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Migrations of cancer cells 
through the lens of phylogenetic 
biogeography
Antonia Chroni1,2, Sayaka Miura1,2, Olumide Oladeinde1,2, Vivian Aly1,2 & Sudhir Kumar1,2,3*

Malignant cells leave their initial tumor of growth and disperse to other tissues to form metastases. 
Dispersals also occur in nature when individuals in a population migrate from their area of origin 
to colonize other habitats. In cancer, phylogenetic biogeography is concerned with the source 
and trajectory of cell movements. We examine the suitability of primary features of organismal 
biogeography, including genetic diversification, dispersal, extinction, vicariance, and founder effects, 
to describe and reconstruct clone migration events among tumors. We used computer-simulated data 
to compare fits of seven biogeographic models and evaluate models’ performance in clone migration 
reconstruction. Models considering founder effects and dispersals were often better fit for the clone 
phylogenetic patterns, especially for polyclonal seeding and reseeding of metastases. However, 
simpler biogeographic models produced more accurate estimates of cell migration histories. Analyses 
of empirical datasets of basal-like breast cancer had model fits consistent with the patterns seen in the 
analysis of computer-simulated datasets. Our analyses reveal the powers and pitfalls of biogeographic 
models for modeling and inferring clone migration histories using tumor genome variation data. We 
conclude that the principles of molecular evolution and organismal biogeography are useful in these 
endeavors but that the available models and methods need to be applied judiciously.

Cancer is a product of somatic evolution. Tumors arise from somatic mutations that accumulate over time, 
resulting in significant genetic heterogeneity seen in next-generation sequencing  surveys1–4. This genetic het-
erogeneity has become key information for inferring clone phylogenies and migration  histories5–9. In addition 
to mutations, cancer cells’ continuous movements also modulate inter- and intra-tumor diversity, enabling the 
reconstruction of founder cancer cell genomes and their evolutionary trajectory over time and space in a patient. 
Retrospective inferences of cancer cells’ evolutionary relationships and spatial dynamics have become the holy 
grail of understanding tumor evolution and metastasis.

Traditionally, molecular phylogenies have been used to reconstruct the evolutionary relationships of species. 
A phylogeny is also useful to trace the origin and past geographic distribution of species and populations, includ-
ing diversification and divergence events. This investigation field is known as phylogenetic  biogeography10–12. 
Similarly, a clone phylogeny depicts evolutionary relationships of cancer cells in a patient, revealing genetic 
divergences and extinctions of cancer cells in a patient. It also provides direct insights into the history and spa-
tiotemporal trajectories of clones across tumors (Fig. 1). Recently, tumor biogeography has been introduced to 
reconstruct events of cancer cell migrations in  tumors8,9.

In this article, we apply and test seven biogeographic models, including various parameters described above, 
in inferring clone migration seeding events and paths using computer-simulated and clinical data. Existent stud-
ies and methods showcase the value of evolutionary and spatial frameworks in inferring tumor clone migration 
 histories5,7–9. Here, we have mapped organismal biogeographic processes (genetic divergence, extinction, expan-
sion/dispersal, and founder events) explicitly to cancer cell dynamics and evaluated their relative usefulness in 
reconstructing cancer cell migration histories. Thus, we examined whether the use of biogeographic models, 
considering diversification, dispersal, extinction, and founder events, would produce better results than previous 
phylogenetic approaches designed for tumor data that do not model such events. We also explored the suitability 
of different biogeographic models and evaluated the impact of different biogeographic processes on inferring 
clone migration events. We analyzed simulated datasets that have been previously used in several studies to 
benchmark the performance of the biogeographic methods to infer cancer cell migration  paths5,7,9. Their use 
permits us to compare results obtained from biogeography methods explored here with the inferences afforded 
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by complementary statistical and algorithmic  approaches5,7. Our results reveal factors to consider when apply-
ing biogeographic models for inferring cancer cell migration paths. We also show how real-case scenarios can 
benefit from biogeographic models by reconstructing clone migration paths of patients with basal-like breast 
cancer using published clone  phylogenies13.

Results
Conceptualization of organismal to tumor biogeography through clone phylogenies. We first 
map organismal biogeographic concepts and models to the process of migration and colonization of cancer cells 
during metastasis. Tumors are populations consisting of a diversity of cancer cells with different genetic profiles 
that may represent different lineages in the clone phylogeny. We use the example in Fig. 1, which contains a 
phylogeny of 17 clones found in one primary tumor (P) and four metastases (M1–M4). Events occurring along 
a branch in a phylogeny are anagenetic events, which include diversification, extinction, and  expansion12,14. In 
organismal evolutionary biology, anagenetic events are not directly observed except through the fossil record. 
However, one can map the collection of genetic variants that likely arose on individual lineage in a phylogeny. 
In many cancers, sequencing of temporally sampled biopsies’ can directly reveal anagenetic events similar to the 
sequencing of ancient DNA in paleogenomics.

The other types of evolutionary events in the phylogeny are cladogenetic, including genetic divergences and 
dispersals (Fig. 1). Genetic differences observed among species and populations are the key to detect cladogenetic 
events reconstructed in molecular phylogenies of living descendants. In cancer, temporal sampling of biopsies 
can reveal cladogenetic events that produced extinct descendants.

In biogeography, genetic divergence results in the diversification of lineages within an area. Sometimes, the 
term duplication is used, but we avoid its further use because of the confusion it may cause in evolutionary 
genomics. Divergence events are also observed in a clone phylogeny, particularly when clone lineages diverge 
from each other within a tumor or across tumors. The exact opposite of genetic diversification can also be 
observed when lineages partially or fully disappear from the phylogeny. Extinction can occur due to random 
chance, selection, or environmental pressures. Even though extinction is rarely discussed in tumor clone phy-
logenetics, it happens frequently.
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Figure. 1.  A phylogeny traces the origin and trajectory of movements (anagenetic events in dark blue) 
and pinpoints diversification and speciation events (cladogenetic events in red). Biogeographic processes 
(dashed boxes) are exemplified into the presented clone phylogeny of one primary and four metastases: (i) 
genetic divergence: diversification within an area, (ii) extinction: lineage disappears from an area, (iii) genetic 
divergence and expansion: diversification within an area, and then dispersal to a new area, and (iv) genetic 
divergence and distant dispersal: dispersal to a new area, and then lineages’ divergence. Tumor clones are 
colored based on the source of tumor site: primary (green), and metastases M1 (blue), M2 (pink), M3 (gray), 
and M4 (brown).
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Phylogenies also reveal movements of lineages between locations (geographic areas or body parts) when the 
locations of individual cells, species, or populations are  known5–9,15. When lineages accumulate genetic differ-
ences along a branch in the phylogeny, and the evolved lineages migrate to a new area, we observe an expansion 
event. Expansions differ from dispersals in such that the growth of a population occurs in the same place. This 
movement of cells of a clone from one location to another, where they would potentially form a metastasis, 
results in the dispersal of  these cells of that clone to additional areas, which is modeled by a dispersal rate (d) 
in organismal biogeography. When a clone genetically diverges following its migration, then a distant dispersal 
event is said to have occurred. Similarly, when a clone diverges from the rest of the clones within a tumor and 
disperses to another tumor, we have observed an expansion event. Thus, clone phylogenies can give insights into 
the origin and trajectory of cancer cells between tumors.

When a clone is no longer present at a location, it is extinct at that location. Extinctions are modeled by an 
extinction rate (e) in biogeographic models. As a result of extinction, the range of descendent clones on a phy-
logeny can be smaller than the ancestors. Biogeography models also have a parameter (J) to consider founder 
events that establish new populations from a few individuals. In phylogenies, founder events can be detected if 
only one or a few cells are found to have moved from one location to another to start diversifying in a new area. 
Both distant dispersal and founder events may result in forming a new colony of cells, i.e., a new metastasis in 
the case of cancer cell migrations. The primary distinction between dispersal and founder events is the rela-
tive number of migrating cells. Founder events are due to one or a few cells, whereas dispersal events involve a 
larger number of migrating cells. Founder events are expected to be more common in tumor evolution because 
metastases are thought to be formed by the spread of only one or a few cancer cells. These biogeographic events 
have been mathematically modeled and implemented in various approaches to infer species migration  events12, 
which are directly applicable in the inference of cancer cell migrations between tumors.

Model fits. We began by analyzing the statistical fits of six biogeographic models (Table 1) to 80 computer-
simulated tumor evolutionary datasets. Simulations enable us to assess the performance of computational 
approaches and reveal potential caveats associated with their use because the ground truth is known. These 
datasets were simulated using four main clone migration schemes defined by the different number of migrating 
clones (1–3), the small and large number of tumor areas (5–7 tumors, m5 datasets; 8–11 tumors, m8 datasets), 
and the different types of source areas of migration (primary or metastasis). The following seeding scenarios 
reflect this complexity of the clone migration schemes: monoclonal single-source seeding (mS), polyclonal sin-
gle-source seeding (pS), polyclonal multisource seeding (pM), and polyclonal reseeding (pR) (see “Methods” 
section).

We considered biogeographic models that weigh genetic divergence, dispersal/expansion, and extinction 
events differently (Table 1). We also explored the provision of including founder events in our models on the 
accuracy of detecting clone migrations. The parameterization of the aforementioned events results in models 
with two free parameters, i.e., dispersal rate (d) and extinction rate (e), and models with three free parameters 
by adding the founder-event speciation (J); see “Methods” section for more details.

Overall, we tested six biogeographic models for their fit to the tumor data, three models with two free 
parameters and three others with three free parameters. BAYAREALIKE, DEC, and DIVALIKE models have 
two parameters each. They are nested within their respective models that add the founder effect, resulting in a 
model with three free parameters (hereinafter +J models). We used the BioGeoBEARS software for all model 
fit analyses. In data analysis, we first inferred phylogeny of cancer cell populations (clone phylogeny) using an 
existing  method16, followed by the use of BioGeoBEARS to infer the clone migration history in which the clone 
phylogeny is used along with the location of tumor sites in which each clone is observed (Fig. 2). BioGeoBEARS 
estimates the probabilities of annotating internal nodes with tumor locations. These annotations are then used 
to derive cancer cell migration paths when two adjacent nodes are annotated with different tumor locations. 
In these analyses, we assumed the correct clone phylogeny because our focus was not assessing the impact of 

Table 1.  Phylogenetic and biogeographic events considered in seven biogeographic models used for analysis. 
Expansion (dispersal), extinction, and founder events are modeled through d, e, and J parameters, respectively. 
BBM infers ancestral ranges with biogeographic processes being annotated in RASP (marked as a).

Phylogenetic events Biogeographic events

Parameters in biogeographic models

BBM BAYAREALIKE BAYAREALIKE + J DEC DEC + J DIVALIKE DIVALIKE + J

Anagenesis (along a branch)
Expansion Yesa Yes Yes Yes Yes Yes Yes

Extinction Yesa Yes Yes Yes Yes Yes Yes

Cladogenesis (at a node)

Genetic divergence Yesa No No Yes Yes Yes Yes

Distant dispersal Yesa Yes Yes Yes Yes Yes Yes

Vicariance No No No Yes Yes Yes Yes

n/a Founder-event effect No No Yes No Yes No Yes

n/a Descendant range size 1  ≥ 2  ≥ 2  ≥ 2  ≥ 2  ≥ 2  ≥ 2

n/a Distance-dependent effect on 
the dispersal probability No Customize Customize No No No No

n/a Time Customize Customize Customize Customize Customize No No
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errors in a phylogeny on the accuracy of clone migration inferences. We also compared the accuracy of migration 
histories reconstructed using biogeographic models in BioGeoBEARS with those obtained from the approaches 
that do not model biogeographic processes  (BBM9,  MACHINA5, and  PathFinder7).

We first conducted Likelihood Ratio Tests (LRTs) to examine the improvement offered by considering founder 
events in modeling tumor migrations. In this case, the fit of the BAYAREALIKE, DEC, and DIVALIKE models 
was compared to their +J counterparts, respectively. The null hypothesis was rejected for more than 50% of the 
datasets (BAYAREALIKE: 71.25%, DEC: 60%, and DIVALIKE: 53.75%; P < 0.05), which means that the model 
with founder-event effects provided a better fit for a majority of datasets. Interestingly, results differed between 
BAYAREALIKE and other models (DEC and DIVALIKE) for smaller datasets. For DEC and DIVALIKE, the null 
hypothesis was rejected in only 20–40% of the datasets with low complexity compared to 60–90% of the ones 
with more complicated migration graphs (Table 2). For BAYAREALIKE, the null hypothesis was rejected for 
more than 50% of the datasets in almost all seeding scenarios (except for the m5pM, which was 20%; Table 2). 
This indicates that a more complex model fits the data better than a simpler model.

Second, we compared the fits of these three non-nested models by using the small-sample size corrected 
Akaike Information Criterion (AICc). AICc suggested that BAYAREALIKE + J and DEC + J models received the 
best AICc scores (26.25% and 22.5% of the datasets, respectively) (Table 2). We observed that DEC and DIVA-
LIKE fitted better for simple seeding scenarios and the small number of tumors. In contrast, BAYAREALIKE 
had a more consistent performance across different complexities in seeding scenarios and different numbers 
of tumor sites. Estimation of Bayesian Information Criterion (BIC) resulted in similar patterns predicting that 
more complex models fit the data the best, except for DIVALIKE and DIVALIKE + J.

Our analyses show that models accommodating founder events fit tumor sequencing data better, especially 
when many tumors were sampled. Still, we observed that more sophisticated models (+J) did not fit better for 
datasets with a small number of tumor sites and in the presence of reseeding.

Output file includes the predicted 
ancestral location and the probability 
values assigned for the prediction 
(txt.file & pdf.file)

Clone phylogeny (nwk.file)

Sequence file (e.g., mega.file)

e.g. reconstruction of maximum 
parsimony tree in MEGA-cc

• Tumor location information (geog.data)
• Application of biogeographic models

Clonal migration histories

Add sequence with no mutations to use as a root for 
the clone phylogeny (named as Normal sequence)

Figure 2.  Data analysis pipeline using BioGeoBEARS in  R14 to infer clonal migration histories.

Table 2.  The biogeographic model fits for 80 simulated datasets. Percent datasets in which the Likelihood 
Ratio Test (LRT) rejects the null hypothesis (LRTs%), and in which the model has the best AICc score are 
shown (Best-AICc%).

Tumor sites Seeding scenario

LRTs %/BIC Best-AICc%

BAYAREALIKE/+J DEC/ + J DIVALIKE/+J BAYAREALIKE BAYAREALIKE + J DEC DEC + J DIVALIKE DIVALIKE + J

m5

mS 80/20 40/60 30/0 20 40 40 0 0 0

pS 50/50 30/50 20/0 20 0 50 0 30 0

pM 20/10 20/20 20/0 10 10 20 0 60 0

pR 80/80 70/80 80/0 0 30 30 40 0 0

m8

mS 80/20 90/100 60/0 20 50 0 20 10 0

pS 80/20 60/80 60/0 20 30 20 30 0 0

pM 90/20 80/90 80/0 10 30 0 30 0 30

pR 90/40 90/100 80/0 10 20 0 60 0 10

Overall 71 60 54 14 26 20 23 13 5
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Estimation of ranges at ancestral nodes. In organismal biogeography, researchers often expect and 
explore the hypothesis of vicariance, i.e., the genetic divergence of a population due to geographic isolation 
typically caused by a physical barrier. Vicariance causes the split of an area into multiple ones, a type of bio-
geographic process that is not reasonable when examining cancer cells’ movements in a tumor site. Vicari-
ance events are incorporated in the biogeographic models examined. This showed as inference of multiple ranges 
at ancestral nodes. To better understand this,  suppose for example clones a and b are sampled in tumors A and 
B, respectively. In that case, there are three ancestral range possibilities: two are dispersals from areas A and/or 
B, and one is vicariance from area AB.

In our data analysis, five of the biogeographic models, except for BAYAREALIKE + J, predicted multiple ranges 
at ancestral nodes of the clone phylogeny instead of a single ancestor area (Fig. 3). DEC and DIVALIKE models 
predicted many multiple ranges (average of 14.74 and 15.53, respectively). These models prefer vicariance, so they 
end up inferring multiple ranges at the ancestral nodes to explain clone divergences and movements. However, 
vicariance is unlikely to be a major force in tumor clonal biogeography because of the lack of a physical medium 
in the same anatomical site that would not allow the dispersal of cancer cells within an area. Therefore, the use 
of DEC and DIVALIKE may result in erroneous inferences of clone migrations. In fact, this problem is remedied 
in analysis in which the founder effect is considered. DEC + J and DIVALIKE + J predict less than one multiple 
range (0.76 and 0.34, respectively; Fig. 3). The average number of multiple ranges was low for the BAYAREALIKE 
model (average of 1.12), and it became zero in BAYAREALIKE + J.

Accuracy of migration paths inferred with biogeographic models. We assessed the accuracy of 
clone migration inferences by using F1-scores (Fig. 4). The F1-score considers true positive (correct), false posi-
tive (wrong), and false negative (missing) inference of migration paths. In our evaluations, these represent cor-
rect, erroneous, and not-inferred clone migration paths.

Overall, the highest average F1-score was 0.82 for DIVALIKE, followed by DEC and BBM (0.81 and 0.79, 
respectively; Fig. 4). All other models produced lower accuracy (0.67–0.69). Although the differences in mean 
F1-scores between BBM and the best method (DIVALIKE) were statistically significant, only BBM produced 
perfect inferences (F1 equal to 1.0) for some datasets. The best-fitting model (BAYAREALIKE + J) performed 
significantly worse than some others (0.67). The +J versions of the three models performed significantly worse, 
with DEC and DIVALIKE producing more accurate migration paths than DEC + J and DIVALIKE + J. There was 
no difference between the performance of BAYAREALIKE and BAYAREALIKE + J. Therefore, the best-fitting 
model was identified due to over-parameterization. The use of +J will not improve the accuracy of the migra-
tion inferences in tumor data analysis. Furthermore, the method that does not use model biogeographic pro-
cesses (BBM) was among the most accurate. Also, other methods without modeling of biogeographic processes 
 (MACHINA5 and  PathFinder7) were previously reported to perform similar or better than BBM for inferring 
migration events of cancer  cells9.

To further dissect the accuracy differences, we examined the effect of the number of tumors (m5 and m8 
datasets) and the complexity of the seeding scenario (mS, pS, pM, and pR) on the clone migration inferences 

Figure 3.  The average number of multiple ranges suggested at ancestral nodes differed among the two and 
three free parameter biogeographic models.
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(Fig. 5). F1-scores were slightly worse for datasets with higher than those with a small number of tumors (m5; 
0.66–0.95, and m8; 0.66–0.89).

F1-scores for most complex seeding scenarios (pM and pR; 0.70–0.72) were worse than single-source seeding 
(0.75–0.95) in the BBM model. The number of tumors seems to dictate the accuracy of clone migration inferences 

Figure 4.  Performance of the seven biogeographic models used for clone migration inferences as measured 
by F1-scores. Mean values are depicted above the box plots. Differences in F1-scores were examined through a 
t-test and are marked when significant.

Figure 5.  Performance of the seven biogeographic models in inferring clone migrations as measured by 
F1-scores. Mean values are shown above the box plots. Accuracies are shown based on the number of tumors 
within datasets (5–7 tumors for m5 and 8–11 tumors for m8) and on the complexity of migration schemes 
within datasets (monoclonal single- source seeding, mS; polyclonal single-source seeding, pS; polyclonal 
multisource seeding, pM; polyclonal reseeding, pR). Differences in values of F1-score on tumor count and 
seeding scenario were examined through t-test and are marked when significant (*, **, ***, ****).
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by BBM in the simplest data (mS and pS), but not in most complex ones (pM and pR). That is not the case for the 
rest of the models, as their performances remain poor but steady across complexities of metastatic migrations.

Next, we examined the numbers of correct, erroneous, and not-inferred migration paths depending on the 
source- and recipient-area of the migration for each biogeographic method used. In the graphs presented in 
Fig. 6, density plots show the number of the datasets (y-axis) in which the inferred number of migration paths 
were observed (x-axis). Four sets of plots are shown: (i) all migration paths; (ii) primary to metastasis paths, 
P → M; (iii) metastasis to metastasis paths, M → M; and (iv) metastasis to primary paths, M → P. Within each 
panel, three graphs are included to display the propensity of a given method to infer correct paths (top), errone-
ous paths (middle), and paths not-inferred (bottom).

For example, in the graph showing all the migration paths for the BBM model, we observe that many correct 
migration paths were reconstructed for many datasets. Furthermore, there are only a few wrong paths inferred for 
a smaller number of datasets. A similar pattern was seen for true paths not-inferred (Fig. 6). For P → M migra-
tions, many biogeographic models performed equally well, with a few notable trends. BBM showed a smaller 
tendency not to infer correct P → M paths. DEC and DIVALIKE reconstructed a smaller number of correct and 
incorrect paths compared to other methods, resulting in a larger number of datasets with many P → M paths 
remaining undetected. All biogeographic models failed to detect many M → M paths. BBM, DEC, and DIVALIKE 
produced fewer wrong M → M paths. Still, DEC and DIVALIKE inferred fewer correct migration paths as well. 
Interestingly, +J models produce more correct and erroneous M → P paths than their counterparts without the 
J parameter. However, BBM produced fewer wrong and not-inferred paths, making it the most accurate model.

Biogeographic analyses of breast cancer metastases. We inferred clone migration histories for two 
patients (A1 and A7) with basal-like breast  cancer13 (Figs. 7 and 8, respectively). We begin with patient A1’s 
dataset consisting of nine clones from one primary tumor (breast) and four metastases (adrenal, lung, spinal, 
and liver). The phylogeny and tumor sampling locations are shown in Fig. 7a.

For the A1 patient, Hoadley et al.13 suggested that clones from the primary tumor seeded all the  metastases13. 
Similar to the analysis of computer-simulated datasets, +J models fit better in the Likelihood Ratio Tests com-
paring BAYAREALIKE, DEC, and DIVALIKE with their +J counterparts, respectively (2∆lnL/BIC of 4.5/5.5, 
9.5/10.5, and 10/10.9, respectively; P < 0.05) (Fig. 7). The use of the BAYAREALIKE model suggested that clones 

Figure 6.  Correct, erroneous, and not-inferred migration paths inferred using seven biogeographic models. 
Here, we show the results depending on the source-area of the migration: all migration paths, primary to 
metastasis (P → M), metastasis to metastasis (M → M), and metastasis to primary (M → P).
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from the primary tumor seeded all metastases. More than one primary clone seeded some metastases (clones 
C4 and C7, Fig. 7a). This pattern of a primary-to-metastasis spread is similar to that inferred by Hoadley et al.13 
and by methods that do not involve biogeographic modeling (BBM, PathFinder, and MACHINA; Fig. 7b–d). 
Importantly, however, not all model combinations and methods produce identical migration history, which was 
similar to the trends observed in the analysis of computer-simulated datasets.

The second dataset analyzed came from patient A7, which consisted of ten clones sampled from one pri-
mary (breast) and five metastatic tumors (brain, lung, rib, liver, and kidney). Figure 8a shows the phylogenetic 
relationship of clones and their sampling sites of patient A7. Hoadley et al.13 suggested that the breast’s primary 
tumor directly seeded all the metastases for this  patient13.  While different types of migration graphs were recon-
structed by the biogeograhic models, none of them predicted a migration history in which the primary tumor 
seeded all the metastases, contrary to Hoadley et al.13 suggestion (Fig. 8). Again, models with +J fit the data the 
best, consistent with the results seen in the analysis of the computer-simulated datasets (2ΔlnL/BIC of 4.6/5.6, 
2.3/3.3, and  5.5/6.5, respectively; P < 0.05).

All biogeographic models predicted that metastases seeded other metastases much more frequently than the 
primary tumors in patient A7 (Fig. 8e–k). In all migration history reconstructions, one or more clones migrated 
between metastases. Similarly, methods that do not consider biogeographic models (BBM, MACHINA, and Path-
Finder) predicted many migration paths between metastatic tumor sites. For example, there were two migration 
events from the lung to brain metastases and one reseeding event from the brain to the lung when BBM was used 
(Fig. 8h). Most of the methods showed slightly different clone migration histories from each other. However, the 
seeding of kidney metastasis by the liver metastasis was inferred in all analyses, and the rib metastasis received 
clones from both liver and lung metastases. The lung metastasis also contributed clones to the brain metastasis. 
Some biogeographic models predicted reseeding of the primary tumor (breast) by metastases, but this pattern 
was not universally observed. Overall, non-biogeographic models agree with the type of migration patterns 
inferred by the biogeographic models indicating metastasis-to-metastasis and not a primary-to-metastasis spread.

Discussion
Recently, molecular evolution and organismal biogeography have come into play to understand the evolution-
ary and spatiotemporal dynamics of cancer cells’ migrations across tumors. These applications have begun to 
reveal insights into cancer initiation, evolution, and metastasis. Here, we have mapped terminologies between 
the organismal and tumor biogeography for the first time, which are needed to properly analyze tumor variation 
using the models and tools available in organismal biogeography. These developments bridge the gap between 
tumor and organismal biogeography and likely accelerate the use and advancement of existing methods.

Figure 7.  Analysis of Patient A1 with basal-like breast  cancer13. (a) Clone phylogeny and tumor location of 
each clone reported in the original study. (b–k) Clone migration histories predicted by non-biogeographic and 
biogeographic models. Colors correspond to the tumor location where clones were sampled from. Values on the 
top right are AICcs.
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We translated and investigated the evolutionary processes observed into a clone phylogeny through biogeo-
graphic models that weigh these processes differently. To avoid confounding the effect of clone phylogeny  errors16 
with the inaccuracy of inferences under different biogeographic models, we have used correct phylogenies in 
all our analyses. Even though complex models fit the data the best, simpler models reconstructed clone migra-
tion paths more accurately. This might have happened because complex models generally tend to fit better the 
data, but they might also infer estimates with greater variance and inaccuracy due to the low numbers of clones 
and/or locations, as normally sampled in real data. Another possibility is that while the +J models fit the data 
the best, the actual model parameters are not the same throughout a migration history, i.e., the evolutionary 
process is heterogeneous. In this case, estimates from even complex models can become biased, in addition to 
suffering from high variance.

To further understand the implication of our findings, it is important to delve into how these biogeographic 
approaches address and model the evolutionary processes that (clone) lineages undergo, i.e., anagenetic and clad-
ogenetic events. Essentially, each one of the biogeographic methods studied here weighs dispersal and extinction 
events differently. In addition to that, models accommodate or not for genetic divergence and vicariance events.

Studies have shown that DEC and DIVA produce similar results, which agrees with our findings in tumor 
data  analysis17. More specifically, the DEC model was inspired by DIVA, and so, both models assume speciation 
as a result of vicariance or genetic divergence. That is to say, vicariance is frequently favored over dispersal, with 
ancestral areas partitioned into two disjoint subsets while using the latter two biogeographic models. Further-
more, we noticed that the DEC + J and DIVA + J produced similar F1-scores regardless of the number of tumors 
and seeding scenario.

On the other hand, BBM and BAYAREALIKE approaches seem to favor dispersal and extinction events. We 
argue that BAYAREALIKE may produce more accurate clone migration inferences depending on the question at 
hand. These biogeographic methods are more suitable for exploring evolutionary (cladogenesis and anagenesis 
events) and biogeographic (dispersal, diversification, extinction, vicariance) processes simultaneously. Moreover, 

Figure 8.  Analysis of Patient A7 with basal-like breast  cancer13. (a) Clone phylogeny and tumor location of 
each clone reported in the original study. (b–k) Clone migration histories predicted by non-biogeographic and 
biogeographic models. Colors correspond to the tumor location where clones were sampled from. Values on 
the top right are AICcs. Clone migration history inferred by BAYAREALIKE (panel e) predicted the origin of 
metastasis to be from lung tissue, but the estimated probability value of lung at the root of the tree was very low 
and similar to that for breast tissue (primary tumor). We show the migration history starting from breast tissue 
(dotted line) because the primary tumor was found there (e).
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BAYAREALIKE offers more freedom to customize their model for exploring different tumor sizes, distances 
between tumors, and integrating the distance-dependent effect on the dispersal probability. Such methods will 
explore the size and isolation of tumors, and ultimately, tumor features and properties that are key for under-
standing tumor diversity and microenvironment.

Regarding the use of the J parameter in the biogeographic models, this is important for estimating ancestral 
ranges. The founder principle has its basis on the migration of a group of individuals to a remote area where they 
establish a small founding population. Therefore, by definition, the +J models favor dispersal and reject vicari-
ance by predicting single areas over multiple ranges as the migration’s plausible origin. The use of a +J model 
is important to avoid spurious estimates of the number of areas in which the ancestral clones likely existed. 
Without the J parameter, these possibilities become too large because current models allow vicariance to be a 
major mechanism for metastasis.

Analyses of clinical data of patients with basal-like breast cancer showed evidence of multiple clones seeding 
metastases, reseeding events from metastasis to primary or another metastasis, and metastasis-to-metastasis 
spread. The inferred seeding and source patterns for patient A1 were similar to those suggested in the original 
study by Hoadley et al.13, whereas the inferences differed for patient A7.

Our results in the empirical data analysis are further supported by the migration inferences of non-biogeo-
graphic models  (MACHINA5 and  PathFinder7), which indicated multiple seeding events between tumors and 
metastasis-to-metastasis spread. This is very interesting as previous studies using phylogenetic approaches also 
produced multiple clone seeding and reseeding events and propose seeding events between metastases, making 
apparent that the development of metastases is  idiosyncratic7,18. Also, there is already experimental evidence of 
migrations between metastases in breast  cancer19–21.

We suggest that one needs to be careful while selecting the method for real data analysis and interpreting 
the migration history reconstructed, even though simulation analysis suggests that methods that do not model 
biogeographic processes may perform better than those that do. This is because computer simulations cannot 
fully consider all biological attributes of metastatic migration processes. There is always a limit on the applicabil-
ity of the results from computer simulations in real-life situations. Computer simulations provide useful insight 
into the absolute performance and relative usefulness of new methods. The results produced can be cautiously 
applied when different methods do not produce similar results, as seen in the analysis of the empirical datasets. 
More sophisticated simulations involving a larger number of clones and tumors are likely to help overcome the 
limitations of simulations presented here.

Furthermore, we have shown that biogeographic models could accommodate various evolutionary processes 
that are key when investigating the origin and trajectory of cancer cells in a patient. Models that account for 
founder events fit the tumor data best, however, a better fit does not translate into more accurate migration 
inference. In our simulation study, the most accurate approaches were the ones that do not model biogeographic 
processes (BBM, MACHINA, and PathFinder), but methods involving biogeographic models would be useful 
to estimate fundamental parameters such as the dispersal and extinction rates.

Conclusions
In summary, we have addressed how theoretical concepts and model parametrization in various biogeographic 
methods capture evolutionary and biogeographic events. We discussed how the migration of cancer cells between 
tumors is displayed in a phylogeny. The use of concepts and principles from the field of organismal biogeography 
for analyzing tumor data can contribute to future applications of such methods in understanding movements and 
genetic diversification of cancer cells within and between tumors. Researchers have already started using bio-
geographic methods or developing new methods for clone migration  inferences5,8,9. Inference of clone migration 
histories is a major advancement in cancer research because it enables modeling cancer cells’ origin and move-
ments between tumors. In the future, cancer researchers could harness the existent scientific knowledge from the 
fields of organismal evolution and biogeography to shed light on the evolution and progression of cancer disease.

Methods
Simulated dataset analyzed. We selected clone phylogenies and computer-simulated datasets used in 
previous analyses for inferring tumor migration paths;  see5,9 for more details. Simulations varied as to the num-
ber of tumors (5–11 tumor sites; m5 and m8 datasets), the number of migrating clones (1–3), and the source-
area of plausible clone migration trajectories between tumors, e.g., clones migrating between metastases or from 
a metastasis back to the primary tumor.

Specifically, we used 80 tumor datasets under four main clone seeding scenarios defined by the complex-
ity of the clone migration schemes. The simplest seeding scenarios included single or multiple clones seeding 
from a single source-area that could be either primary or metastasis (monoclonal single-source seeding, mS 
and polyclonal single-source seeding, pS, respectively). The most complex seeding scenarios consisted of mul-
tiple clones seeding from multiple source-areas with primary tumor and metastasis, including reseeding events 
from metastasis to primary (polyclonal multi-source seeding, pM and polyclonal reseeding, pR, respectively). 
Essentially, these simulated datasets span a wide range of parameters/models: (a) four seeding scenarios with 
increasing complexity, (b) a range of the number of tumor sites (5–11), (c) single to multiple seeding events 
(1–3), (d) consideration of reseeding events, and a wide range of the number of (e) SNPs (9–99) and (f) clones 
(7–28). All relative information of clone phylogenies and tumors is available at https:// github. com/ rapha el- group/ 
machi na/ tree/ master/ data.

Empirical dataset analyzed. We analyzed the dataset from the two patients with basal-like breast  cancer13. 
The A1 patient consisted of nine clones from one primary tumor (breast) and four metastases (adrenal, lung, spi-

https://github.com/raphael-group/machina/tree/master/data
https://github.com/raphael-group/machina/tree/master/data
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nal, and liver) (329 SNVs). The A7 patient dataset included ten clones from primary and five metastases (kidney, 
liver, lung, rib, and brain) (478 SNVs)13. We used the clone phylogeny from the original study, which was rooted 
using the germline sequences (normal cells). We assumed clones were different when they were sampled in more 
than one tumor site. We did this to reduce the inference of multiple ranges at ancestral nodes, a common issue 
for biogeographic methods that consider vicariance over dispersal to explain migration events.

Biogeographic analyses. We used six biogeographic models, each one treating evolutionary processes 
differently (Table 1). We chose six models implemented in the BioGeoBEARS R  package14. We used the default 
implementation of BioGeoBEARS, which is Maximum Likelihood (ML) of the following methods:  BayArea22, 
Dispersal Extinction Cladogenesis (DEC)23, and Dispersal-vicariance analysis (DIVA)24. We also added a param-
eter that accounts for the founder-event speciation in each method mentioned above (J). Thus, six biogeographic 
models implemented in BioGeoBEARS were used: BAYAREALIKE, BAYAREALIKE + J, DEC, DEC + J, DIVA-
LIKE, and DIVALIKE + J (Table 1). Also, we used the Bayesian Binary MCMC (BBM) method implemented in 
RASP v4, which has been explored previously and shown to infer relatively reliable clone  migrations9,25,26.

We used the true clone phylogenies and tumors as the sampled clones’ location because we were interested 
in examining the effect of various biogeographic processes on the accuracy of clone migration inferences. True 
phylogenies were derived from the original study and reproduced using the maximum parsimony (MP) method 
in MEGA-CC because simulated sequences did not have any  homoplasy9,27. The outgroup was a sequence with 
no mutations. All models implemented in BioGeoBEARS and BBM were given a topology that contained branch 
length information. Essentially, the first input file to the BioGeoBEARS and BBM is a clone phylogeny, which the 
user may have inferred from tumor sequencing data using available computational methods. The second input 
file is a list of locations where each clone is found (Fig. 2).

We analyzed clone phylogenies under six biogeographic models in the R package BioGeoBEARS. These 
analyses produce probabilistic inferences of geographic ranges on ancestral nodes of a phylogeny by considering 
different models of geographic range evolution. The generated output files include (1) the predicted ancestral 
location at each node and (2) the probability value for the prediction. Next, we manually reconstructed the 
migration paths (Fig. 2).

BioGeoBEARS uses LAGRANGE that models two free parameters: dispersal rate, i.e., the rate of range 
expansion by adding an area along a phylogenetic branch (d), and extinction rate, i.e., the rate of local range loss 
through along a phylogenetic branch (e)17,23. BioGeoBEARS also allows for modeling founder-event speciation 
(J) in which the new species jumps to a range outside of the ancestral range. The addition of the J parameter 
results in models with three parameters. Each of the six models we used in our analyses had its implementation. 
Notably, BAYAREALIKE and BAYAREALIKE + J modeled dispersal and extinction. On the other hand, DEC, 
DEC + J, DIVALIKE, and DIVALIKE + J models integrated a fixed cladogenetic model that gives an equal prob-
ability to vicariance and extinction events (Table 1).

For the six biogeographic models implemented in BioGeoBEARS, we removed the null range from the state 
space such that the sampled clones were required to be present in at least their sampling location. The null range 
would have accounted for the possibility of a clone being present in no areas, meaning that it was not sampled in 
any of the sampled tumors. The ancestral nodes had a maximum range of size two, which means that a maximum 
of two different tumor sites was allowed to be assigned as a possible ancestral range area. We did that to avoid 
erroneous migration inferences because of the multiple ranges suggested at ancestral nodes.

Instead of using ultrametric trees, which is the ideal input for BioGeoBEARS, we provided an ultrametric-like 
format for our data analysis as suggested by the author of BioGeoBEARS (personal communication with Dr. 
Nicholas Matzke). The unit for the branch lengths in the ultrametric trees is absolute or relative time. In clone 
phylogenies, we only have branch lengths in the unit of the number of mutations per site. So, we used the number 
of mutations as a proxy for time, which we called the ultrametric-like tree. Tip clones connected with zero branch 
length were considered ancestral; they were without recent diversification events. We used the default settings for 
the other parameter settings (see https:// github. com/ nmatz 0ke/ BioGe oBEARS). An area with the highest infer-
ence probability at an internal node of the phylogeny was considered the clone’s ancestral range. Migration paths 
were obtained when the reconstructed ranges differed between an internal node and its direct descendant node.

The analyses for the BBM approach were run in  RASP26. BBM method uses a full hierarchical Bayesian 
approach for inferring ancestral states. The RASP implementation allows for annotating dispersal and extinction 
events to the ancestral distributions and their probabilities at each node. We obtained the clone migration infer-
ences by BBM from Chroni et al.9. The analysis settings included three runs of the Markov-chain Monte Carlo 
chains for 5,000,000 generations to ensure that MCMC chains would reach stationarity and convergence. The 
stationary rate frequencies and reconstructed states were sampled every 1000 generations, and there was a 10% 
burn-in. All analyses were run under the fixed Jukes-Cantor (JC69) with equal character (tumor site) change 
(dispersal) rates (for more details about the criteria of the settings for BBM,  see9). Runs were combined into a 
single result, which we used for evaluating the inferred clone migration paths.

Accuracy measurements. The accuracy of the migration paths reconstructed for the tumor-simulated 
data was evaluated through F1-scores. These indicate a method’s accuracy by counting true positives (TPs), false 
positives (FPs), and false negatives (FNs) results. F1-scores are the harmonic mean of precision and recall:

where

F1 = 2×
precision× recall

precision+ recall

https://github.com/nmatz0ke/BioGeoBEARS
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and

For each dataset, one clone migration history was inferred under each biogeographic model. We identified 
clone migration paths as correct (TPs), erroneous (FPs), and not-inferred (FNs).
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