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Abstract

The phylogeny of a person’s hematopoietic stem cells (HSCs) can be used to quantify physiological aging of blood using
a phyloAge model based on diversity decay metrics. However, this procedure currently requires accurate HSC genome
sequences, which are expensive and time-consuming to obtain. We show that metrics of diversity decay can be derived
from the somatic variant frequency spectrum (VFS) using more affordable, routine bulk sequencing, because HSCs evolve
without recombination at a clock-like rate. We found that VFS-based models produce phyloAge estimates similar to those
derived from HSC genome phylogenies. Customized for protein-coding variation and sequencing read depth, VFS-based
HSC phyloAge estimates were, on average, 168 years more than chronological ages in 157 patients with acute myeloid
leukemia, consistent with excess HSC aging observed in cancer patients using single cell genome phylogenies. We also
tested the hypothesis that variants in cancer driver genes may confer longevity, as they occur in a significant fraction of
long-lived individuals. Indeed, HSC phyloAge estimates were significantly lower, consistent with reduced hematologic
cancer risk among extremely old individuals. Thus, the new metrics and models broaden the utility of the phyloAge
approach, making it feasible and efficient for clinical and research applications.
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Introduction

There is a direct relationship between aging and the loss of
phylogenetic diversity among the hematopoietic stem and
progenitor cells (HSCs/HSPCs) that give rise to differenti-
Handling editor: David Liberles. ated blood cells (Lee et al. 2019; Mejia-Ramirez and Florian
2020; Craig et al. 2024). An adult individual’s HSC lineages
originate in fetal development and evolve through the earli-
est phases of life. At younger ages, distinct HSC lineages
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Fig. 1 Example phylogenies of
HSCs from healthy individuals. a
A 38-year-old individual with very
few bifurcations of HSC lineages
following the initial set of diver-
sifications that occurred during
embryogenesis. b HSC phylogeny
of an 81-year-old individual that
contained many secondary bifurca-
tions occurred after embryogenesis,
resulting in clonal hematopoiesis
(CH). The lineage highlighted by
the red bracket leads to a large CH
event. ¢ The VFS in the popula-

tion of HSCs for the 38-year-old stc;::';;‘sage
individual in panel a. d The VFS
of the 81-year-old individual from
panel b, where the peak indicated
by the red arrow consisted of SNAs
shared by the HSC clade emanat- (c) (d)
ing from the branch indicated in
red in panel b. Like a folded site 140 3,500
frequency spectrum plot, ¢ and d
120 3,000
show the frequency of SNAs car-
rying a range of VAFs, indicating 100 “ 2500
spikes in high-frequency variants ’
with age % 80 § 2,000
° ° SNAs present in
E 60 5 1,500 CH-associated
@« @ HSCs
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20 500
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than those of primary HSCs, which diverged early in devel-
opment (Lee et al. 2019; Mitchell et al. 2022; Craig et al.
2024). This decline in phylogenetic diversity is consistent
with an increased risk of some blood cancers associated
with CH (Jaiswal et al. 2014; Jaiswal 2020; Craig et al.
2024). The relationship between phylogeny diversity and
age formed the basis for a predictive model of physiologi-
cal aging gleaned from personal HSC phylogenies, referred
to as phyloAge (Craig et al. 2024). Application of the phy-
loAge model for individuals with myeloproliferative neo-
plasms (MPN) suggested accelerated HSC aging (Craig et
al. 2024). Therefore, phylogenetic methods can detect and
quantify the progression of blood cancers independently of
driver mutation analysis and standard cytological metrics
(Craig et al. 2024). Notably, the phyloAge approach does
not require HSC population sizes or use mutation rates.
However, reconstructing HSC phylogenies does require
accurate genome sequences, as somatic variants accumu-
late slowly at a rate of~17 single nucleotide alterations
(SNAs) per genome per year (Lee-Six et al. 2018; Mitch-
ell et al. 2022). Given the pattern of non-branching evolu-
tion in HSCs (Fig. 1a), a vast majority of these SNAs occur

@ Springer

in terminal lineages. Indeed, more than 99% of variants
have population frequencies<1% (Fig. 2). This means that
when modeling blood health, variants with frequency <1%
should be excluded for quantifying decay in HSC genomic
diversity.

With age, some HSCs undergo expansion due to CH, and
variants present in those lineages will increase in frequency,
as will some new variants acquired during expansion. Thus,
the incidence of many higher-frequency variants serves as
a biomarker of the decay in phylogeny diversity with age.
Indeed, many more high-frequency variants occur in indi-
viduals with extensive CH associated with blood cancer
(Jaiswal et al. 2014; Toth et al. 2019; Jaiswal 2020; Wil-
liams et al. 2022).

Because somatic variants are relatively rare and low-
frequency in healthy individuals, HSC genomes need to be
accurately sequenced, but routine single-cell sequencing
can suffer from significant data sparsity and extensive error
(Goswami et al. 2021). Mitchell et al. (2022) and Williams
et al. (2022) used an alternative approach in which individ-
ual HSCs were first cultured into colonies. Then, DNA from
each colony was sequenced. This approach, which we call
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Fig. 2 Number of variants with appreciable frequencies (>1%) in a an infant, b a 38-year-old, and ¢ a 77-year-old individual. A steep exponential
decay fits this pattern, as shown by red curves and equations in each panel

colony sequencing (colony-seq) to distinguish it from direct
single-cell sequencing, achieved high coverage and low
base-level error (see Materials and Methods). While effec-
tive, colony-seq is time- and resource-intensive, limiting
the broader adoption of the phyloAge approach in routine
research and clinical investigations.

In contrast, bulk sequencing (bulk-seq) is more afford-
able and commonly used in studies of blood cancer to
identify coding variants and their somatic frequencies in
patients. This prompted us to explore advancing the phylo-
Age approach by developing new metrics to quantify phy-
logeny decay from a variant frequency spectrum (VFS),
which is known to change in response to CH (Watson et
al. 2020; Korber et al. 2025). Based on theoretical consid-
erations, we developed novel measures of HSC phylogeny
diversity decay computed from VFS, inspired by the insight
that somatic cellular evolution occurs without recombina-
tion through mitotic cell division. Also, SNA accumulation
is known to be clock-like in healthy people as well as blood
cancer patients (Lee-Six et al. 2018; Lee-Six and Kent 2020;
Craig et al. 2024). Because the new VFS-derived diversity
decay metrics showed a strong relationship with their pre-
viously developed HSC phylogeny-based counterparts (see
Results), we used them to build novel VFS-based models to
estimate phyloAge, which we denote phyloAge* to distin-
guish them from estimates obtained using the HSC genome
phylogenies.

Here, we present a new theoretical foundation for the
phyloAge* approach and a flexible new model for estimat-
ing blood diversity decay which can be customized for appli-
cation to bulk-seq data. We first tested it on 157 individuals
with Acute Myeloid Leukemia from The Cancer Genome
Atlas (TCGA-AML), which we used to test for accelerated
physiological aging in individuals with AML, as reported
in Craig et al. (2024). We then used a second cohort to test
the hypothesis that mutations in some cancer driver genes

can confer longevity (Wang et al. 2024). This was proposed
because CH-promoting variants were found in a majority of
long-lived individuals (90-110 years old) but were rare in
younger individuals (65-80 years old) (Wang et al. 2024).
Paradoxically, this could tie excesses of these variants to a
lower risk of blood cancer in long-lived individuals. This
hypothesis led us to predict that the HSC phyloAge™* esti-
mates of long-lived individuals would be lower than their
chronological ages, because age directly correlates with
blood cancer risk. This hypothesis can now be tested using
the VFS phyloAge* model, as developed and applied for
data collected by Wang et al. (2024), who reported somatic
variants with>1% frequency in a few CH-promoting loci.
In the following, we present results showing acceleration
and deceleration of HSC aging in patients and long-lived
individuals, respectively.

Results
New Metrics for Estimating Diversity Decay

Bulk sequencing (bulk-seq) produces a sample of single
nucleotide alterations (SNAs) and their variant allele fre-
quencies (VAFs), constituting an individual’s somatic vari-
ant frequency spectrum (VFS). HSC proliferation, which
characterizes CH, results in clusters of closely related sec-
ondary HSCs, each sharing one or more common variants
due to shared ancestry and lack of recombination. As CH
progresses, these variants accumulate, producing a detect-
able signal in bulk-seq data. For example, mutations on
a phylogenetic lineage leading to CH, as indicated in red
in Fig. 1b, will result in many variants with elevated and
similar VAFs in the bulk-seq VFS (indicated by a red arrow
in Fig. 1d). Assuming that every secondary HSC produced
as a result of CH replaces an embryonic HSC, CH causes
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a reduction in phylogenetic diversity proportional to the
product of the fraction (f) with which a cluster of variants
occurs and the number of variants (n) in that cluster, i.c.,
fxn. Visually, fxn is the area of the white space in the HSC
phylogeny in Fig. 1b. Thus, quantifying the shape of the
VEFS provides a practical means of assessing diversity decay
from VAFs observed in the bulk-seq data.

Computational approaches are available to identify vari-
ant clusters in bulk-seq data (Roth et al. 2014; Chen et al.
2020; Khan and Mallory 2023). We used the standard analy-
sis pipeline implemented in the software package PyClone
(Roth et al. 2014) to infer distinct subclonal populations in
bulk sequencing data by grouping SNAs into clusters based
on the fraction of reads supporting the variant allele call
(see Materials and Methods). PyClone estimates distinct
subclonal clusters in the bulk sequencing dataset, which we
used to calculate a new biodiversity decay metric (y). Thus,
y captures the sum of the reduction in phylogenetic diversity
caused by all the CH events, corresponding to the number of
clusters produced by PyClone:

W:Zfixm

(1

where f; is the frequency of cluster i identified by PyClone,
and #; is the number of variants in that cluster. The sum in
Eq.1 is taken over all variant clusters, except a very large
cluster of rare variants that all correspond to variants that
arose on the tips of the HSC phylogeny (see Materials and
Methods).

To validate the PyClone-based y metric, we examined
its relationship with a and f, the phylogeny shape metrics
developed by Craig et al. (2024). Here, a captures per-phy-
logeny normalized Colless’ (1982) imbalance, while f cap-
tures a normalized metric of overall HSC count. If the two
are highly correlated with y, we may conclude that y is sensi-
tive to the same pattern of diversity decay, but does not need
the HSC phylogeny to recover this signal. For a direct com-
parison, we derived a somatic VFS for each individual using
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the colony-seq dataset (Mitchell et al. 2022) to estimate ¥,
since this dataset is required to estimate a (see Materials and
Methods). We ran PyClone on colony-seq somatic VFS for
healthy individuals and estimated y using Eq.1. There was
a high correlation between « and y (Fig. 3a; R?=0.92) and
between g and y (Fig. 3¢; R*=0.90), establishing that y cap-
tures the same signal as phylogeny-based metrics. A high
correlation was also observed when comparing y estimated
from the somatic VFS for MPN patients with a estimated
from the collection of HSC genomes generated by colony-
seq (R?=0.68) (Williams et al. 2022).

However, inferring variant clusters with PyClone was
computationally intensive, taking days to run for some col-
ony-seq datasets due to the large number of variants and
the fact that many variants can have very similar VAFs (see
Materials and Methods). To avoid this computational bottle-
neck, we developed a more streamlined measure of diver-
sity decay (4) in which:

fixn; >~ Zfi,j 2)
J

Then, A can be calculated as the sum of VAFs over all the
variants in all the clusters:

A:Zfixni ZZfi,j
i i g

3)

Since every variant maps to only one cluster, Eq. 3 can be
simplified as follows:

A= > ko

Here, yy is the VAF of variant k, and the sum is taken over
all the VAFs.

The application of Eq. 4 requires that all variants map-
ping to the tips of the HSC phylogeny be excluded. These
tip-specific variants are expected to occur in a single HSC
lineage out of hundreds sampled, so that they will carry
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Fig. 3 Relationship between phylogeny-based and VFS-based metrics of phylogeny decay in healthy individuals: a o and y, b a and 4, ¢ ff and y,
and d § and 4. Dashed lines show the fit of a linear regression in each panel
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frequencies of 1% or lower in the VFS. Thus, to adequately
filter them from the VFS, we imposed a 1% VAF threshold,
effectively removing any SNAs that occur on a single phy-
logenetic tip out of hundreds.

To validate 1, we compared it to the phylogeny-based a
and cluster-based y metrics. As before, we calculated both
A and y from the colony-seq dataset (Mitchell et al. 2022).
Phylogeny-based (a and f) metrics are all tightly correlated
with VFS-based 4 (Fig. 3b and d). Thus, the phylogeny-
informed insight that VAF sums contain an inherent signal
of CH allows us to dramatically reduce the computational
bottleneck in estimating phyloAge* from VFS obtained via
bulk sequencing.

Building a Phyloage* Model Using Somatic VFS

The VFS-based 4 metric increases exponentially with age,
just like phylogeny-based metrics (a and f), suggesting
that it may be used in the same phyloAge modeling frame-
work (Fig. 4). We developed a predictive model for esti-
mating phyloAges from A following the Craig et al. (2024)
procedure:

phyloAgex = 1/b x (log (A) —a) 5)

Chronological age

where a and b are estimated using the relationship between
A and the chronological age of the healthy individuals. They
were —1.65 and 0.084, respectively.

In a leave-one-out (LOO) analysis, on average, phylo-
Age* estimates differed by 4.9 years from the chronologi-
cal ages of healthy individuals (Fig. 5a). The difference
was biggest for younger individuals (average of 8.1 years
for those under 65), who experienced low rates of HSC
diversity decay and cancer incidence. The difference was
relatively small among older individuals (an average error
of 0.6 years for those aged 65 or older). These patterns are
similar to those observed for the phyloAge model based on
the HSC phylogeny-based approach (Fig. 5a).

To further validate the phyloAge* estimates, we com-
puted root mean squared error (RMSE) and mean absolute
error (MAE) for age-stratified bands of our reference data-
set, covering individuals from 0-30 years old (RMSE=38.3
and MAE=4.9 years, respectively), 31-45 years old (1.5 and
1.5 years), 46—60 years old (0.5 and 0.5 years), 61-75 years
old (17.1 and 17.1 years), and 76-100 years old (0.8 and
0.6 years). We also performed a simple calibration regres-
sion between chronological ages and phyloAge* estimates,
yielding an intercept of 0.0 (—33.6-33.6), a slope of 1.0
(0.45-1.55), and an R of 0.81 (0.28-1.00). Taken together,
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this suggests that the phyloAge* estimates we report can be
reliable despite the small sample size (Tables S1 and S2).
We also tested the performance of the phyloAge* model
using somatic VFS derived from colony-seq HSC genomes
of MPN patients. The application of Eq. 5 for these colony-
seq VES data produced excess HSC phyloAges similar
to those produced using HSC phylogenies in Craig et al.
(2024) (Fig. 5b). Thus, phyloAge* models based on VFS
derived from accurate VFS variation data can be as effec-
tive as those in which single-cell HSC phylogenies are used.

Building a Phyloage* Model Using Empirical Bulk-
Seq Data

Our literature survey revealed that many cancer studies
primarily apply bulk-seq techniques to detect tumor vari-
ants and estimate their VAFs in the coding regions in cancer
patients. For example, many cohorts in The Cancer Genome
Atlas (TCGA) include data on somatic variation in cancer
patients. In these data, somatic variants in the blood bulk-seq
data are often identified by reference to personal germline
sequences. Estimating HSC physiological age using these
data requires phyloAge* models built from somatic VFS
data from healthy individuals, in which somatic variants are
robustly identified, e.g., using personal germline sequences.
Unfortunately, we found no such data from TCGA or any
other source for healthy individuals.

This prompted us to evaluate the feasibility of using
somatic VFS derived from bulk sequencing of healthy (non-
cancer) individuals, without germline sequencing of those
same individuals. We analyzed somatic VFS for 147 healthy
individuals aged 1-87 (see Materials and Methods). Vari-
ants were called using GATK4 MuTect2 (van der Auwera
and O’Connor 2020). Somatic variants were detected
by excluding variants found in the 1000 Genomes data-
set and those present in the bulk-seq data of two or more
of the 8,000 individuals from Ukraine (see Materials and
Methods). Using the resulting somatic VFS, we evaluated
the suitability of bulk-seq data by plotting the number of
somatic variants identified against the chronological age, a
pattern established in many previous studies (Lee-Six and
Kent 2020; Mitchell et al. 2022; Craig et al. 2024). Unfor-
tunately, the relationship was extremely noisy, and the trend
was negative (see Fig. 9 in Materials and Methods). Indeed,
it is well known that determining somatic mutations in bulk
sequences alone is challenging without paired germline
sequencing (Teer et al. 2017).

Estimates of Phyloage* for the TCGA-AML Cohort

The lack of reliable somatic VFS datasets from healthy indi-
viduals led us to explore training a phyloAge model using
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somatic VFS derived from HSC genomes sequenced by
colony-seq instead. However, the reported somatic variants
for the TCGA-AML cohort are limited to coding sequences,
unlike the genome-scale data available from colony-seq,
which required building a phyloAge* model using col-
ony-seq VFS restricted to the exome variants. In addition,
TCGA-AML bulk-seq datasets are sequenced at an average
of 30 x coverage (Ley et al. 2013), which is many-fold lower
than the colony-seq data. So, the phyloAge* model needs to
account for this coverage difference, as a direct relationship
between A and read depth was observed (Fig. 6a-b; see Mate-
rials and Methods). This is because at higher read depths,
more low-frequency variants can be reliably detected, pass-
ing the 1% VAF cutoff and contributing to 4. Notably, the
estimates of phyloAge* remained similar when the phylo-
Age* model accounted for the read depth (Fig. 6¢-d).

Given the robustness of phyloAge* to read depth in sim-
ulation, we performed an empirical validation by building
a customized exome-phyloAge* model (30 x coverage) and
tested it using exomic VFS (30 x coverage) derived from
HSC genome datasets of MPN patients. The phyloAge*
estimates were very similar to those obtained using the orig-
inal, high-read-depth data (R°=0.95, P<0.001; Fig. 7a). We
then used this exome-phyloAge* model to estimate HSC
phyloAge* for 157 TCGA-AML individuals aged 1883 at
the time of the bulk-seq profiling (Fig. 7b). PhyloAges were
consistently elevated (143-294, mean=223) compared to
chronological ages of patients (18—83, mean=57), with an
average residual age of 168 years. This difference is statis-
tically significant (P<0.001). No significant difference in
trend was observed between male and female patients (t-test,
P>0.90). Thus, we conclude that the exome-phyloAge*
model trained on somatic VFS is sensitive to increased phy-
logeny decay in individuals with blood cancers, while being
robust to changes in read depth.

Estimates of Phyloage* for Long-Lived Individuals

Next, we developed a customized phyloAge* model for
contrasting the HSC physiological ages of a cohort of long-
lived individuals (90—-110 years old) with those of younger
individuals (65-89 years old) (Wang et al. 2024). The
VFS data consisted of variant frequencies across 46 CH-
associated cancer driver genes. As above, we restricted the
colony-seq VFS to these 46 markers to normalize coverage
area, developed a Wang-phyloAge* model, and then applied
it to bulk-seq somatic VFS of 113 individuals (see Materi-
als and Methods). To validate the Wang-phyloAge* model,
we compared its results to those from the phyloAge* model
based on the entire somatic VFS. It showed a moderate rela-
tionship (R*=0.69) due to larger overestimates for younger
individuals.
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The Wang-phyloAge* model produced similar estimates
for HSC phyloAges and chronological ages of individuals
aged 60-79 of the cohort (Fig. 8). This could be taken to
suggest that the Wang-phyloAge* model works well for
individuals within a typical healthy lifespan. By contrast,
estimated phyloAges* were lower than chronological ages
in long-lived individuals (P<0.001), with this difference
increasing with age (Fig. 8). These patterns are consistent
with our hypothesis of reduced blood risk with age in long-
lived individuals.

This result allows us to test the counterintuitive hypoth-
esis that mutations in certain known cancer driver genes can
confer longevity. This was suggested by Wang et al. (2024)

Chronological age

who reported that variants in genes like TE72 are found
much more often in long-lived individuals as compared
to individuals ages 60-79 years old, despite their known
association with cancer (Abelson et al. 2018; Desai et al.
2018). We predicted that long-lived individuals would have
lower phyloAge* estimates than their chronological ages
if longevity is significantly impacted by lower cancer risk.
Indeed, healthy individuals 80-110 years old had phylo-
Age* estimates significantly lower than their chronological
ages (Fig. 8).

The phenomenon of stem cell exhaustion could offer a
possible explanation for this surprising pattern (Geiger et al.
2013; He and Wang 2021). As individuals age, some of their
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significant (P<0.05) for groups of individuals above 80 years of age

HSCs tend to lose potency, reducing the total number of via-
ble HSC lineages in the blood and the capacity of the blood
to generate newly differentiated blood cells (Ruzankina and
Brown 2007; Jacob and Osato 2009). This shortfall may be
overcome by increased HSC production driven by CH fac-
tors, thereby promoting cell division. Thus, mutations that
drive the expansion of secondary HSCs may provide bene-
fits by increasing HSC count in such circumstances, in con-
trast to their detrimental impact when they occur earlier in
life and displace existing, healthy HSCs (Wang et al. 2024).
Any causal link between longevity and variants in cancer-
associated genes, such as TET2, late in life remains to be
proven and represents a compelling open question.

Estimates of Phyloage* for Multiple Samples from
Individuals

Treatment for blood cancers has been shown to directly
impact HSC clonal diversity (Uryu et al. 2024), so we
would expect to see a change in phyloAge* estimates pre-
and post-treatment. While we found no high-quality data-
sets suitable for estimating and comparing the phyloAge*
of multiple samples from the same individual over a long
time, Williams et al. (2022) reported four cases in which an
individual with MPN was resampled after interferon-alpha
(IFN) treatment. Of these, three (PD6646, PD6629, and
PD4781) were resampled within a few years of their initial
sampling, and showed only marginal changes in phyloAge*
estimates (increases of 1.0, 3.9, and 0.4 years, respectively),
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while the difference between phyloAge* and chronological
age remained high (15 years or more).

However, one individual (PD5182) was sampled three
times (32, 46, and 53 years of age). The first sample, col-
lected before IFN treatment at age 32, showed an excess in
phyloAge* of more than 38 years. The patient underwent
surgery, and remarkably, in their next sample, this excess
phyloAge* was reduced to just 19 years. That is, more than a
decade after IFN treatment, their phyloAge* had not grown,
but in fact declined. This is likely because IFN targets HSCs
undergoing CH, thereby reducing the preponderance of
CHs and improving phyloAge*. A subsequent HSC sample,
obtained 6 years later at age 53, yielded a phyloAge* of 78,
an excess of only 25 years. This represents a promising but
anecdotal result which we hope will encourage the collec-
tion of larger high-quality datasets in the future.

Comparison of A with Other Metrics of Population
Diversity

The phyloAge* approach introduced here has conceptual
links to several prior metrics of diversity in population genet-
ics. First, the A metric we develop is most closely related
to our previous o and f, as they share a strong conceptual
framework in quantifying observable change in phylogeny
shape. Second, Mitchell et al. (2022) derived a metric of
Shannon diversity (S2D) based on the number of phyloge-
netic branching events among HSCs after the embryonic
phase, taking a threshold number of novel variants as a
proxy for the end of embryonic development. Application
of these three metrics requires an HSC phylogeny, unlike 4.

A also shares a conceptual relationship with Hill numbers,
where the first Hill number (q=0) captures species or allelic
diversity, the second (q=1) captures Shannon entropy, and
the third (q=2) captures Simpson concentration. All three
of these metrics quantify aspects of a population’s genetic
diversity, whereas 4 quantifies the loss of this diversity with
the incidence of CH. However, calculating Hill numbers
requires clonal structure inference, such as with PyClone.
Traditional metrics developed to quantify diversity from
multilocus allele frequencies, such as within-population
average heterozygosity, # (Nei 1973), may be calculated
from the VFS directly. Other metrics, such as Tajima’s D
(Tajima 1989) and Fay and Wu’s H (Fay and Wu 2000),
are calculated using sequence alignments, rather than VFS.
In addition, the progression of AML has been quantified by
treating the largest VAF as a proxy for excess CH (Toth et
al. 2019).

We estimated all these metrics for our samples of healthy
individuals and those with MPN, using HSC alignments (D
and H metrics) and phylogenies (SZD, a, and f), as needed
for making comparisons. We performed correlation and
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linear regression analyses (Table 1), and found a strong cor-
relation between phylogeny-based metrics (a and f) and 4,
which is desirable as 4 was designed to capture phylogenetic
signals without a phylogeny. We also detected a modest cor-
relation with SAD that could not be computed from bulk
data. The correlation with D and H metrics was lower (0.78
and 0.74 in healthy individuals), as was the correlation with
the Toth et al. (2019) metric (0.69 in healthy individuals).
The latter metric considers variants involved in the most fre-
quent CH, ignoring many others (see Fig. 1b), which may be
the reason for its inability to predict myeloblast prevalence
reported previously (Toth et al. 2019). Finally, our attempts
to develop a predictive model using the framework in Eq. 5
did not succeed, as these metrics do not show the relation-
ship trends with chronological age that were evident using
A. In any case, most of them could not be calculated from
the VFS alone, as they required clonal population structure
inference, sequence alignments or phylogenies.

Conclusions

Clonal dynamics among HSC lineages in an individual’s
blood are increasingly being viewed through an evolution-
ary lens to better understand blood health during aging
and pathology (Robertson et al. 2022; van Zeventer et
al. 2023; Fabre and Vassiliou 2024). We have shown that
novel approaches for estimating HSC diversity decay from
blood bulk-seq data are useful for building models to assess
changes in physiological HSC age relative to chronologi-
cal age. Previously, phyloAge performed comparably to
established physiological aging approaches, such as Grim-
Age2 (Lu et al. 2022) and DeepMAge (Galkin et al. 2021),
which have been used to detect clonal expansion (Kreger et
al. 2024). Here, we demonstrate that VFS-derived phylo-
Age* preserves that behavior in principle, producing com-
parable results for healthy individuals (where phyloAge
is expected to match chronological age) to those reported

Table 1 Correlation coefficients (R?) reported from regressions
between the new 1 metric and previous metrics

Correlation with 4

Metric Healthy MPN
a (normalized imbalance) 0.98 0.74
S (normalized tips) 0.96 0.75
ShD ( Mitchell et al. 2022) 0.95 0.67
Hill q=0 0.34 0.00
Hill =1 0.29 0.01
Hill q=2 0.29 0.04
y (PyClone) 0.98 0.99
7 (Nei 1973) 0.82 0.70
Largest VAF ( Toth et al. 2019) 0.69 0.32
Tajima’s D 0.78 0.68
Fay & Wu’s H 0.74 0.44

with methylation clocks that rely on thousands of markers.
Indeed, in preliminary tests, estimates of phyloAge* show
comparable accuracy and discrimination between healthy
individuals and those with blood cancer (see Fig. S1).

Furthermore, we can quantify HSC genomic diversity
decay without needing HSC phylogenies derived from
expensive high-resolution or high-coverage datasets (Fig.
S2). In fact, the need for an HSC phylogeny originally pre-
cluded phyloAge estimation for the TCGA-AML and the
cohort of long-lived individuals. We overcame this by rec-
ognizing the simple phylogenetic principle that any variants
acquired by a given lineage will be inherited by its direct
descendants, and therefore elevated VAFs will capture the
signal of phylogenetic splitting. Therefore, the sum of ele-
vated VAFs is an effective metric of excess HSC lineage
division due to CH. Importantly, as with phylogeny shape-
based metrics, this approach is agnostic to HSC population
size or mutation rate, as it instead quantifies their contribu-
tion to an individual’s blood diversity on the basis of shared
ancestry.

The advancements to the phyloAge method we intro-
duce here open up many novel applications needed by the
broader community of researchers and clinicians for assess-
ing age via the analysis of blood. The new computational
approach presented here requires only data from bulk blood
sequencing and is largely agnostic to panel selection. This
flexibility makes phylAge* a promising tool as we expect
many more investigators to generate bulk sequencing data
retrospectively and clinicians to produce new datasets,
including large, age-stratified cohorts and even longitudinal
bulk sequencing profiles for individuals.

We provide a tool for developing tailor-made phyloAge*
models based on the data from Mitchell et al. (2022) on
GitHub (https://github.com/kumarlabgit/phyloAge). This
tool allows users to carry out all analyses in this study, start-
ing from colony-seq data, subsetting by chromosome, gene,
CpG site, or known driver, and scaling the read depth to
suit their target comparison data, then training a tailor-made
phyloAge* model and testing it against data of their choice.

Materials and Methods

Data Acquisition

Colony-Seq Cohorts

HSC sequences for healthy people (neonates to 81 years old)
and individuals with MPN (20 to 83 years old) were pub-
licly available from Mitchell et al. (2022) and Williams et

al. (2022). Infants were excluded from all analyses because
they were still experiencing rapid HSC diversification. HSC
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sequencing was paired with a sampling of another tissue
type, either peripheral blood cells, buccal epithelium, or T
cells from the same individual, facilitating accurate decon-
volution of somatic from germline variants.

TCGA-AML Cohort

We downloaded bulk sequencing samples for 157 mem-
bers of the Acute Myeloid Leukemia cohort of The Can-
cer Genome Atlas (TCGA-AML) from the TCGA Research
Network (https://www.cancer.gov/tcga). We considered
only SNAs called by MuTect2. All variant and reference
read counts were extracted from the VCF reports available
from the TCGA resource.

Long-Lived Cohort

The data from a long-lived cohort was obtained from the
supplementary information of Wang et al. (2024). They
reported personal somatic variants with VAFs>1% for 237
blood samples, each representing a detected driver mutation
in one of 133 unique individuals aged 65 to 110 years. Of
these 133, only 113 contained SNAs or other point muta-
tions in their small panel of genes. Using the annotations
provided by Wang et al. (2024), we selected variants stem-
ming from point mutations because the phyloAge* models
are built using those variants. We also retained only the 46
genes used by Wang et al. (2024), not their additional six
aging-associate markers. Although VAFs from Wang et al.
(2024) were not explicitly normalized for CNAs, we can
rule this out as a confounding factor, since excess CNAs
would have the effect of increasing estimates of 4, yet the
values we find are unexpectedly low.

The Bulk-Seq Cohort

We analyzed novel bulk-seq data of 147 individuals who
reported a healthy BMI, no history of smoking, little to no
alcohol consumption, and overall self-reported excellent or
good health. For people over 60, we included people with
self-reported health as "average" to boost their numbers, as
people over 60 tend not to answer "excellent” to this ques-
tion. These 147 individuals were selected from a collection
of more than 8,000 individuals from a cross-sectional study
of T1D patients and controls collected during 20222024 in
Ukraine (genes.uzhnu.edu.ua). According to the approved
IRB protocol, the data from this project may be published
and shared for research use. This was explained to each
participant, and written informed consent was obtained
and kept at a biobank at Uzhhorod National University
in Ukraine that manages this collection (genes.uzhnu.
edu.ua) established previously by the Joint Operational
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Fig. 9 Relationship between age and the count of SNAs observed in
the empirical bulk-seq datasets. The relationship is negative and sig-
nificant (P<0.00)

Programme Romania-Ukraine 2014-2020 under “Part-
nership for Genomic Research in Ukraine and Romania”.
Exome sequencing and genome-wide genotyping were con-
ducted at Regeneron Genetics Center (RGC), funded by
The Leona M. and Harry B. Helmsley Charitable Trust “A
comprehensive study of T1D exomes” (Phase 1 & 2) where
post-quality control sequencing was completed on all sam-
ples using Twist whole exome capture and “globally-rep-
resentative” genotyping SNP arrays. Only raw sequencing
data, with no other identifiers or phenotypes, were provided
for this study.

For all these individuals, somatic variant sites were
called using GATK4 MuTect2 with PoN and filtering out
all by the PASS tag. Given the ethnic homogeneity of this
population, we further filtered potential germline variants
by removing those detected in two additional somatic sam-
ples within the cohort. Finally, we excluded variants occur-
ring at a site with a germline mutant occurring in any of
the original 8,000 individuals, regardless of health status.
This resulted in detecting an average of 39.8 variants per
individual at an average read depth of 65.3 X. Variants with
frequencies less than 1% were discarded, as these reflect tip-
lineage mutations and are not indicative of HSC genomic
diversity decay (as noted earlier). There is a negative (albeit
noisy) relationship between the number of variants and age
(Fig. 9), which is likely an artifact because of the under-
detection of variants with VAFs between 1-2%, which are
near the detection limits of the average read depth of 65.3 %,
and occur with increasingly larger numbers with age (e.g.,
Fig. 2b vs. Figure 2c¢).
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Deriving VFS from HSC datasets

Notably, the Mitchell et al. (2022) dataset we used as a
reference for model training used a colony-sequencing
approach, yielding a nearly complete collection of SNAs in
every HSC cell sequenced. They first isolated 3,579 HSCs
(224-453 per person) from blood via flow cytometry. Each
HSC was individually cultured to produce a colony of 200—
3,000 cells. Each cell in the colony was sequenced on the
[llumina NovaSeq, generating 150 bp paired-end reads at
an average read depth of 14 x per site. Pooling of 200-3000
cell sequences at 14 x average coverage per colony resulted
in 2,800 x to 42,000 % coverage per HSC cell. This allowed
for orders of magnitude more accuracy than typical single-
cell sequencing at every site in every HSC genome. Conse-
quently, only 0.5%-3.4% of sites had missing data across
all HSC genomes.

From the somatic VFS data from colony-seq HSC
genome collections, we estimated variant allele frequency
(VAF) at each variant position as VAF=Y%[mutant cell
count/(non-mutant cell count+mutant cell count)]. The
mutant read count at a given variant position was generated
by scaling the observed total read count down to 30 reads
(from>300 %) to simulate 30 x sampling. To scale the non-
mutant read count, we simply subtracted the scaled mutant
count from an assumed total count of 30. So, for a site with
300 total reads, we would divide the observed mutant count
by 10 (300/30=10), then subtract this value from 30 to gen-
erate the non-mutant count.

Clustering Variants Using PyClone

We ran the latest PyClone build (https://github.com/Roth-
Lab/pyclone) in a Python 2.7 environment using the prov
ided full-analysis-pipeline command. From the output, we
extracted the “size” (number of variants) and “mean” (fre-
quency) parameters from the resulting “cluster.tsv” table for
each individual. PyClone analysis was performed under the
assumption that variants were unaffected by copy-number
alterations. So, we set normal and major copy numbers to 2
and minor copy numbers to 0 for all variants. Our datasets
containing hundreds of thousands of variants took, on aver-
age, several days to run on a desktop PC with a 3.5 GHz pro-
cessor and 128 GB of memory. We imposed a conservative
1% VAF threshold to remove variants that will likely map
to the tip lineages in the HSC phylogenies before conduct-
ing PyClone analyses because single-cell sequences of only
100-300 HSCs were reported. In the output, we found that
PyClone recovered a large cluster containing a vast majority
of variants that occurred at relatively low frequency (<4%),
which is clearly spurious clustering, as those variants are

generally mapped to different tips of the HSC phylogeny.
So, they were excluded from further analysis.

Building phyloAge* Models

Building a Model for Somatic VFS Derived from HSC
Genomes

Using the somatic VFS derived from HSC genome collec-
tions obtained by colony-seq, we estimated an exponential
age model for both y and 4 using Eq. 5. All models were
trained using a log model within a meta-regression frame-
work (Viechtbauer 2010) with a maximum-likelihood
approach to infer the values of the constants a and b from
initial values: a=1/1000 and »=0.3. In each case, we used
the model to predict the physiological ages of the test indi-
viduals, including those from the MPN sample provided
in the original publication (Williams et al. 2022) and the
TCGA-AML cohort. We assessed the fit of each model
using Root Mean Square Error and mean absolute error
(RMSE and MAE), both overall and stratified by age (Table
S1). We also carried out a simple calibration regression dur-
ing training, resulting in a slope of 1.0 and an intercept of
0.0, suggesting a strong fit, and a bootstrapped R’ value of
0.81 (0.28-1.0), as expected given the sample size (Table
S2). For the TCGA-AML cohort, male and female phylo-
Ages were compared by two-tailed t-tests.

Building a Model for the TCGA-AML Cohort

The TCGA-AML data are from coding-region sequenc-
ing and have an average 30 xsequencing read depth. This
prompted us to build an exome-phyloAge* model by
deriving a 30 x sequencing coverage profile from the HSC
genomes dataset, restricted to variants in coding regions
(the reference data covered the full genome). Since 4 is
additive, this prevents imbalances due to differences in cov-
erage. To do so, we drew a read depth (r) for each variant
from a Poisson distribution with the mean equal to the read
depth (r=30). The number of mutant reads for a variant was
drawn from a binomial distribution with 7 trials, and the
rate of variant sampling was set to the VAF of that variant.
While we found that 1 increases predictably with » when
we repeated this simulation at six levels of r (Fig. 6a-b), we
confirmed that estimates of phyloAge* remain constant as
long as the same read depth is enforced for both training
and test phases of the modeling process (Fig. 6¢-d). This is
due to the inherent normalizing effect of the model train-
ing process, which aligns known age with observed 4 values
prior to prediction. We developed the exome-phyloAge*
model using Eq. 5 and optimizing parameters a and b for
the somatic VFS data which accounts for differences in read
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depth and coverage between the TCGA-AML cohort and
the Mitchell et al. (2022) dataset.

Building a Model for the Long-Lived Cohort

Wang et al. (2024) generated VFS comprising all point
mutations in a panel of 46 genes, so we extracted all SNAs
at those same loci from the Mitchell et al. (2022) dataset.
They excluded SNAs with a VAF of less than 1%, as we did,
suggesting compatibility between the two datasets.

Comparison of A with Other Metrics

For comparison with 4, @ and § were obtained from Craig
et al. (2024). The phylogeny-based implementation of the
Shannon index was reproduced from Mitchell et al. (2022),
but necessitated modification, as their threshold for matu-
rity was defined by the count of accumulated SNAs, which
is sensitive to sequencing and variant calling. Instead, we
plotted the lineages through time (LTT) plots for each phy-
logeny, and identified the inflection point where exponential
lineage diversification plateaued, typically between two to
three years of age. The three Hill numbers (species count,
Shannon diversity, and Simpson concentration) were all
derived from clusters identified by PyClone, as was the y
metric. Nei’s (1973) z metric of within-population aver-
age heterozygosity, the approach proposed by Toth et al.
(2019) were estimated based on VAFs estimated from read
counts provided by Mitchell et al. (2022). To calculate the
alignment-based metrics, Tajima’s D (Tajima 1989) and
Fay & Wu’s H (Fay and Wu 2000), we reconstructed binary
alignments from variant data provided in Mitchell et al.
(2022). All comparisons with 4 were done by simple linear
regression, with the correlation coefficient (R?) reported) in
Table 1.

Supplementary Information The online  version  contains
supplementary material available at https://doi.org/10.1007/s00239-0
25-10296-y.
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