
shot learning problem. To solve it, we propose a deep two-
step low-shot learning approach that is composed of data-level
learning and feature-level learning. The first data-level learning
step leverages extra data to facilitate the training. The second
step, feature-level learning, introduces a regularization method,
which forces a high similarity of features extracted from
different samples in the same class. The proposed deep two-
step low-shot learning framework enables us to effectively
train deep learning models with high classification accuracy.
We conduct thorough experiments on the BDGP dataset using
a deep ResNet as our base model. Both quantitative and
qualitative experimental results demonstrate that our proposed
deep two-step low-shot model outperforms the previous state-
of-the-art model significantly. In addition, we explore visual-
ization based on saliency maps [27], which computes pixel-
wise contributions of input images to the prediction results.
In the precise stage prediction task of ISH images, we apply
saliency maps to generate masked GEMs, which provides
biologically meaningful visualizations that help identifying
and visualizing developmental landmarks [44].
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