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Introduction

There is a direct relationship between aging and the loss of 
phylogenetic diversity among the hematopoietic stem and 
progenitor cells (HSCs/HSPCs) that give rise to differenti-
ated blood cells (Lee et al. 2019; Mejia-Ramirez and Florian 
2020; Craig et al. 2024). An adult individual’s HSC lineages 
originate in fetal development and evolve through the earli-
est phases of life. At younger ages, distinct HSC lineages 
are observed as long-tip lineages in an HSC phylogeny 
(Fig. 1a). Each primary HSC replenishes via asymmetrical 
cell division and accumulates mutations with time without 
producing additional offspring lineages. At older ages, some 
primary HSC lineages bifurcate to establish new clades of 
secondary HSCs, a process called clonal hematopoiesis 
(CH; Fig. 1b).

The presence of CH reduces overall HSC phylogenetic 
diversity because the genomes of secondary HSCs, which 
diverged relatively recently, are more similar to one another 
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Abstract
The phylogeny of a person’s hematopoietic stem cells (HSCs) can be used to quantify physiological aging of blood using 
a phyloAge model based on diversity decay metrics. However, this procedure currently requires accurate HSC genome 
sequences, which are expensive and time-consuming to obtain. We show that metrics of diversity decay can be derived 
from the somatic variant frequency spectrum (VFS) using more affordable, routine bulk sequencing, because HSCs evolve 
without recombination at a clock-like rate. We found that VFS-based models produce phyloAge estimates similar to those 
derived from HSC genome phylogenies. Customized for protein-coding variation and sequencing read depth, VFS-based 
HSC phyloAge estimates were, on average, 168 years more than chronological ages in 157 patients with acute myeloid 
leukemia, consistent with excess HSC aging observed in cancer patients using single cell genome phylogenies. We also 
tested the hypothesis that variants in cancer driver genes may confer longevity, as they occur in a significant fraction of 
long-lived individuals. Indeed, HSC phyloAge estimates were significantly lower, consistent with reduced hematologic 
cancer risk among extremely old individuals. Thus, the new metrics and models broaden the utility of the phyloAge 
approach, making it feasible and efficient for clinical and research applications.
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than those of primary HSCs, which diverged early in devel-
opment (Lee et al. 2019; Mitchell et al. 2022; Craig et al. 
2024). This decline in phylogenetic diversity is consistent 
with an increased risk of some blood cancers associated 
with CH (Jaiswal et al. 2014; Jaiswal 2020; Craig et al. 
2024). The relationship between phylogeny diversity and 
age formed the basis for a predictive model of physiologi-
cal aging gleaned from personal HSC phylogenies, referred 
to as phyloAge (Craig et al. 2024). Application of the phy-
loAge model for individuals with myeloproliferative neo-
plasms (MPN) suggested accelerated HSC aging (Craig et 
al. 2024). Therefore, phylogenetic methods can detect and 
quantify the progression of blood cancers independently of 
driver mutation analysis and standard cytological metrics 
(Craig et al. 2024). Notably, the phyloAge approach does 
not require HSC population sizes or use mutation rates. 
However, reconstructing HSC phylogenies does require 
accurate genome sequences, as somatic variants accumu-
late slowly at a rate of ~ 17 single nucleotide alterations 
(SNAs) per genome per year (Lee-Six et al. 2018; Mitch-
ell et al. 2022). Given the pattern of non-branching evolu-
tion in HSCs (Fig. 1a), a vast majority of these SNAs occur 

in terminal lineages. Indeed, more than 99% of variants 
have population frequencies < 1% (Fig. 2). This means that 
when modeling blood health, variants with frequency < 1% 
should be excluded for quantifying decay in HSC genomic 
diversity.

With age, some HSCs undergo expansion due to CH, and 
variants present in those lineages will increase in frequency, 
as will some new variants acquired during expansion. Thus, 
the incidence of many higher-frequency variants serves as 
a biomarker of the decay in phylogeny diversity with age. 
Indeed, many more high-frequency variants occur in indi-
viduals with extensive CH associated with blood cancer 
(Jaiswal et al. 2014; Toth et al. 2019; Jaiswal 2020; Wil-
liams et al. 2022).

Because somatic variants are relatively rare and low-
frequency in healthy individuals, HSC genomes need to be 
accurately sequenced, but routine single-cell sequencing 
can suffer from significant data sparsity and extensive error 
(Goswami et al. 2021). Mitchell et al. (2022) and Williams 
et al. (2022) used an alternative approach in which individ-
ual HSCs were first cultured into colonies. Then, DNA from 
each colony was sequenced. This approach, which we call 

Fig. 1  Example phylogenies of 
HSCs from healthy individuals. a 
A 38-year-old individual with very 
few bifurcations of HSC lineages 
following the initial set of diver-
sifications that occurred during 
embryogenesis. b HSC phylogeny 
of an 81-year-old individual that 
contained many secondary bifurca-
tions occurred after embryogenesis, 
resulting in clonal hematopoiesis 
(CH). The lineage highlighted by 
the red bracket leads to a large CH 
event. c The VFS in the popula-
tion of HSCs for the 38-year-old 
individual in panel a. d The VFS 
of the 81-year-old individual from 
panel b, where the peak indicated 
by the red arrow consisted of SNAs 
shared by the HSC clade emanat-
ing from the branch indicated in 
red in panel b. Like a folded site 
frequency spectrum plot, c and d 
show the frequency of SNAs car-
rying a range of VAFs, indicating 
spikes in high-frequency variants 
with age
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colony sequencing (colony-seq) to distinguish it from direct 
single-cell sequencing, achieved high coverage and low 
base-level error (see Materials and Methods). While effec-
tive, colony-seq is time- and resource-intensive, limiting 
the broader adoption of the phyloAge approach in routine 
research and clinical investigations.

In contrast, bulk sequencing (bulk-seq) is more afford-
able and commonly used in studies of blood cancer to 
identify coding variants and their somatic frequencies in 
patients. This prompted us to explore advancing the phylo-
Age approach by developing new metrics to quantify phy-
logeny decay from a variant frequency spectrum (VFS), 
which is known to change in response to CH (Watson et 
al. 2020; Körber et al. 2025). Based on theoretical consid-
erations, we developed novel measures of HSC phylogeny 
diversity decay computed from VFS, inspired by the insight 
that somatic cellular evolution occurs without recombina-
tion through mitotic cell division. Also, SNA accumulation 
is known to be clock-like in healthy people as well as blood 
cancer patients (Lee-Six et al. 2018; Lee-Six and Kent 2020; 
Craig et al. 2024). Because the new VFS-derived diversity 
decay metrics showed a strong relationship with their pre-
viously developed HSC phylogeny-based counterparts (see 
Results), we used them to build novel VFS-based models to 
estimate phyloAge, which we denote phyloAge* to distin-
guish them from estimates obtained using the HSC genome 
phylogenies.

Here, we present a new theoretical foundation for the 
phyloAge* approach and a flexible new model for estimat-
ing blood diversity decay which can be customized for appli-
cation to bulk-seq data. We first tested it on 157 individuals 
with Acute Myeloid Leukemia from The Cancer Genome 
Atlas (TCGA-AML), which we used to test for accelerated 
physiological aging in individuals with AML, as reported 
in Craig et al. (2024). We then used a second cohort to test 
the hypothesis that mutations in some cancer driver genes 

can confer longevity (Wang et al. 2024). This was proposed 
because CH-promoting variants were found in a majority of 
long-lived individuals (90–110 years old) but were rare in 
younger individuals (65–80 years old) (Wang et al. 2024). 
Paradoxically, this could tie excesses of these variants to a 
lower risk of blood cancer in long-lived individuals. This 
hypothesis led us to predict that the HSC phyloAge* esti-
mates of long-lived individuals would be lower than their 
chronological ages, because age directly correlates with 
blood cancer risk. This hypothesis can now be tested using 
the VFS phyloAge* model, as developed and applied for 
data collected by Wang et al. (2024), who reported somatic 
variants with > 1% frequency in a few CH-promoting loci. 
In the following, we present results showing acceleration 
and deceleration of HSC aging in patients and long-lived 
individuals, respectively.

Results

New Metrics for Estimating Diversity Decay

Bulk sequencing (bulk-seq) produces a sample of single 
nucleotide alterations (SNAs) and their variant allele fre-
quencies (VAFs), constituting an individual’s somatic vari-
ant frequency spectrum (VFS). HSC proliferation, which 
characterizes CH, results in clusters of closely related sec-
ondary HSCs, each sharing one or more common variants 
due to shared ancestry and lack of recombination. As CH 
progresses, these variants accumulate, producing a detect-
able signal in bulk-seq data. For example, mutations on 
a phylogenetic lineage leading to CH, as indicated in red 
in Fig.  1b, will result in many variants with elevated and 
similar VAFs in the bulk-seq VFS (indicated by a red arrow 
in Fig. 1d). Assuming that every secondary HSC produced 
as a result of CH replaces an embryonic HSC, CH causes 

Fig. 2  Number of variants with appreciable frequencies (≥ 1%) in a an infant, b a 38-year-old, and c a 77-year-old individual. A steep exponential 
decay fits this pattern, as shown by red curves and equations in each panel
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the colony-seq dataset (Mitchell et al. 2022) to estimate γ, 
since this dataset is required to estimate α (see Materials and 
Methods). We ran PyClone on colony-seq somatic VFS for 
healthy individuals and estimated γ using Eq.1. There was 
a high correlation between α and γ (Fig. 3a; R2 = 0.92) and 
between β and γ (Fig. 3c; R2 = 0.90), establishing that γ cap-
tures the same signal as phylogeny-based metrics. A high 
correlation was also observed when comparing γ estimated 
from the somatic VFS for MPN patients with α estimated 
from the collection of HSC genomes generated by colony-
seq (R2 = 0.68) (Williams et al. 2022).

However, inferring variant clusters with PyClone was 
computationally intensive, taking days to run for some col-
ony-seq datasets due to the large number of variants and 
the fact that many variants can have very similar VAFs (see 
Materials and Methods). To avoid this computational bottle-
neck, we developed a more streamlined measure of diver-
sity decay (λ) in which:

fi × ni ≃
∑

j

fi,j � (2)

Then, λ can be calculated as the sum of VAFs over all the 
variants in all the clusters:

λ =
∑

i

fi × ni =
∑

i

∑
j

fi,j � (3)

Since every variant maps to only one cluster, Eq. 3 can be 
simplified as follows:

λ =
∑

k µk � (4)

Here, μk is the VAF of variant k, and the sum is taken over 
all the VAFs.

The application of Eq. 4 requires that all variants map-
ping to the tips of the HSC phylogeny be excluded. These 
tip-specific variants are expected to occur in a single HSC 
lineage out of hundreds sampled, so that they will carry 

a reduction in phylogenetic diversity proportional to the 
product of the fraction (f) with which a cluster of variants 
occurs and the number of variants (n) in that cluster, i.e., 
f × n. Visually, f × n is the area of the white space in the HSC 
phylogeny in Fig.  1b. Thus, quantifying the shape of the 
VFS provides a practical means of assessing diversity decay 
from VAFs observed in the bulk-seq data.

Computational approaches are available to identify vari-
ant clusters in bulk-seq data (Roth et al. 2014; Chen et al. 
2020; Khan and Mallory 2023). We used the standard analy-
sis pipeline implemented in the software package PyClone 
(Roth et al. 2014) to infer distinct subclonal populations in 
bulk sequencing data by grouping SNAs into clusters based 
on the fraction of reads supporting the variant allele call 
(see Materials and Methods). PyClone estimates distinct 
subclonal clusters in the bulk sequencing dataset, which we 
used to calculate a new biodiversity decay metric (γ). Thus, 
γ captures the sum of the reduction in phylogenetic diversity 
caused by all the CH events, corresponding to the number of 
clusters produced by PyClone:

γ =
∑

i

fi × ni� (1)

where fi is the frequency of cluster i identified by PyClone, 
and ni is the number of variants in that cluster. The sum in 
Eq.1 is taken over all variant clusters, except a very large 
cluster of rare variants that all correspond to variants that 
arose on the tips of the HSC phylogeny (see Materials and 
Methods).

To validate the PyClone-based γ metric, we examined 
its relationship with α and β, the phylogeny shape metrics 
developed by Craig et al. (2024). Here, α captures per-phy-
logeny normalized Colless’ (1982) imbalance, while β cap-
tures a normalized metric of overall HSC count. If the two 
are highly correlated with γ, we may conclude that γ is sensi-
tive to the same pattern of diversity decay, but does not need 
the HSC phylogeny to recover this signal. For a direct com-
parison, we derived a somatic VFS for each individual using 

Fig. 3  Relationship between phylogeny-based and VFS-based metrics of phylogeny decay in healthy individuals: a α and γ, b α and λ, c β and γ, 
and d β and λ. Dashed lines show the fit of a linear regression in each panel
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where a and b are estimated using the relationship between 
λ and the chronological age of the healthy individuals. They 
were −1.65 and 0.084, respectively.

In a leave-one-out (LOO) analysis, on average, phylo-
Age* estimates differed by 4.9 years from the chronologi-
cal ages of healthy individuals (Fig.  5a). The difference 
was biggest for younger individuals (average of 8.1 years 
for those under 65), who experienced low rates of HSC 
diversity decay and cancer incidence. The difference was 
relatively small among older individuals (an average error 
of 0.6 years for those aged 65 or older). These patterns are 
similar to those observed for the phyloAge model based on 
the HSC phylogeny-based approach (Fig. 5a).

To further validate the phyloAge* estimates, we com-
puted root mean squared error (RMSE) and mean absolute 
error (MAE) for age-stratified bands of our reference data-
set, covering individuals from 0–30 years old (RMSE = 8.3 
and MAE = 4.9 years, respectively), 31–45 years old (1.5 and 
1.5 years), 46–60 years old (0.5 and 0.5 years), 61–75 years 
old (17.1 and 17.1 years), and 76–100 years old (0.8 and 
0.6 years). We also performed a simple calibration regres-
sion between chronological ages and phyloAge* estimates, 
yielding an intercept of 0.0 (−33.6–33.6), a slope of 1.0 
(0.45–1.55), and an R2 of 0.81 (0.28–1.00). Taken together, 

frequencies of 1% or lower in the VFS. Thus, to adequately 
filter them from the VFS, we imposed a 1% VAF threshold, 
effectively removing any SNAs that occur on a single phy-
logenetic tip out of hundreds.

To validate λ, we compared it to the phylogeny-based α 
and cluster-based γ metrics. As before, we calculated both 
λ and γ from the colony-seq dataset (Mitchell et al. 2022). 
Phylogeny-based (α and β) metrics are all tightly correlated 
with VFS-based λ (Fig.  3b and d). Thus, the phylogeny-
informed insight that VAF sums contain an inherent signal 
of CH allows us to dramatically reduce the computational 
bottleneck in estimating phyloAge* from VFS obtained via 
bulk sequencing.

Building a Phyloage* Model Using Somatic VFS

The VFS-based λ metric increases exponentially with age, 
just like phylogeny-based metrics (α and β), suggesting 
that it may be used in the same phyloAge modeling frame-
work (Fig.  4). We developed a predictive model for esti-
mating phyloAges from λ following the Craig et al. (2024) 
procedure:

phyloAge∗ = 1/b × (log (λ) − a)� (5)
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Fig. 5  Validating estimates of 
phyloAge*. a Estimates of phylo-
Age* based on the VFS metric λ 
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of phyloAge* estimates based on 
λ with those based on α and β for 
individuals with MPN

 

Fig. 4  Relationship between age and different metrics of phylogeny decay: aα, bβ, cγ, and dλ. All metrics increase exponentially with age
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somatic VFS derived from HSC genomes sequenced by 
colony-seq instead. However, the reported somatic variants 
for the TCGA-AML cohort are limited to coding sequences, 
unlike the genome-scale data available from colony-seq, 
which required building a phyloAge* model using col-
ony-seq VFS restricted to the exome variants. In addition, 
TCGA-AML bulk-seq datasets are sequenced at an average 
of 30 × coverage (Ley et al. 2013), which is many-fold lower 
than the colony-seq data. So, the phyloAge* model needs to 
account for this coverage difference, as a direct relationship 
between λ and read depth was observed (Fig. 6a-b; see Mate-
rials and Methods). This is because at higher read depths, 
more low-frequency variants can be reliably detected, pass-
ing the 1% VAF cutoff and contributing to λ. Notably, the 
estimates of phyloAge* remained similar when the phylo-
Age* model accounted for the read depth (Fig. 6c-d).

Given the robustness of phyloAge* to read depth in sim-
ulation, we performed an empirical validation by building 
a customized exome-phyloAge* model (30 × coverage) and 
tested it using exomic VFS (30 × coverage) derived from 
HSC genome datasets of MPN patients. The phyloAge* 
estimates were very similar to those obtained using the orig-
inal, high-read-depth data (R2 = 0.95, P < 0.001; Fig. 7a). We 
then used this exome-phyloAge* model to estimate HSC 
phyloAge* for 157 TCGA-AML individuals aged 18–83 at 
the time of the bulk-seq profiling (Fig. 7b). PhyloAges were 
consistently elevated (143–294, mean = 223) compared to 
chronological ages of patients (18–83, mean = 57), with an 
average residual age of 168 years. This difference is statis-
tically significant (P < 0.001). No significant difference in 
trend was observed between male and female patients (t-test, 
P > 0.90). Thus, we conclude that the exome-phyloAge* 
model trained on somatic VFS is sensitive to increased phy-
logeny decay in individuals with blood cancers, while being 
robust to changes in read depth.

Estimates of Phyloage* for Long-Lived Individuals

Next, we developed a customized phyloAge* model for 
contrasting the HSC physiological ages of a cohort of long-
lived individuals (90–110 years old) with those of younger 
individuals (65–89  years old) (Wang et al. 2024). The 
VFS data consisted of variant frequencies across 46 CH-
associated cancer driver genes. As above, we restricted the 
colony-seq VFS to these 46 markers to normalize coverage 
area, developed a Wang-phyloAge* model, and then applied 
it to bulk-seq somatic VFS of 113 individuals (see Materi-
als and Methods). To validate the Wang-phyloAge* model, 
we compared its results to those from the phyloAge* model 
based on the entire somatic VFS. It showed a moderate rela-
tionship (R2 = 0.69) due to larger overestimates for younger 
individuals.

this suggests that the phyloAge* estimates we report can be 
reliable despite the small sample size (Tables S1 and S2).

We also tested the performance of the phyloAge* model 
using somatic VFS derived from colony-seq HSC genomes 
of MPN patients. The application of Eq. 5 for these colony-
seq VFS data produced excess HSC phyloAges similar 
to those produced using HSC phylogenies in Craig et al. 
(2024) (Fig.  5b). Thus, phyloAge* models based on VFS 
derived from accurate VFS variation data can be as effec-
tive as those in which single-cell HSC phylogenies are used.

Building a Phyloage* Model Using Empirical Bulk-
Seq Data

Our literature survey revealed that many cancer studies 
primarily apply bulk-seq techniques to detect tumor vari-
ants and estimate their VAFs in the coding regions in cancer 
patients. For example, many cohorts in The Cancer Genome 
Atlas (TCGA) include data on somatic variation in cancer 
patients. In these data, somatic variants in the blood bulk-seq 
data are often identified by reference to personal germline 
sequences. Estimating HSC physiological age using these 
data requires phyloAge* models built from somatic VFS 
data from healthy individuals, in which somatic variants are 
robustly identified, e.g., using personal germline sequences. 
Unfortunately, we found no such data from TCGA or any 
other source for healthy individuals.

This prompted us to evaluate the feasibility of using 
somatic VFS derived from bulk sequencing of healthy (non-
cancer) individuals, without germline sequencing of those 
same individuals. We analyzed somatic VFS for 147 healthy 
individuals aged 1–87 (see Materials and Methods). Vari-
ants were called using GATK4 MuTect2 (van der Auwera 
and O’Connor 2020). Somatic variants were detected 
by excluding variants found in the 1000 Genomes data-
set and those present in the bulk-seq data of two or more 
of the 8,000 individuals from Ukraine (see Materials and 
Methods). Using the resulting somatic VFS, we evaluated 
the suitability of bulk-seq data by plotting the number of 
somatic variants identified against the chronological age, a 
pattern established in many previous studies (Lee-Six and 
Kent 2020; Mitchell et al. 2022; Craig et al. 2024). Unfor-
tunately, the relationship was extremely noisy, and the trend 
was negative (see Fig. 9 in Materials and Methods). Indeed, 
it is well known that determining somatic mutations in bulk 
sequences alone is challenging without paired germline 
sequencing (Teer et al. 2017).

Estimates of Phyloage* for the TCGA-AML Cohort

The lack of reliable somatic VFS datasets from healthy indi-
viduals led us to explore training a phyloAge model using 
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who reported that variants in genes like TET2 are found 
much more often in long-lived individuals as compared 
to individuals ages 60–79  years old, despite their known 
association with cancer (Abelson et al. 2018; Desai et al. 
2018). We predicted that long-lived individuals would have 
lower phyloAge* estimates than their chronological ages 
if longevity is significantly impacted by lower cancer risk. 
Indeed, healthy individuals 80–110  years old had phylo-
Age* estimates significantly lower than their chronological 
ages (Fig. 8).

The phenomenon of stem cell exhaustion could offer a 
possible explanation for this surprising pattern (Geiger et al. 
2013; He and Wang 2021). As individuals age, some of their 

The Wang-phyloAge* model produced similar estimates 
for HSC phyloAges and chronological ages of individuals 
aged 60–79 of the cohort (Fig. 8). This could be taken to 
suggest that the Wang-phyloAge* model works well for 
individuals within a typical healthy lifespan. By contrast, 
estimated phyloAges* were lower than chronological ages 
in long-lived individuals (P < 0.001), with this difference 
increasing with age (Fig. 8). These patterns are consistent 
with our hypothesis of reduced blood risk with age in long-
lived individuals.

This result allows us to test the counterintuitive hypoth-
esis that mutations in certain known cancer driver genes can 
confer longevity. This was suggested by Wang et al. (2024) 

Fig. 7  Estimates of phyloAge* for 
individuals with blood cancer. a 
Relationship of PhyloAge* esti-
mates for individuals with MPN 
inferred at a simulated 30 × read 
depth with those estimated from 
the original data for all SNAs at 
coding sites. The correlation is 
R2 = 0.95 (P < 0.001). b The phylo-
Age* estimates for 157 individuals 
from the TCGA-AML cohort are 
plotted against their chronologi-
cal ages. Circle colors denote the 
patient’s sex: male (blue) and 
female (red). The dashed line 
marks a 1:1 relationship
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while the difference between phyloAge* and chronological 
age remained high (15 years or more).

However, one individual (PD5182) was sampled three 
times (32, 46, and 53 years of age). The first sample, col-
lected before IFN treatment at age 32, showed an excess in 
phyloAge* of more than 38 years. The patient underwent 
surgery, and remarkably, in their next sample, this excess 
phyloAge* was reduced to just 19 years. That is, more than a 
decade after IFN treatment, their phyloAge* had not grown, 
but in fact declined. This is likely because IFN targets HSCs 
undergoing CH, thereby reducing the preponderance of 
CHs and improving phyloAge*. A subsequent HSC sample, 
obtained 6 years later at age 53, yielded a phyloAge* of 78, 
an excess of only 25 years. This represents a promising but 
anecdotal result which we hope will encourage the collec-
tion of larger high-quality datasets in the future.

Comparison of λ with Other Metrics of Population 
Diversity

The phyloAge* approach introduced here has conceptual 
links to several prior metrics of diversity in population genet-
ics. First, the λ metric we develop is most closely related 
to our previous α and β, as they share a strong conceptual 
framework in quantifying observable change in phylogeny 
shape. Second, Mitchell et al. (2022) derived a metric of 
Shannon diversity (ShD) based on the number of phyloge-
netic branching events among HSCs after the embryonic 
phase, taking a threshold number of novel variants as a 
proxy for the end of embryonic development. Application 
of these three metrics requires an HSC phylogeny, unlike λ.

λ also shares a conceptual relationship with Hill numbers, 
where the first Hill number (q = 0) captures species or allelic 
diversity, the second (q = 1) captures Shannon entropy, and 
the third (q = 2) captures Simpson concentration. All three 
of these metrics quantify aspects of a population’s genetic 
diversity, whereas λ quantifies the loss of this diversity with 
the incidence of CH. However, calculating Hill numbers 
requires clonal structure inference, such as with PyClone. 
Traditional metrics developed to quantify diversity from 
multilocus allele frequencies, such as within-population 
average heterozygosity, π (Nei 1973), may be calculated 
from the VFS directly. Other metrics, such as Tajima’s D 
(Tajima 1989) and Fay and Wu’s H (Fay and Wu 2000), 
are calculated using sequence alignments, rather than VFS. 
In addition, the progression of AML has been quantified by 
treating the largest VAF as a proxy for excess CH (Toth et 
al. 2019).

We estimated all these metrics for our samples of healthy 
individuals and those with MPN, using HSC alignments (D 
and H metrics) and phylogenies (ShD, α, and β), as needed 
for making comparisons. We performed correlation and 

HSCs tend to lose potency, reducing the total number of via-
ble HSC lineages in the blood and the capacity of the blood 
to generate newly differentiated blood cells (Ruzankina and 
Brown 2007; Jacob and Osato 2009). This shortfall may be 
overcome by increased HSC production driven by CH fac-
tors, thereby promoting cell division. Thus, mutations that 
drive the expansion of secondary HSCs may provide bene-
fits by increasing HSC count in such circumstances, in con-
trast to their detrimental impact when they occur earlier in 
life and displace existing, healthy HSCs (Wang et al. 2024). 
Any causal link between longevity and variants in cancer-
associated genes, such as TET2, late in life remains to be 
proven and represents a compelling open question.

Estimates of Phyloage* for Multiple Samples from 
Individuals

Treatment for blood cancers has been shown to directly 
impact HSC clonal diversity (Uryu et al. 2024), so we 
would expect to see a change in phyloAge* estimates pre- 
and post-treatment. While we found no high-quality data-
sets suitable for estimating and comparing the phyloAge* 
of multiple samples from the same individual over a long 
time, Williams et al. (2022) reported four cases in which an 
individual with MPN was resampled after interferon-alpha 
(IFN) treatment. Of these, three (PD6646, PD6629, and 
PD4781) were resampled within a few years of their initial 
sampling, and showed only marginal changes in phyloAge* 
estimates (increases of 1.0, 3.9, and 0.4 years, respectively), 

Fig.  8  Estimates of phyloAge* for long-lived individuals. The dif-
ference between chronological age and phyloAge* for different age 
cohorts in the Wang et al. (2024) dataset. Whiskers show 95% con-
fidence intervals around the mean. Negative values indicate lower 
phyloAges than the chronological ages. Differences are statistically 
significant (P < 0.05) for groups of individuals above 80 years of age
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with methylation clocks that rely on thousands of markers. 
Indeed, in preliminary tests, estimates of phyloAge* show 
comparable accuracy and discrimination between healthy 
individuals and those with blood cancer (see Fig. S1).

Furthermore, we can quantify HSC genomic diversity 
decay without needing HSC phylogenies derived from 
expensive high-resolution or high-coverage datasets (Fig. 
S2). In fact, the need for an HSC phylogeny originally pre-
cluded phyloAge estimation for the TCGA-AML and the 
cohort of long-lived individuals. We overcame this by rec-
ognizing the simple phylogenetic principle that any variants 
acquired by a given lineage will be inherited by its direct 
descendants, and therefore elevated VAFs will capture the 
signal of phylogenetic splitting. Therefore, the sum of ele-
vated VAFs is an effective metric of excess HSC lineage 
division due to CH. Importantly, as with phylogeny shape-
based metrics, this approach is agnostic to HSC population 
size or mutation rate, as it instead quantifies their contribu-
tion to an individual’s blood diversity on the basis of shared 
ancestry.

The advancements to the phyloAge method we intro-
duce here open up many novel applications needed by the 
broader community of researchers and clinicians for assess-
ing age via the analysis of blood. The new computational 
approach presented here requires only data from bulk blood 
sequencing and is largely agnostic to panel selection. This 
flexibility makes phylAge* a promising tool as we expect 
many more investigators to generate bulk sequencing data 
retrospectively and clinicians to produce new datasets, 
including large, age-stratified cohorts and even longitudinal 
bulk sequencing profiles for individuals.

We provide a tool for developing tailor-made phyloAge* 
models based on the data from Mitchell et al. (2022) on 
GitHub (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​k​​u​m​a​​r​l​a​​b​g​i​t​/​p​h​y​l​o​A​g​e). This 
tool allows users to carry out all analyses in this study, start-
ing from colony-seq data, subsetting by chromosome, gene, 
CpG site, or known driver, and scaling the read depth to 
suit their target comparison data, then training a tailor-made 
phyloAge* model and testing it against data of their choice.

Materials and Methods

Data Acquisition

Colony-Seq Cohorts

 HSC sequences for healthy people (neonates to 81 years old) 
and individuals with MPN (20 to 83 years old) were pub-
licly available from Mitchell et al. (2022) and Williams et 
al. (2022). Infants were excluded from all analyses because 
they were still experiencing rapid HSC diversification. HSC 

linear regression analyses (Table 1), and found a strong cor-
relation between phylogeny-based metrics (α and β) and λ, 
which is desirable as λ was designed to capture phylogenetic 
signals without a phylogeny. We also detected a modest cor-
relation with ShD that could not be computed from bulk 
data. The correlation with D and H metrics was lower (0.78 
and 0.74 in healthy individuals), as was the correlation with 
the Toth et al. (2019) metric (0.69 in healthy individuals). 
The latter metric considers variants involved in the most fre-
quent CH, ignoring many others (see Fig. 1b), which may be 
the reason for its inability to predict myeloblast prevalence 
reported previously (Toth et al. 2019). Finally, our attempts 
to develop a predictive model using the framework in Eq. 5 
did not succeed, as these metrics do not show the relation-
ship trends with chronological age that were evident using 
λ. In any case, most of them could not be calculated from 
the VFS alone, as they required clonal population structure 
inference, sequence alignments or phylogenies.

Conclusions

Clonal dynamics among HSC lineages in an individual’s 
blood are increasingly being viewed through an evolution-
ary lens to better understand blood health during aging 
and pathology (Robertson et al. 2022; van Zeventer et 
al. 2023; Fabre and Vassiliou 2024). We have shown that 
novel approaches for estimating HSC diversity decay from 
blood bulk-seq data are useful for building models to assess 
changes in physiological HSC age relative to chronologi-
cal age. Previously, phyloAge performed comparably to 
established physiological aging approaches, such as Grim-
Age2 (Lu et al. 2022) and DeepMAge (Galkin et al. 2021), 
which have been used to detect clonal expansion (Kreger et 
al. 2024). Here, we demonstrate that VFS-derived phylo-
Age* preserves that behavior in principle, producing com-
parable results for healthy individuals (where phyloAge 
is expected to match chronological age) to those reported 

Table  1  Correlation coefficients (R2) reported from regressions 
between the new λ metric and previous metrics

Correlation with λ
Metric Healthy MPN
α (normalized imbalance) 0.98 0.74
β (normalized tips) 0.96 0.75
ShD ( Mitchell et al. 2022) 0.95 0.67
Hill q = 0 0.34 0.00
Hill q = 1 0.29 0.01
Hill q = 2 0.29 0.04
γ (PyClone) 0.98 0.99
π ( Nei 1973) 0.82 0.70
Largest VAF ( Toth et al. 2019) 0.69 0.32
Tajima’s D 0.78 0.68
Fay & Wu’s H 0.74 0.44
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Programme Romania-Ukraine 2014–2020 under “Part-
nership for Genomic Research in Ukraine and Romania”. 
Exome sequencing and genome-wide genotyping were con-
ducted at Regeneron Genetics Center (RGC), funded by 
The Leona M. and Harry B. Helmsley Charitable Trust “A 
comprehensive study of T1D exomes” (Phase 1 & 2) where 
post-quality control sequencing was completed on all sam-
ples using Twist whole exome capture and “globally-rep-
resentative” genotyping SNP arrays. Only raw sequencing 
data, with no other identifiers or phenotypes, were provided 
for this study.

For all these individuals, somatic variant sites were 
called using GATK4 MuTect2 with PoN and filtering out 
all by the PASS tag. Given the ethnic homogeneity of this 
population, we further filtered potential germline variants 
by removing those detected in two additional somatic sam-
ples within the cohort. Finally, we excluded variants occur-
ring at a site with a germline mutant occurring in any of 
the original 8,000 individuals, regardless of health status. 
This resulted in detecting an average of 39.8 variants per 
individual at an average read depth of 65.3 ×. Variants with 
frequencies less than 1% were discarded, as these reflect tip-
lineage mutations and are not indicative of HSC genomic 
diversity decay (as noted earlier). There is a negative (albeit 
noisy) relationship between the number of variants and age 
(Fig.  9), which is likely an artifact because of the under-
detection of variants with VAFs between 1–2%, which are 
near the detection limits of the average read depth of 65.3 ×, 
and occur with increasingly larger numbers with age (e.g., 
Fig. 2b vs. Figure 2c).

sequencing was paired with a sampling of another tissue 
type, either peripheral blood cells, buccal epithelium, or T 
cells from the same individual, facilitating accurate decon-
volution of somatic from germline variants.

TCGA-AML Cohort

We downloaded bulk sequencing samples for 157 mem-
bers of the Acute Myeloid Leukemia cohort of The Can-
cer Genome Atlas (TCGA-AML) from the TCGA Research 
Network (https://www.cancer.gov/tcga). We considered 
only SNAs called by MuTect2. All variant and reference 
read counts were extracted from the VCF reports available 
from the TCGA resource.

Long-Lived Cohort

The data from a long-lived cohort was obtained from the 
supplementary information of Wang et al. (2024). They 
reported personal somatic variants with VAFs ≥ 1% for 237 
blood samples, each representing a detected driver mutation 
in one of 133 unique individuals aged 65 to 110 years. Of 
these 133, only 113 contained SNAs or other point muta-
tions in their small panel of genes. Using the annotations 
provided by Wang et al. (2024), we selected variants stem-
ming from point mutations because the phyloAge* models 
are built using those variants. We also retained only the 46 
genes used by Wang et al. (2024), not their additional six 
aging-associate markers. Although VAFs from Wang et al. 
(2024) were not explicitly normalized for CNAs, we can 
rule this out as a confounding factor, since excess CNAs 
would have the effect of increasing estimates of λ, yet the 
values we find are unexpectedly low.

The Bulk-Seq Cohort

We analyzed novel bulk-seq data of 147 individuals who 
reported a healthy BMI, no history of smoking, little to no 
alcohol consumption, and overall self-reported excellent or 
good health. For people over 60, we included people with 
self-reported health as "average" to boost their numbers, as 
people over 60 tend not to answer "excellent" to this ques-
tion. These 147 individuals were selected from a collection 
of more than 8,000 individuals from a cross-sectional study 
of T1D patients and controls collected during 2022–2024 in 
Ukraine (genes.uzhnu.edu.ua). According to the approved 
IRB protocol, the data from this project may be published 
and shared for research use. This was explained to each 
participant, and written informed consent was obtained 
and kept at a biobank at Uzhhorod National University 
in Ukraine that manages this collection (genes.uzhnu.
edu.ua) established previously by the Joint Operational 

Fig. 9  Relationship between age and the count of SNAs observed in 
the empirical bulk-seq datasets. The relationship is negative and sig-
nificant (P < 0.00)
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generally mapped to different tips of the HSC phylogeny. 
So, they were excluded from further analysis.

Building phyloAge* Models

Building a Model for Somatic VFS Derived from HSC 
Genomes

Using the somatic VFS derived from HSC genome collec-
tions obtained by colony-seq, we estimated an exponential 
age model for both γ and λ using Eq. 5. All models were 
trained using a log model within a meta-regression frame-
work (Viechtbauer 2010) with a maximum-likelihood 
approach to infer the values of the constants a and b from 
initial values: a = 1/1000 and b = 0.3. In each case, we used 
the model to predict the physiological ages of the test indi-
viduals, including those from the MPN sample provided 
in the original publication (Williams et al. 2022) and the 
TCGA-AML cohort. We assessed the fit of each model 
using Root Mean Square Error and mean absolute error 
(RMSE and MAE), both overall and stratified by age (Table 
S1). We also carried out a simple calibration regression dur-
ing training, resulting in a slope of 1.0 and an intercept of 
0.0, suggesting a strong fit, and a bootstrapped R2 value of 
0.81 (0.28–1.0), as expected given the sample size (Table 
S2). For the TCGA-AML cohort, male and female phylo-
Ages were compared by two-tailed t-tests.

Building a Model for the TCGA-AML Cohort

The TCGA-AML data are from coding-region sequenc-
ing and have an average 30 × sequencing read depth. This 
prompted us to build an exome-phyloAge* model by 
deriving a 30 × sequencing coverage profile from the HSC 
genomes dataset, restricted to variants in coding regions 
(the reference data covered the full genome). Since λ is 
additive, this prevents imbalances due to differences in cov-
erage. To do so, we drew a read depth (r) for each variant 
from a Poisson distribution with the mean equal to the read 
depth (r = 30). The number of mutant reads for a variant was 
drawn from a binomial distribution with r trials, and the 
rate of variant sampling was set to the VAF of that variant. 
While we found that λ increases predictably with r when 
we repeated this simulation at six levels of r (Fig. 6a-b), we 
confirmed that estimates of phyloAge* remain constant as 
long as the same read depth is enforced for both training 
and test phases of the modeling process (Fig. 6c-d). This is 
due to the inherent normalizing effect of the model train-
ing process, which aligns known age with observed λ values 
prior to prediction. We developed the exome-phyloAge* 
model using Eq. 5 and optimizing parameters a and b for 
the somatic VFS data which accounts for differences in read 

Deriving VFS from HSC datasets

Notably, the Mitchell et al. (2022) dataset we used as a 
reference for model training used a colony-sequencing 
approach, yielding a nearly complete collection of SNAs in 
every HSC cell sequenced. They first isolated 3,579 HSCs 
(224–453 per person) from blood via flow cytometry. Each 
HSC was individually cultured to produce a colony of 200–
3,000 cells. Each cell in the colony was sequenced on the 
Illumina NovaSeq, generating 150  bp paired-end reads at 
an average read depth of 14 × per site. Pooling of 200–3000 
cell sequences at 14 × average coverage per colony resulted 
in 2,800 × to 42,000 × coverage per HSC cell. This allowed 
for orders of magnitude more accuracy than typical single-
cell sequencing at every site in every HSC genome. Conse-
quently, only 0.5%–3.4% of sites had missing data across 
all HSC genomes.

From the somatic VFS data from colony-seq HSC 
genome collections, we estimated variant allele frequency 
(VAF) at each variant position as VAF = ½[mutant cell 
count/(non-mutant cell count + mutant cell count)]. The 
mutant read count at a given variant position was generated 
by scaling the observed total read count down to 30 reads 
(from > 300 ×) to simulate 30 × sampling. To scale the non-
mutant read count, we simply subtracted the scaled mutant 
count from an assumed total count of 30. So, for a site with 
300 total reads, we would divide the observed mutant count 
by 10 (300/30 = 10), then subtract this value from 30 to gen-
erate the non-mutant count.

Clustering Variants Using PyClone

We ran the latest PyClone build (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​R​​o​t​h​​-​
L​a​​b​/​p​y​c​l​o​n​e) in a Python 2.7 environment using the ​p​r​o​v​
i​d​e​d full-analysis-pipeline command. From the output, we 
extracted the “size” (number of variants) and “mean” (fre-
quency) parameters from the resulting “cluster.tsv” table for 
each individual. PyClone analysis was performed under the 
assumption that variants were unaffected by copy-number 
alterations. So, we set normal and major copy numbers to 2 
and minor copy numbers to 0 for all variants. Our datasets 
containing hundreds of thousands of variants took, on aver-
age, several days to run on a desktop PC with a 3.5 GHz pro-
cessor and 128 GB of memory. We imposed a conservative 
1% VAF threshold to remove variants that will likely map 
to the tip lineages in the HSC phylogenies before conduct-
ing PyClone analyses because single-cell sequences of only 
100–300 HSCs were reported. In the output, we found that 
PyClone recovered a large cluster containing a vast majority 
of variants that occurred at relatively low frequency (< 4%), 
which is clearly spurious clustering, as those variants are 
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the European Union through the European Neighborhood Instrument 
(ENI), and by The Leona M. and Harry B. Helmsley Charitable Trust 
“A comprehensive study of T1D exomes” (Phase 1 & 2).

Data Availability  HSC sequences for healthy people (2022) and indi-
viduals with MPN (Williams et al. 2022) are publicly available. The 
incidence of Leukemia by age is available from Cancer Research UK 
(2016–2018, ICD-10 C91-C95). These data were used as-is in our 
analyses. The datasets used by Wang et al. (2024) are available as sup-
plementary information in that article. The results published here are 
in whole or in part based upon data generated by the TCGA Research 
Network: https://www.cancer.gov/tcga. The data from “A ​c​o​m​p​r​e​h​e​n​s​
i​v​e study of T1D exomes” (Phase 1 & 2) can be accessed at ​h​t​t​p​​s​:​/​​/​g​e​
n​​e​s​​.​u​z​​h​n​u​.​​e​d​u​​.​u​a​​/​g​e​n​e​s​-​d​a​s​h​b​o​a​r​d​/. A tool for developing tailor-made 
phyloAge* models based on the data from Mitchell et al. (2022) can be 
found at ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​k​​u​m​a​​r​l​a​​b​g​i​t​/​p​h​y​l​o​A​g​e.
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