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Abstract
An individual's chronological age does not always correspond to the health of different tissues in their body, espe
cially in cases of disease. Therefore, estimating and contrasting the physiological age of tissues with an individual's 
chronological age may be a useful tool to diagnose disease and its progression. In this study, we present novel metrics 
to quantify the loss of phylogenetic diversity in hematopoietic stem cells (HSCs), which are precursors to most blood 
cell types and are associated with many blood-related diseases. These metrics showed an excellent correspondence 
with an age-related increase in blood cancer incidence, enabling a model to estimate the phylogeny-derived age 
(phyloAge) of HSCs present in an individual. The HSC phyloAge was generally older than the chronological age of 
patients suffering from myeloproliferative neoplasms (MPNs). We present a model that relates excess HSC aging 
with increased MPN risk. It predicted an over 200 times greater risk based on the HSC phylogenies of the youngest 
MPN patients analyzed. Our new metrics are designed to be robust to sampling biases and do not rely on prior knowl
edge of driver mutations or physiological assessments. Consequently, they complement conventional biomarker- 
based methods to estimate physiological age and disease risk.
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Introduction
Somatic aging is characterized by an unrelenting accumula
tion of genetic variants that become a mutational burden 
with potentially significant health consequences, particular
ly in tissues with high cellular turnover (Fancello et al. 2019; 
Sha et al. 2020). Hematopoietic stem cells (HSCs) bearing 
newly evolved variants can increase in numbers due to pro
liferative and/or survival advantage, leading to clonal expan
sions. Such clonally expanded HSCs can result in clonal 
hematopoiesis of indeterminate potential (CHIP) in circu
lating blood cells. CHIP increases with age, paralleling the in
creased risk of hematological neoplasms and cardiovascular 
disease (Bick et al. 2020; Nachun et al. 2021; Younes et al. 
2023). This pattern is often associated with driver muta
tions in some genetic loci, such as DNMT3A and TET2 
(Buscarlet et al. 2017; Bailey et al. 2018).

Many studies identify CHIPs by the presence of such dri
ver mutations, with their reported prevalence rates ran
ging from ∼1% in young people (<40 yr old) to >15% in 
those over 65 (Groarke and Young 2019; Bick et al. 2020; 
Fabre et al. 2022). These drivers emerge from a background 

of somatic mosaicism that develops continuously over 
time (Groarke and Young 2019; Bick et al. 2020; Fabre 
et al. 2022). However, few studies have focused on using 
putative passenger (nondriver) variation to assess disease 
risk. Advancements in single-cell sequencing of HSC gen
omes now provide base-resolution profiles of all genetic 
changes in somatic cells (Lee-Six and Kent 2020; Van 
Egeren et al. 2021; Fabre et al. 2022; Mitchell et al. 2022), 
offering new avenues for developing quantitative models 
to complement the analysis of driver mutations.

In this study, we measured the accumulation of single 
nucleotide alterations (SNAs) in somatic genomes of 
HSCs and assessed temporal changes in HSC phylogenetic 
diversity with age. We present novel approaches to meas
ure the decay of phylogenetic diversity of HSC genomes 
generated from single-cell sequencing data. We explored 
the relationships between the number of SNAs and the de
cay of phylogenetic diversity with the age-related inci
dence of cancer in populations (Fig. 1). Based on the 
observed patterns, we developed a model to estimate 
HSC phylogeny–derived age (phyloAge) to predict the 
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increased risk of disease. We applied these measures to 
HSC phylogenies of individuals suffering from myeloproli
ferative neoplasms (MPNs) to estimate increased cancer 
risk independent of commonly used panels of driver muta
tions or other biomarkers.

Results and Discussion
Accumulation of Genetic Variation in HSCs in the 
Healthy
We utilized the most comprehensive single-cell sequencing 
data publicly available for HSCs (Mitchell et al. 2022). This 
consists of whole-genome sequences of DNA obtained 
from 3,579 colonies of cells derived from single immunophe
notypic HSCs (Lin−CD34+CD38−CD45RA−) that were 
sorted using flow cytometry and then cultured to produce 
single-cell–derived hematopoietic colonies from 10 healthy 
individuals spanning the human lifespan.

We calculated the number of genetic differences (GDs) 
between HSC sequences for each individual. We divided 
these by 2 to generate per-lineage estimates for each 
pair of HSCs. The distribution of these GDs was unimodal 
in infants, consistent with the rapid initial HSC expansion 
during embryogenesis, which results in limited HSC lineage 
divergence and thus similar GDs (Fig. 2a). With increasing 
age, the GDs increase due to the steady accumulation of 
new variants, resulting in longer GDs in 38-yr-olds and 
63-yr-olds (Fig. 2b and c). These adult distributions are 
characterized by long tails of shorter GDs, representing 
the gradual accumulation of more recently diverged 

subclonal HSCs that are more closely related to one an
other than to any of the founder HSCs. In an 81-yr-old in
dividual, these developed into a secondary peak reflecting 
the increasing prevalence of subclonal HSCs (Fig. 2d), con
sistent with CHIPs that arise after the establishment of the 
initial population of HSC clones during embryogenesis and 
become more prominent with age (Groarke and Young 
2019; Ayachi et al. 2020; Fabre et al. 2022).

The Tempo of Sequence Variation Accumulation in 
HSCs
Figure 3a shows the relationship between the central va
lues of primary peaks in GD distributions and the ages of 

Fig. 1. The incidence of blood cancer by age per 100K individuals. 
The incidence of MPN increases exponentially by age according to 
the following function: incidence (per 100K) = 0.04×e0.08×Age. 
Rates of incidence were obtained from Hultcrantz et al. (2020). 
This pattern mirrors the known incidence rates of other blood can
cers such as leukemia and myeloma (Cancer Research UK 2016 to 
2018, International Classification of Diseases [ICD] codes ICD-10 
C91 to C95 and 2016 to 2018, ICD-10 C90, respectively).

Fig. 2. Distributions of GDs between HSCs. Distributions are shown 
for a) an infant, b) a 38-yr-old, c) a 63-yr-old, and d) an 81-yr-old. 
Subclones arising from later in life are marked by an arrow, which 
forms a tail or a distribution to the left of the primary peak corre
sponding to the HSCs that arose during embryogenesis.
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7 healthy adults. The relationship is nearly linear, but the 
null hypothesis of a linear fit was rejected at P < 0.01 
when compared with a second-order polynomial fit. The 
curvilinear relationship was also found for SNAs, which 
were detected directly by comparing HSC genomes with 
the germline genome (P < 0.01; Fig. 3b). These findings dif
fer from previous reports of a constant molecular clock for 
HSC evolution (Osorio et al. 2018; Brown et al. 2019; 
Dietlein et al. 2020; Mitchell et al. 2022; Williams et al. 
2022). Importantly, the curvilinear relationship between 
age and SNA counts and GDs does not explain the expo
nential increase in the age-related incidence of blood can
cers (Fig. 3c).

Decay of Phylogenetic Diversity with Age
To seek an explanation (or at least a better correlation) for 
the exponential age-related increase in cancer risk, we ex
plored phylogenies reconstructed using SNAs in HSC gen
omes as an alternative method for characterizing patterns 
of age-related change in HSC. An individual's total number 
of HSC lineages has been shown to be established during 
embryogenesis and remains relatively stable throughout 
life (Lee-Six et al. 2018; Jaiswal and Ebert 2019; Ayachi 
et al. 2020; Mitchell et al. 2022). As expected then, the 
HSC phylogeny of a 38-yr individual exhibits extensive 
polyclonality, visible as many early-branching lineages, 
with only rare instances of evolutionary bifurcations 
(Fig. 4a). In contrast, the HSC phylogeny of an elderly indi
vidual (81 yr old) has many expanding lineages (CHIPs) 
with many descendant subclones (Fig. 4b). In this case, 
subclonal HSCs comprise over one-third of all HSCs, which 
means that subclonal HSCs that originated after birth ap
pear to replace ancestral HSC lineages.

Since the ancestral HSCs diversified early and evolved 
independently of others, they represent a greater phylo
genetic diversity than the more recently diverged subclo
nal lineages that share a genetic history with closely 
related subclonal HSCs. Therefore, the displacement of an
cestral HSC lineages by subclonal HSCs represents a decay 
in phylogenetic diversity with age (Mitchell et al. 2021). 

The lineages-through-time (LTT) plots reveal these phe
nomenological trends in biodiversity loss based on the 
temporal distribution of branch points in the phylogenetic 
trees. In the LTT plot of the 38-yr-old (Fig. 4c), the total 
number of HSC lineages is established early and remains 
similar over time. In contrast, the LTT plot of the elderly 
individual shows an additional phase of HSC diversification 
and the loss of phylogenetic diversity (Fig. 4d).

New Phylogenetic Measures of Biodiversity Decay
We explored the use of 2 biodiversity metrics to quantify 
the decline in phylogenetic biodiversity with age in single- 
cell HSC phylogenies: HSC phylogeny imbalance (π) and 
the number of HSC lineages (n). Phylogeny imbalance 
(Colless 1982) is the sum of absolute differences in the sizes 
of the descendant clades for every internal node in the 
tree. Computationally, the absolute size difference be
tween the 2 descendant clades of a node is calculated 
for every node, and these values are summed for all the in
ternal nodes in the phylogeny to obtain the imbalance 
metric. Due to the CHIP events, the imbalance grows in 
the HSC phylogeny with age. However, π and n depend 
on the number of HSCs sampled, as shown in Fig. 5a and c, 
respectively. In these analyses, we randomly removed sub
sets of HSC lineages from the HSC phylogeny of a 38-yr-old 
healthy individual (KX002) at 10% intervals, resulting in 
a set of 10 phylogenies ranging from 100% to 10% of the 
total lineages sampled. The probability of a given lineage 
appearing in a phylogeny is called “sampling fraction,” 
which may be treated as a measure of data richness in 
the HSC phylogeny. We then calculated phylogenetic 
imbalance and lineage counts for each. The imbalance of 
HSC phylogenies (π) scaled linearly with data richness 
(R2 = 0.98; Fig. 5a) as did the number of tips (n) present 
in the HSC phylogeny (R2 = 1; Fig. 5c).

So, we developed 2 novel metrics (α and β) to quantify 
the decline in phylogenetic biodiversity with age in single- 
cell HSC phylogenies. These metrics are designed to be ro
bust to the number of HSCs sampled. The first metric (α) 
measures the standardized change in π over an individual's 

Fig. 3. Accumulation of sequence variation over time in HSCs. Relationship of a) GDs and b) SNA counts with age for 7 healthy adult individuals. 
These relationships are curvilinear, as a second-degree polynomial fits the data better than a linear regression in both cases (P < 0.01). c) Tempos 
of SNA and GD increases do not explain the much more rapid increase in the age-related incidence of MPN.
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lifetime after birth as the natural logarithm of the ratio of 
contemporary and ancestral values of π:

α = log2 (π/πa) = log2 (π) − log2 (πa) (1) 

The contemporary value of π is estimated using the whole 
HSC phylogeny. The ancestral imbalance (πa) is obtained 
by cropping the phylogeny at a time point equivalent to 
the inflection point in its LTT plot, where the initial HSC lin
eage diversification ends at or near birth (see Materials and 
Methods). The α metric has a minimum value of 0 at birth 
because π and πa will be equal. A base-2 logarithm is used 
because phylogenetic branching is typically a doubling 
process. HSC phylogenies’ α estimates were not significantly 
correlated with the number of HSCs sampled (R2 = 0.16; 
P > 0.05), unlike the estimate of π (compare Fig. 5a and b).

The second metric (β), based on the number of 
HSC clonal lineages (n), is also intrinsically normal
ized. It is the logarithm of the ratio of observed 
lineages (n) and inferred ancestral lineages that re
tained (na):

β = log2 (n/na) = log2 (n) − log2 (na) (2) 

The β metric is 0 for young, healthy individuals who 
have not lost any ancestral HSC lineages. However, it 
increases over time as expanding subclones displace 
the ancestral HSCs, reducing overall diversity. We 
find no significant relationship between β and data 
richness (R2 = 0.16; P > 0.05 and R2 = 0.16; P > 0.05; 
Fig. 5c and d).

Relationship of α and β with Age-Related Increase in 
Blood Cancer
We estimated α and β metrics using HSC phylogenies of 8 
healthy adults. Both exhibit an exponential relationship 
with age (Fig. 6). The diversity decay increases exponential
ly, remaining small until about 65 yr and increasing rapidly 
thereafter. These patterns were highly concordant with 
that observed for the cancer risk, with the correlation coef
ficients between the MPN risk and the biodiversity metrics 
of R2 = 0.89 (P < 0.01) for α and R2 = 0.87 for β (P < 0.01).

Estimating PhyloAge of HSC Phylogenies
The relationships of α and β estimates with the age of 
healthy adults and their cancer risk prompted us to de
velop a model to estimate what we call HSC phyloAge. 
In this case, both α and β were used as phylogenetic mar
kers analogous to epigenetic markers of age (Hannum et al. 
2013; Horvath 2013; Simpson and Chandra 2021). We op
timized the values of parameters using a numerical Gauss– 
Newton algorithm, aiming to minimize the sum of squared 
differences between the observed and the predicted age 
(see Materials and Methods).

In leave-one-out (LOO) analyses, the phyloAge model 
predictions achieved a correlation coefficient of 0.82 
with the chronological age. The absolute difference be
tween phyloAge and chronological age, referred to as the 
residualAge, was 6.6 yr on average (Fig. 7). The predictions 
for younger individuals, where α and β do not change 
much over time, had higher residualAge (3.8 to 15.0 yr). 
The residualAge was <3.7 yr for individuals 65 yr and 

Fig. 4. The HSC phylogenies of 2 
healthy individuals and changes 
in their phylogenetic biodiver
sity. a) The HSC phylogeny of a 
38-yr-old healthy individual, 
which exhibits <10 HSC lineage 
divergences after the embryonic 
phase. b) The HSC phylogeny of 
an 81-yr-old healthy individual, 
which has many large clades 
containing subclonal HSCs. 
Only one-third of the tips are 
direct descendants of the em
bryonic HSCs. c) The LTT plot 
from the 38-yr-old exhibits an 
initial rapid diversification in 
HSCs, followed by a period of 
growth, with minimal increase 
in total lineages thereafter. d) 
The LTT plot from an 81-yr-old 
healthy individual exhibits an 
initial rapid diversification in 
HSCs, a period of growth, and 
then a second period of increase 
later in life.
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older. We also explored the use of Shannon's biodiversity 
index (Whittaker 1972; Mitchell et al. 2022) but found 
that its inclusion in the phyloAge model did not improve 
the accuracy of predictions.

The performance of the phyloAge model was compar
able with that reported for epigenetic clocks in some re
cent studies. For example, GrimAge2 was trained using 
thousands of methylation profiles to predict chronological 
age and showed a correlation of 0.78 to 0.95 between true 
and predicted ages (Lu et al. 2019, 2022), whereas the cor
relation was 0.94 for phyloAges. DeepMAge, a deep learn
ing method trained on 4,930 methylation profiles (Galkin 
et al. 2021), was reported to predict age with a median er
ror of 2.8 yr, which is better than phyloAges for young peo
ple but similar for older people. These results suggest that 
phyloAge could yield results comparable with existing 
methods, with the possibility of improvement when single- 
cell HSC-sequencing data become available for additional 
healthy adults.

Estimates of PhyloAges for the HSC Phylogenies of 
MPN Patients
Next, we applied our metrics and methods to the HSC phy
logenies of 12 MPN patients aged 23 to 83 yr (Williams et al. 
2022). These data were acquired similarly to those of healthy 
individuals (Mitchell et al. 2022). The MPN phyloAge esti
mates were consistently older than the chronological ages 
(Fig. 8a). For example, a 49-yr-old MPN patient received a 
phyloAge of 94.4 yr, indicating that their HSC biodiversity 
had decayed by an additional 45.4 yr beyond their chrono
logical age. This is evident upon comparing their HSC phyl
ogeny (Fig. 8b) with that of the oldest healthy person (81 yr 
old; Fig. 4b). In fact, the MPN patient has lost all but 3 ances
tral HSC lineages, which represents a greater loss in genetic 
diversity and a greater change in phylogeny shape than 
that of a healthy person almost 4 times their age (Fig. 4b). 
In general, young MPN patients’ LTTs, and even cellular phy
logenies, resemble those of much older healthy individuals. 
That is, MPN is associated with HSC diversity loss earlier in 

Fig. 5. Normalized metrics account for lineage sampling. a) The relationship of the imbalance of adult HSC phylogenies (πa) with data richness 
(R2 = 0.98) and other info. b) The standardized phylogeny imbalance (α) shows a low correlation with data richness (R2 = 0.16; P > 0.05). c) The 
relationship of the number of tips present in the adult HSC phylogeny (n) is the same as the sampling fraction (R2 = 1). d) The standardized tip 
count (β) is also not highly correlated with data richness (R2 = 0.16; P > 0.05).
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life due to the dominance of subclonal HSC lineages. Overall, 
residualAges discriminated between the healthy adults and 
MPN patients until the age of 80, with the residualAges > 33 
for MPN patients <80 yr old (Fig. 8a).

We sought to compare the performance of residualAge 
based on the phyloAge model for MPN patients with those 
reported for biological ages derived from methylation bio
markers, which have been widely used since their intro
duction (Horvath 2013). One study that used DNA 
methylation markers to estimate physiological ages in 
MPN patients specifically found an average residualAge 
of just 0.5 yr. However, the residualAge estimates based 

on DNA methylation vary extensively among cancer types. 
Weidner et al. (2014) reported small differences for aplas
tic anemia (average 11.7 yr) and dyskeratosis congenita 
(average 16.5 yr), whereas Zhu et al. (2019) reported 
much larger differences for many cancers (up to 50 yr). 
DeepMAge predicted an average residualAge of 1.7 yr for 
ovarian cancer. Therefore, residualAge differences can be 
large for some types of cancers, including MPN examined 
in this study.

Unlike residualAges of MPN phylogenies, we did not see a 
significant difference between the counts of cancer- 
associated driver variants between the healthy individuals 
and those with MPN, as the average number of drivers in 
healthy individuals and MPN patients were quite similar 
(4.5 and 3.9 per individual, respectively) and not significantly 
different (P > 0.75). Therefore, while drivers are frequently 
implicated in causing CHIPs (Brown et al. 2019; Dietlein 
et al. 2020), their counts do not discriminate between 
healthy and diseased individuals. However, we found SBS9 
mutational signatures in CHIP lineages of elderly MPN pa
tients only (ages > 80 yr), which showed limited discrimin
ation when using phyloAges. SBS9 is a key cancer-associated 
mutational signature characterized by T > G mutations and 
is induced by somatic hypermutation, which is often re
ported in the lymphoid samples and myeloid cancer cells 
(Alexandrov et al. 2020; Degasperi et al. 2022). SBS9 was 
not present in any of the healthy individuals. Therefore, 
SBS9 may be useful as an additional biomarker for detecting 
the emergence of MPN in conjunction with phyloAge when 
the residualAge is small. But, more data are needed to test 
these suggestions.

Assessing Increased Cancer Risk Using PhyloAge
We found the residualAge, the difference between the HSC 
phyloAge and chronological age, to be naturally related to 
the fold increase in cancer risk due to excess aging, because 

Fig. 6. The relationship of phylogenetic diversity decay metrics with age and age-related cancer risk. a) Normalized phylogeny imbalance (α) in 
HSC phylogenies from healthy individuals increases following an exponential function: α = 0.002×e0.09×age (R2 = 0.89). b) Normalized HSC lin
eage count (β) increases following an exponential function: β = 0.003×e0.08×age (R2 = 0.87).

Fig. 7. The relationship of the estimated phyloAge with the chrono
logical age of healthy adults. We estimated phyloAges using the 
composite model incorporating α and β, with 95% confidence inter
vals derived from the LOO analysis.
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the reported trends in MPN cancer incidence with age are 
described by an exponential function (0.04×e0.08×age; 
R2 = 0.99). In this case, the equation for the fold increase 
in the risk of MPN:

Fold-increased risk =
0.04 × e0.08×phyloAge

0.04 × e0.08×chronological age

= e0.08×(phyloAge−chronological age)

(3) 

This equation shows that the increased risk is a function of 
the difference between phyloAge and chronological age. It 
translates premature HSC aging into an estimate of in
creased cancer risk. Using this framework, it should be 
possible to develop similar equations for other types of 
cancers and diseases that are influenced by changes in 
the HSCs.

Applying the above equation to the HSC phylogeny in 
MPN patients predicts that a 23-yr-old person, whose 
phyloAge is 64.76, will have a 34-fold increase in their prob
ability of developing MPN. Similarly, individuals aged 40 to 
65 exhibited a 27-fold increase in risk, while those aged 65 
to 81 showed a more than 2-fold increase in risk. Based on 
these results, phyloAge shows promise as a tool for fore
casting MPN risk based solely on the phenomenological 
metrics of phylogenetic diversity decay.

Conclusion
HSCs give rise to myeloid cells that differentiate into red 
blood cells, platelets, neutrophils, basophils, monocytes, 
eosinophils, and lymphoid progenitors that include T 
and B lymphocytes and natural killer cells (Ogawa 1993; 
Mikkola and Orkin 2006). CHIP appears to arise from the 
acquisition of somatic mutations in HSC genomes that 
permit and/or drive clonal expansion over time to produce 
an age-dependent increase in blood and immune cell 

mosaicism (Nachun et al. 2021; Ahmad et al. 2023; 
Goldman et al. 2023; Singh and Singh 2023). 
Consequently, CHIP is associated with an increased risk 
of hematological malignancies and cardiovascular and pul
monary diseases (Jaiswal et al. 2017; Wong et al. 2023).

We have presented 2 novel phylogeny shape metrics 
(α and β), based on traditional ecological biodiversity mea
sures, to capture the decay of diversity of HSC phylogenies 
reconstructed using SNAs. These measures increase expo
nentially with age and are concordant with the age-related 
increases in cancer incidence, fulfilling the need for 
quantitative phenomenological descriptions of the time- 
dependent structure of HSC phylogenies. We have also pre
sented a method to estimate HSC phyloAge using α and β 
that significantly exceeds the chronological age of HSCs in 
MPN patients (average 59%, up to 182% in extreme cases).

This age difference was found to distinguish between 
healthy and diseased individuals more effectively than other 
quantitative descriptions utilizing DNA methylation 
(Hannum et al. 2013; Horvath 2013; Weidner et al. 2014; 
Bell et al. 2019; Lu et al. 2019, 2022; Galkin et al. 2021; 
Seale et al. 2022; Dabrowski et al. 2023). HSC phyloAge 
was more effective at predicting physiological ages and dis
cerning between healthy people and those with blood can
cer than the GD or total number of SNAs accumulated. 
Further, while few of the somatic SNAs an individual acquires 
in their lifetime are expected to be cancer-associated driver 
mutations (Bailey et al. 2018; Brown et al. 2019; Nussinov 
et al. 2019), even restricting our analysis to these drivers 
was not sufficient to discern between healthy people and 
those with cancer, as the counts of drivers in HSC genomes 
of individuals suffering from MPN were not sufficiently dif
ferent from those in healthy individuals (Mitchell et al. 
2022; Williams et al. 2022). Interestingly, the difference be
tween phyloAge and chronological age forecasts a fold in
crease in cancer risk. This could find application in clinical 
and research settings to track the temporal rate of 

Fig. 8. Application of the phyloAge model to the phylogenies of MPN patients. a) PhyloAges of individuals with MPN are substantially greater 
than their true chronological ages. A 1:1 relationship (dashed line) is shown for comparison. b) The HSC phylogeny of a 49-yr-old individual with 
MPN. Only 3 of 92 HSCs trace their direct origin back to the root, and one subclonal lineage gives rise to a vast majority of HSCs present at age 49, 
which displayed almost all the primary HSC lineages. c) The logged LTT plot from a 49-yr-old individual with MPN exhibits an initial rapid di
versification in HSCs, a period of growth, and then a second period of increase later in life, much like the older healthy person, but much sooner.
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deterioration of HSCs when personal single-cell sequencing 
at different time points becomes more routine.

As the field of biological aging research continues to 
evolve, we anticipate the development of new and more use
ful approaches, such as chronic sterile inflammation 
(Franceschi et al. 2018), glycomics (Borelli 2014; Krištić 
et al. 2014), and lipidomics (Beyene et al. 2020; Slade et al. 
2021). These tools are already showing a promising ability 
to identify many serious diseases (Horvath and Ritz 2015; 
Ding and Rexrode 2020; Miyoshi et al. 2020; Wang et al. 
2020; Gaunitz et al. 2021). There are even many new tools 
being developed to give consumers access to their blood 
health data (Csordas et al. 2022), though these have not 
yet been able to bridge the gap between physiological age 
and disease risk.

Regarding phyloAge, we anticipate that advancements 
in single-cell sequencing technology and the availability 
of richer cancer incidence data with age will enable 
more accurate HSC phylogeny–based evolutionary model
ing for age and risk assessment. With an increase in single- 
cell sequencing data from younger healthy individuals, 
where changes in genomic diversity are more subtle, we ex
pect to understand the natural trajectory of HSC evolution 
better. These analyses and predictive models will also char
acterize aging and blood cancers.

Materials and Methods
Data Acquisition
HSC sequences and phylogenies for 10 healthy people (age 
range infant to 81) were retrieved from Mitchell et al. 
(2022) and for 15 individuals with MPN (age range 20 to 
83) from Williams et al. (2022). An alignment was not avail
able for one healthy individual (KX007), but the phylogeny 
was so it was used. HSC sequences were composed of gen
omic positions with SNAs. For MPN patients, the first sam
pling event for each individual was considered in order to 
eliminate bias stemming from cancer treatments. Two 
healthy infants were excluded from rate estimation and 
model fitting because they were still experiencing rapid 
HSC diversification among founder lineages and thus un
representative of the stable adult phase of HSC growth 
that we aimed to model. The incidence of MPN by age 
was obtained from Hultcrantz et al. (2020).

Genetic Distance Estimation
We produced counts of sequence differences using MEGA 
to calculate pairwise GDs between HSC sequences 
(Tamura et al. 2021). In all these comparisons, positions 
with missing data were ignored (pairwise deletion option). 
This number was divided by 2 to generate per-sequence 
GD estimates. To determine the peak of the GD distribu
tion, we generated a histogram with 300 GD bins and then 
identified the bin containing the highest point in the re
sulting GD distribution. We also counted the number of 
SNAs in an HSC sequence by comparing it with the re
spective germline genomes.

Constant Versus Relaxed HSC Molecular Clocks
We used a likelihood ratio test (Wilks 1938; Glover and 
Dixon 2004) to compare fits between linear and polyno
mial regression models for GDs and SNAs accumulated 
in the HSCs of 7 adults. The polynomial models fit the 
data significantly better (P < 0.01) with the following mod
els obtained for GDs and SNAs:

GDs = 0.06 × age2 + 11.90 × age;

SNAs = 0.06 × age2 + 12.43 × age 

α and β Parameter Estimation and Normalization
To calculate Colless’ index of phylogeny imbalance (Colless 
1982), we used apTreeshape (Bortolussi et al. 2006) in R 
(R Core Development Team 2020). We plotted a LTT plot 
for each phylogeny using the R package ape (Paradis 
and Schliep 2019) and identified the point of inflection 
where lineage diversification ceased, corresponding to 
the end of the embryonic phase of HSC diversification 
(Lee-Six et al. 2018; Mitchell et al. 2022). Because our me
trics assess the number and branching patterns of phylo
genetic tips, an ultrametric HSC phylogeny was only 
required to make the initial crop of LTT. No estimates 
of an absolute time scale were necessary, which avoids 
biases associated with molecular dating approaches 
that may not work well when the evolutionary rates con
verge throughout the tree.

We generated the ancestral (embryonic) tree by crop
ping the HSC phylogeny at this inflection point and esti
mated the ancestral estimates of π and n. For some HSC 
phylogenies, apTreeshape failed to provide any estimates 
because the embryonic phylogeny contained fewer than 4 
ancestral HSC lineages. In this case, we assumed log(πa) = 0 
such that imbalance was the smallest. Meanwhile, this ap
proach will work even when the HSC tree contains only 
the subclonal lineages because they will be distinguishable 
due to a long stem branch connecting them to the germ
line reference.

For individuals who were sampled multiple times in the 
progression of their cancer, we take only the first sampling 
event as their adult phylogeny condition. This avoids the 
confounding effects of the different treatments these indi
viduals underwent to eliminate cancerous HSCs in their 
blood, necessarily impacting their HSC phylogenies.

Modeling HSC Phylogeny Age
Both α and β increase exponentially with age (Fig. 6). 
Therefore, we fitted nonlinear models for estimating age 
using α and β separately. The model parameters were opti
mized using a numerical Gauss–Newton algorithm, aiming 
to minimize the sum of squared differences between the ob
served and predicted age of healthy individuals. Next, we 
combined these 2 models using a meta-regression 
framework (Viechtbauer 2010) with a maximum likelihood 
approach (Hardy and Thompson 1996). This process pre
dicted the age and standard error for each healthy individual 
by utilizing random-effects meta-analysis in the metafor 
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package in R (Viechtbauer 2010). We validated the com
bined model, predicted the age, and estimated the predic
tion interval for each healthy individual using the LOO 
approach, in which individual ages were estimated using a 
model that excluded the individual of interest.

Annotations of Driver Mutations
Driver mutation counts per individual were obtained from 
the original studies, i.e. Mitchell et al. (2022) for healthy in
dividuals and Williams et al. (2022) for individuals with 
MPN. Overall, we obtained information on the following 
proteins that contained driver mutations: ASXL1, CBL, 
DMNT3A, JAK2, KRAS, PPM1D, SF3B1, TET2, and TP53 in 
healthy people and CBL, DMNT3A, JAK2, PPM1D, TET2, 
1q+, 7p−, 7q−, 9pUPD, 9q−, and 9+ in the MPN patients.

Mutational Signature Analysis
We annotated a clade of many cells separated from the other 
cells with a long branch in a phylogeny. We identified single
tons in cell genomes from the selected clade and inferred mu
tational signatures using Signal (Degasperi et al. 2020).
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