
Quantitative Analysis of the Drosophila Segmentation
Regulatory Network Using Pattern Generating Potentials
Majid Kazemian1., Charles Blatti1., Adam Richards2,3, Michael McCutchan4, Noriko Wakabayashi-Ito2,3,

Ann S. Hammonds5, Susan E. Celniker5, Sudhir Kumar4, Scot A. Wolfe2,6, Michael H. Brodsky2,3*, Saurabh

Sinha1,7*

1 Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, United States of America, 2 Program in Gene Function and

Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America, 3 Department of Molecular Medicine, University of

Massachusetts Medical School, Worcester, Massachusetts, United States of America, 4 Center for Evolutionary Functional Genomics, Biodesign Institute, Arizona State

University, Tempe, Arizona, United States of America, 5 Department of Genome Dynamics, Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory,

Berkeley, California, United States of America, 6 Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester,

Massachusetts, United States of America, 7 Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, United States of America

Abstract

Cis-regulatory modules that drive precise spatial-temporal patterns of gene expression are central to the process of
metazoan development. We describe a new computational strategy to annotate genomic sequences based on their
‘‘pattern generating potential’’ and to produce quantitative descriptions of transcriptional regulatory networks at the level
of individual protein-module interactions. We use this approach to convert the qualitative understanding of interactions
that regulate Drosophila segmentation into a network model in which a confidence value is associated with each
transcription factor-module interaction. Sequence information from multiple Drosophila species is integrated with
transcription factor binding specificities to determine conserved binding site frequencies across the genome. These binding
site profiles are combined with transcription factor expression information to create a model to predict module activity
patterns. This model is used to scan genomic sequences for the potential to generate all or part of the expression pattern of
a nearby gene, obtained from available gene expression databases. Interactions between individual transcription factors
and modules are inferred by a statistical method to quantify a factor’s contribution to the module’s pattern generating
potential. We use these pattern generating potentials to systematically describe the location and function of known and
novel cis-regulatory modules in the segmentation network, identifying many examples of modules predicted to have
overlapping expression activities. Surprisingly, conserved transcription factor binding site frequencies were as effective as
experimental measurements of occupancy in predicting module expression patterns or factor-module interactions. Thus,
unlike previous module prediction methods, this method predicts not only the location of modules but also their spatial
activity pattern and the factors that directly determine this pattern. As databases of transcription factor specificities and in
vivo gene expression patterns grow, analysis of pattern generating potentials provides a general method to decode
transcriptional regulatory sequences and networks.
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Introduction

A central challenge in understanding metazoan genome

sequences is to identify and annotate genomic regions that

regulate the complex spatial and temporal patterns of gene

transcription. Analysis of the regulatory regions for many

individual genes has typically identified discrete enhancers or

‘‘cis-regulatory modules’’ (CRMs) that are approximately 1 Kbp

long and located at distances ranging from immediately adjacent

to the start of transcription to 100 Kbp away. These CRMs are

composed of transcription factor binding sites that integrate

information about the concentration of relevant factors to

determine the quantitative contribution of each CRM to the

expression of its target gene [1]. A variety of experimental

approaches has been utilized to identify and characterize CRMs in

single gene or genome-wide studies. For example, approximately

50 CRMs involved in the anterior-posterior (A/P) segmentation of

the blastoderm stage Drosophila embryo [2] have been identified by

reporter gene assays. A combination of genetic studies, CRM

mutagenesis, and DNA binding assays has identified individual

transcription factors (TFs) that influence the activity of these

modules.

Genome-wide identification of TF binding loci has been carried

out using chromatin immunoprecipitation (ChIP) in a variety of
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systems, including yeast and cultured cells [3,4]. ChIP of TFs that

act to regulate dorsal-ventral or anterior-posterior patterning in

Drosophila embryos identifies a set of bound genomic regions that is

highly enriched in functional targets but also includes many

regions whose contribution to patterned gene expression is

currently unclear [5–8]. Furthermore, while ChIP can identify

targets in specific stages or cell types, a clear technical challenge

for ChIP-based methods is how to systematically characterize the

genome-wide occupancy of the large number of TFs in metazoans

across the vast number of distinct expression states that occur

during developmental and physiological processes.

Computational analysis provides a complementary means to

discover functional TF–CRM interactions in the genome. Past

attempts to identify CRMs often searched for clusters of putative

binding sites for combinations of TFs that act in common

biological processes [9] and have been particularly successful in

the identification of Drosophila segmentation modules [10]. The

statistical power of these approaches is increased by filtering for

evolutionary conservation of either individual sites or regions with

clusters of sites [11–13]. In parallel, new methods to systematically

determine TF-DNA binding specificities [14,15] have the potential

to generate a relatively large number of binding specificities

(‘‘motifs’’) in a short time. Spurred by these advances and the

increasing availability of new genomic sequences, computational

approaches could, in principle, be applied more globally to

determine the transcriptional regulatory function of genomic

sequences. However, several problems complicate the global

computational annotation of CRMs and TF–CRM interactions.

First, there is the problem of overlapping specificities; many TFs,

particularly those in common structural families such as

homeodomains, have highly similar DNA binding specificities

[16], making it difficult to assign conserved binding sites to an

individual TF. Second, there is the problem of selecting the

optimal combinations of TFs that should be tested together for

clusters of sites; this becomes increasingly difficult as more

expression states are considered. Third, there is the problem of

TF pleiotropy; for example, a subset of TFs expressed during

segmentation of the Drosophila blastoderm act again during cell fate

specification in the nervous system. Genomic segments with

overrepresentation of binding sites for these TFs might act during

either developmental stage. A related problem is the identification

of CRMs for genes with multiple expression domains; cluster-

based analysis does not automatically attribute a specific

expression domain to each CRM. Finally, there is the challenge

of evaluating the relevance of individual TF–CRM interactions;

while combining binding site scores for multiple TFs increases the

sensitivity of CRM detection, the contribution of any individual

TF to CRM function is typically smaller and more difficult to

associate with a significance value.

We describe a new approach for CRM identification and

annotation that begins to address these issues. It employs a new

method to estimate the potential of any genomic segment to drive

a spatial expression pattern matching that of its nearby gene. This

‘‘pattern generating potential’’ is computed by combining

information from experimentally determined TF binding motifs,

TF expression patterns, and a comprehensive database of in situ

gene expression images of the Drosophila embryo. For this

approach, we developed an efficiently computable, regression-

based model of expression patterns as a function of evolutionarily

conserved binding sites, with parameters learned from a collection

of experimentally characterized CRMs. By incorporating TF

expression patterns into the model, the contribution of potential

binding sites for a factor are only considered in the subset of cells

that express that factor. Genomic regions are annotated as

potential CRMs based on functional combinations of TF binding

sites, while rejecting clusters of overrepresented binding sites that

are inconsistent with the relevant gene expression pattern.

Whether an individual CRM contributes to all or part of the

expression pattern is an automatic result of the method. The

contribution of any individual TF to this pattern can be

quantitatively evaluated by examining the effect of disrupting the

TF’s expression pattern on the predicted activity of the CRM. We

use this method to annotate genomic sequences with the potential

to regulate the initial stages of segmentation in the Drosophila

embryo. We exploit this approach to produce an associated

transcriptional regulatory network model in which each TF–CRM

interaction is associated with a confidence value. We demonstrate

that this approach provides additional insights into how multiple

CRMs contribute to expression patterns and how individual TFs

can directly or indirectly regulate the expression of multiple target

genes. This study represents a generalizable approach to produce

predictive models of genome function and regulatory networks.

Results

Cross-Species Comparison Dramatically Improves
Prediction of TF Occupancy

The availability of genome sequences for multiple Drosophila

species provides an opportunity to optimize quantitative modeling

of functional TF occupancy along the genome. The basic

assumption of this approach is that CRMs with conserved activity

across these species will maintain some binding activity for each

requisite TF while binding sites in non-functional regions will be

less conserved. We used genome-wide profiles of binding motif

scores for 10 TFs (BCD, CAD, HB, KNI, KR, GT, HKB, TLL,

FKH, and CIC) involved in the initial stages of anterior-posterior

patterning or segmentation in the embryo. These profiles were

generated using the Hidden Markov Model–based Stubb program

[17] that captures both weak and strong motif matches in a

probabilistic framework. We combined the motif profiles from D.

Author Summary

The developmental program specifying segmentation
along the anterior-posterior axis of the Drosophila embryo
is one of the best studied examples of transcriptional
regulatory networks. Previous work has identified the
location and function of dozens of DNA segments called
cis-regulatory ‘‘modules’’ that regulate several genes in
precise spatial patterns in the early embryo. In many cases,
transcription factors that interact with such modules have
also been identified. We present a novel computational
framework that turns a qualitative and fragmented
understanding of modules and factor-module interactions
into a quantitative, systems-level view. The formalism
utilizes experimentally characterized binding specificities
of transcription factors and gene expression patterns to
describe how multiple transcription factors (working as
activators or repressors) act together in a module to
determine its regulatory activity. This formalism can
explain the expression patterns of known modules, infer
factor-module interactions and quantify the potential of an
arbitrary DNA segment to drive a gene’s expression. We
have also employed databases of gene expression patterns
to find novel modules of the regulatory network. As
databases of binding motifs and gene expression patterns
grow, this new approach provides a general method to
decode transcriptional regulatory sequences and net-
works.

CRM Analysis with Pattern Generating Potentials
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melanogaster and 10 other Drosophila genomes [13], by averaging

scores from orthologous ,500 bp regions, to create a multi-species

motif profile that incorporates evolutionary conservation. Because

species more closely related to D. melanogaster are better represented

in the currently sequenced set of genomes, this phylogenetic

comparison is weighted more heavily towards D. melanogaster than

more distant species. In an alternative approach designed to reflect

the evolutionary distances among the sequenced species, we

modeled the motif score of a region as a random variable evolving

through Brownian Motion dynamics along the branches of the

evolutionary tree [18], and computed the expected tree-wide

average of this variable given its observed values in the extant

species (Methods). This computation is performed using a new

‘‘upward-downward’’ algorithm that scales linearly with the

number of species. These single and multi-species motif profiles

are made available through the ‘‘Genome Surveyor’’ interface

[14] at http://veda.cs.uiuc.edu/lmcrm/.

We used published ChIP-on-chip data for eight TFs (BCD,

CAD, GT, HB, KNI, KR, HKB, and TLL) [6,19] to compare the

ability of different motif profiles to distinguish the top 100 bound

regions from a random set of non-coding regions (Methods). As

Table 1 reveals, single species motif scores show significant

discrimination between bound and random sequences (p

value ,0.01) for each TF, with especially strong discrimination

in the cases of BCD and HKB (p value = 2.0E-25 and 5.7E-23,

respectively). We find a dramatic improvement in this discrimi-

native ability when using multi-species motif profiles (e.g., the p

value improves from 1.5E-5 to 1.9E-27 for CAD, from 1.8E-3 to

7.0E-15 for HB, and from 2.0E-4 to 3.1E-20 for TLL). The two

schemes for combining multi-species profiles produce comparable

results by this measure, which are significantly better than results

produced by corresponding two-species (D. mel. and D. pse.) motif

profiles. Both multi-species methods were also tested in CRM

predictions below.

Prediction of Expression Patterns for Known CRMs by
Generalized Linear Regression

We next used these binding site profiles to predict the potential

transcriptional regulatory activity of any given genomic region.

We reasoned that determining the potential of a region to generate

patterned gene expression could help distinguish functional TF

binding sites from regions that happened to have motif matches

but were evolutionarily conserved for other reasons. A previous

study [20] described a thermodynamic model that can recapitulate

the expression activity of characterized CRMs. We developed a

simpler, logistic regression model that could be readily adapted to

multi-species analysis and genome-wide scanning and trained this

model on a set of Drosophila CRMs. In any regression model, the

parameters of the model are adjusted such that the output of the

model (e.g., the predicted CRM activity at each A/P position in

the embryo for the entire set of training CRMs) shows the greatest

agreement with the training data (the experimentally determined

expression profiles). Logistic regression models are a generalized

version of linear regression where a sigmoidal (‘‘logistic’’) function

is used to constrain the minimum and maximum output (e.g.,

CRM activity) to 0 and 1, respectively (see Figure S11). The

logistic regression model used here combines weighted contribu-

tions from all TFs (using their expression and binding sites). The

contribution of each TF is calculated heuristically as the product of

its concentration and its binding affinity to the CRM (Figure 1A,

middle panel and bottom right panel). The weight assigned to each

TF indicates its regulating role—positive weights are used for

activators and negative weights for repressors.

We used this model to predict the anterior-posterior (A/P)

expression profiles of 46 experimentally characterized CRMs in

the segmentation network [2], using multi-species motif profiles

and expression patterns [2,21] of the 10 TFs mentioned above. A

binary representation of a CRM’s activity profile along the A/P

axis was modeled as a function of (i) each TF’s motif score in the

CRM’s sequence and (ii) each TF’s concentration value at that

position (‘‘bin’’) along the axis, the bins being labeled from 1 (most

anterior) to 100 (most posterior) (Figure 1A). The parameters of

the model include a coefficient representing each TF’s regulatory

effect and a baseline expression value for each CRM (which is

constant across all bins). These parameters were trained on the

known expression profiles from the 46 CRMs. Visual inspection of

the results (Figure 1B) indicates that the expression patterns

predicted by the model are in good or fair agreement with the

observed expression patterns for most of the 46 CRMs. By this

qualitative assessment (which is consistent with the more

quantitative assessment using ‘‘PGP scores’’ defined below), our

method compares well with the results of the thermodynamic

model, although a direct quantitative comparison is not feasible

(Table S1). We tested for the possibility of the model ‘‘over-fitting’’

the data by comparing cross-validation results from the real data

and randomized data and found a clear separation (p value =

1.2e-34) between the two (Figure S1), ruling out any significant

over-fitting.

The above model provides ‘‘systems level’’ insights into the A/P

network. We observed that coefficients for BCD, CAD, and FKH

Table 1. Agreement of motif profiles with ChIP-on-chip data.

TF Single Species 2 Species (Simple Averaging) 11 Species (Simple Averaging) 11 Species (Brownian Motion-Based Averaging)

BCD 2.0E-25 2.0E-33 2.0E-45 1.6E-45

CAD 1.5E-5 1.5E-15 5.5E-27 1.9E-27

GT 8.3E-7 8.5E-11 2.7E-21 2.3E-22

HB 1.8E-3 3.3E-5 5.5E-14 7.0E-15

KNI 1.8E-4 2.3E-5 1.1E-9 7.5E-10

KR 2.6E-13 3.5E-17 4.2E-29 3.6E-31

HKB 5.7E-23 8.7E-23 1.5E-35 7.4E-35

TLL 2.0E-4 1.3E-8 1.9E-17 3.1E-20

Shown for each transcription factor (TF), and each motif scoring scheme (columns 2–5), is the p value of discrimination between ChIP peaks of that TF and random non-
coding sequences, using the motif scores of those sequences and the Wilcoxon Rank-Sum test.
doi:10.1371/journal.pbio.1000456.t001

CRM Analysis with Pattern Generating Potentials
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Figure 1. Logistic regression model and its performance on training data. (A) Components of the logistic regression model. For each
transcription factor, its differential occupancy across the genome is described as a profile (‘‘Factor Motif Score’’) based on multi-species comparison of

CRM Analysis with Pattern Generating Potentials
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were fit to positive values while KNI, KR, GT, HB, TLL, HKB,

and CIC were fit to negative values (Table S2A), broadly

consistent with the activator/repressor roles known for these

factors. (Although dual roles for some of these factors have been

noted in the literature [22], our model learns a single dominant

role consistent with the dataset.) We explored the effect of

producing more complex relationships between TF expression and

activity (by adding ‘‘second order covariates,’’ the squares of the

term corresponding to each TF; see Methods) and found that a

second order term for BCD improved the model (p value ,E-16)

by creating an anterior ‘‘dip’’ in the contribution of BCD to CRM

activity (Figure S2). This broad anterior dip is not present in the

BCD concentration gradient we used as input to the model. It may

reflect previous observations that BCD levels appear higher than

necessary for target gene activation by a simple BCD gradient

model [23,24]. Our model may not completely account for some

aspect of down regulation of BCD target genes by the terminal

patterning system, either by converting BCD into a repressor [25]

or through regulation of other repressors [23,24]. At the same

time, the observation that second order covariates for the nine

other TFs do not significantly improve the model’s predictions

suggests that the linear approximation provides a reasonable

description of the CRMs’ activities in terms of TF inputs.

We assessed the effect of using single or multi-species motif

profiles in our CRM activity pattern prediction model and found

that the multi-species Brownian Motion averaging-based profiles

provided the best fit (Table 2). Improved performance with multi-

species scores is broadly consistent with previous studies demon-

strating that A/P CRMs with conserved activity patterns and

similar binding site composition can be identified in related species

[11,26]. Interestingly, three individual modules, eve_stripe4_6,

gt_21, and kni_+1, have better predictions from the model trained

with single species motif profiles (Figure S3). In at least one case,

this discordance between the single species and multi-species

predictions is mirrored in evolutionary changes within the CRM:

there is experimental evidence that the D. pseudoobscura ortholog

of the gt_21 module does not drive the posterior domain of gt

expression that is observed for the D. melanogaster module (S. Sinha

et al., manuscript in preparation). Thus, while the overall

improvement in CRM activity predictions using multi-species

profiles suggests that the majority of TF–CRM interactions in the

A/P patterning network examined here are conserved, there are

also examples of CRMs that have functionally diverged.

Capicua Encodes the Torso Response Element Binding
Factor

One of the strengths of the A/P network as a model system is

that many relevant TFs have been identified in previous molecular

and genetic studies. A potential unidentified factor was suggested

by the characterization of a sequence motif ‘‘TorRE’’ (Torso

response element) that is overrepresented in CRMs active at the

anterior or posterior termini [27]. This motif and a hypothetical

concentration profile (high at the two terminal regions) was

previously used in a thermodynamic model of CRM function [20].

We considered the hypothesis that the TF Capicua (CIC) acts

through the TorRE motif, suggested previously by [28] based on

genetic data, and further examined in a later study [23]. CIC is a

transcriptional repressor that is post-transcriptionally regulated in

the embryo via degradation at the anterior and posterior termini

in response to Torso signaling [28]. We determined the DNA

binding specificity of CIC (Note 1 in Text S1) and found it to be

similar to the TorRE (p value = 0.0012, Figure 2A), indicating that

CIC can bind to most of the sites that contributed to identifying

the TorRE. We found that the motif scores of TorRE and CIC are

highly correlated across the 46 modules (correlation coefficient

0.62; p value = 5.4E-6; Figure 2E) and that CRMs with high motif

scores (i.e., many potential binding sites) for either factor are

mostly found at the terminal regions (Figure 2F). When the

regression model is trained with either the TorRE motif or the

CIC motif (and their respective concentration profiles, Figure 2B),

the quality of fit is comparable (Figure 2C, 2D). Consistent with

the complementary expression patterns for TorRE and CIC, CIC

has a negative rather than positive coefficient, confirming that it

generally acts as a transcriptional repressor. Adding TorRE to a

model that already includes CIC leads to no significant

improvement (unpublished data). These results indicate that CIC

is the TorRE binding factor and that this factor acts by repressing

target CRMs in the center of the embryo rather than activating

targets at the termini. Individual direct and indirect targets of CIC

are discussed below.

CRM Discovery Based on Pattern Generating Potentials
The ability to predict the spatial expression pattern driven by a

module (CRM activity) suggests a method for discovery of novel

CRMs: to scan the flanking genomic sequences of a gene for

segments whose predicted activity pattern agrees with the gene’s

endogenous pattern. For this purpose, we developed a newly

defined measure of similarity between expression profiles and its

statistical significance; this measure is named the ‘‘Pattern

Generating Potential’’ (PGP) (Figure 3A, Methods, Note 2 in

Text S1). The scoring method was designed to: (1) be sensitive to

genomic regions using its DNA binding motif (‘‘Factor Motif’’). The contribution of the factor to the CRM’s expression at that position (‘‘Weighted
Occupancy’’) is described by the product of the factor’s motif score in the given CRM (odd_23 in this example), its concentration (‘‘Factor
Concentration’’) at a specific position along the A/P axis, and a weight assigned to the factor (‘‘Factor Weights’’). Contributions from all factors are
added and transformed by a logistic function to predict the CRM’s expression (‘‘Predicted Expression,’’ dark blue). Factor weights are learned using a
training set of CRMs with known A/P activity patterns. (B) Known (red) and predicted (dark blue) expression patterns, along the A/P axis, of 46
experimentally characterized CRMs. Heights of dark blue trace are proportional to the predicted expression level. Predictions deemed as being
‘‘good’’ (count = 20), ‘‘fair’’ (15), or ‘‘bad’’ (11) matches to known patterns (based on visual inspection) are indicated with green, blue, and red labels,
respectively. In some cases, labels use abbreviated versions of CRM names.
doi:10.1371/journal.pbio.1000456.g001

Table 2. Evaluation of different variants (column 1) of the
logistic regression model, using three different goodness of fit
measures: RMSE (Root Mean Square Error), average CC
(correlation coefficient), and AIC (Akaike Information
Criterion).

Model Implementation RMSE Avg. CC AIC

Single species (without BCD2) 0.3135 0.43 3,028

Single species (with BCD2) 0.3088 0.46 2,962

Multi-species (simple averaging) 0.3090 0.47 2,966

Multi-species (BM averaging) 0.3046 0.48 2,894

ChIP-chip 0.3162 0.36 3,109

The best variant’s score is shown in bold.
doi:10.1371/journal.pbio.1000456.t002

CRM Analysis with Pattern Generating Potentials
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Figure 2. The role of transcription factor Capicua in A/P patterning. (A) The hypothetical activator TorRE and known repressor Capicua (CIC) have
highly similar binding specificity (p value = 0.0012, Note 9 in Text S1), and (B) their expression profiles are perfectly complementary. (C) The regression model
assigns highly significant weights to either motif and (D) the overall quality of fit is comparable between models that use one versus another. (E) Motif
scores of TorRE and CIC are strongly correlated among the 46 A/P CRMs. (F) Average motif scores of TorRE (red) and CIC (blue) along the A/P axis (based on
CRMs expressed at each position) are correlated, with high values at terminals. (G) Predicted regulatory network showing direct and indirect targets of CIC.
Edges reflect a regulatory influence of CIC or its target TFs on any of the 35 CRMs included in the analysis, at an empirical p value threshold of 0.05.
Directionality of influence is shown by arrow for activators (FKH) and flat line for repressors (CIC, HKB, KNI, TLL). Gray edges point to direct targets of CIC.
doi:10.1371/journal.pbio.1000456.g002

CRM Analysis with Pattern Generating Potentials
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Figure 3. Pattern generating potential score. (A) Schematic for CRM discovery method. A genomic region (gene transcript, plus 10 Kbp upstream
and 10 Kbp downstream) is scanned with a 1 Kbp window (filled rectangles). For each window, the predicted expression profile (open blue and green
rectangles) is compared to the endogenous expression profile of the gene (open red rectangle, in center) to obtain the pattern generating potential
(PGP) score, which is plotted (bottom panel) as a function of the genomic coordinate of the window. (B) Design features of the PGP score that distinguish
it from the correlation coefficient (CC) or the root mean square error (RMSE). For each desired feature (‘‘Characteristic’’), two scenarios of comparison
between known (red) and predicted (dark blue) expression profiles (‘‘Expression’’), along with PGP, CC, and 1-RMSE values, are shown. A perfect match
would correspond to a value of 1 for each score. Cases where the value of a score in the two scenarios captures the desired feature are shaded in green.
(C) Computation of the PGP score. (i) The predicted expression pattern (green) is shown along with the known domain of expression (red). (ii) The
average predicted expression is calculated separately for domains of expression (the ‘‘reward’’ term) and of non-expression (the ‘‘penalty’’ term) and (iii)
combined into the PGP score, by subtracting the penalty term from the reward term. The penalty term is assigned thrice as much weight as the reward
term. The difference of reward and penalty thus computed is scaled linearly in the final step (‘‘y = 0.5+0.5x’’), giving us the PGP score. This scaling is
merely a notational convenience (making the range of PGP scores fall between 21 and 1) and irrelevant to the way PGP scores are used in our pipeline.
(D) Assessment of the PGP method and previous, binding site clustering-based methods for CRM prediction in the A/P-22 set. The number of known
CRMs recovered (y-axis) in the top k predicted CRMs is shown, as a function of k (x-axis). The programs are: Cluster Buster (CBust) [9] and its multi-species
version (MS_CBust, our implementation; see Note 8 in Text S1), STUBB [17] and its multi-species version (MS_STUBB, see Note 8 in Text S1), and PGP,
evaluated within a leave-one-out cross-validation setting (PGP_CV). (E) PGP score distribution for CRMs predicted in the gene sets ‘‘A/P-22’’ (62 CRMs),
‘‘FlyExpress’’ (123 CRMs), as well as a ‘‘False Positive’’ set. The latter consists of eight experimentally tested sequences that contain a cluster of binding
sites for A/P factors but do not drive any detectable expression in the embryo (Note 10 in Text S1). Medians, quartiles, and ranges are shown.
doi:10.1371/journal.pbio.1000456.g003

CRM Analysis with Pattern Generating Potentials
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both the shape and magnitude of the predicted expression profile,

(2) avoid biases towards or against overly broad or overly narrow

domains of expression, and (3) automatically allow sub-domains of

a gene’s expression pattern to be directed by the CRM (Figure 3B).

To compute this score, we first calculate the average predicted

CRM activity in domains of gene expression (the ‘‘reward’’ term)

and domains of non-expression (the ‘‘penalty’’ term) and subtract

the penalty from the reward, followed by a linear transformation

generating PGP values between 21 and 1 (Figure 3C). An

important feature of this score is that it can identify CRMs that

contribute to only part of a gene’s expression pattern (see below).

When applied to the 46 CRMs used in the regression model

above, the PGP score was highly correlated with our visual

assessments of prediction success (Figure S4).

We tested this measure on the 22 genes (henceforth called ‘‘A/P-

22’’) regulated by the 46 CRMs described above. Expression data

were obtained from whole embryo in situ hybridization images from

BDGP (http://www.fruitfly.org/cgi-bin/ex/insitu.pl) and FlyExpress

[29] (data available at http://veda.cs.uiuc.edu/lmcrm/). We scanned

the control region of each gene (Note 3 in Text S1) with a sliding

window of size 1 Kbp, predicted the A/P expression profile based on

the motif scores in that window, and calculated the PGP (Figure 3A).

An empirical p value representing the statistical significance of a

putative module was estimated based on how frequently we observed

a window with equivalent or greater PGP score in a genome-wide

scan. Of the 62 modules predicted at a p value threshold of 0.015, 34

had significant overlap (.50%) with known modules, indicating 55%

specificity at 74% sensitivity (Figure S5). Seventeen of the remaining

28 predicted modules overlapped the bound regions of at least one

TF (ChIP data at 1% FDR from [6,19]), indicating that the majority

of predicted CRMs are functional and/or biochemical targets of A/P

factors. Overall, we did not observe any systematic biases in the score,

and modules with broad (‘‘gap’’) as well as sharp (‘‘pair-rule’’ stripes)

patterns were correctly predicted. The genomic location and

predicted expression activity for each of these CRMs are available

at http://veda.cs.uiuc.edu/lmcrm.

The 12 known modules not recovered included 10 that had either

‘‘bad’’ or ‘‘fair’’ predictions by the regression model (Figure 1),

pointing out that CRMs whose expression is poorly predicted by the

model are difficult to detect in the CRM search. For another CRM

(gt_26), the experimentally characterized activity pattern does not

agree with the endogenous gene expression pattern we used (Note 4

in Text S1). In this case, the CRM activity pattern we used [2] may

reflect either an experimental artifact or expression at a different

embryonic stage. In only one case (h_stripe1), the PGP approach was

unable to recover a module despite the training stage prediction

being of high quality. Thus, most of the false negatives are likely to

be due to the current limitations in the ability to predict CRM

expression activity.

The results of this search were compared to two previously

described CRM prediction programs, Cluster Buster [9] and Stubb

[17], that search for clusters of binding sites for multiple TFs. To

ensure that the performance of the PGP method was not influenced

by including the same CRMs to train parameters that were then

part of the predicted set, we used a cross-validation strategy where

all known modules of a single gene were left out of the training phase

before predicting CRMs within the control region of that gene. The

PGP method performed better than both single and multi-species

versions of Stubb and Cluster Buster (Figure 3D).

A/P Patterning Is Frequently Regulated by Multiple,
Functionally Similar CRMs

Unlike the other CRM prediction approaches, the PGP method

predicts which aspect of the gene’s pattern is regulated by an

individual CRM, allowing the range of regulatory architectures for

the A/P-22 genes to be examined: solitary CRMs, multiple CRMs

contributing to distinct aspects of the pattern, or multiple ‘‘sibling’’

CRMs with a similar predicted activity. (We use the term ‘‘sibling’’

to indicate CRMs that may have effectively redundant activity

within the context of our model, but possibly distinct contributions

to the magnitude, temporal regulation, or robustness of patterned

gene expression in vivo.) In our predictions, there was only one

gene (btd) with a single predicted CRM; this prediction overlaps a

known CRM (btd_head) driving the gene’s expression. In all other

cases, two or more modules were predicted in a single gene’s

control region. These included cases where distinct aspects of a

gene’s blastoderm expression pattern are captured by distinct

predicted CRMs (e.g., five CRMs near the gene eve, including four

known CRMs), a well-established phenomenon reported for

primary pair-rule genes. We also found many cases of ‘‘sibling’’

CRMs, where multiple modules near a maternal/gap gene were

predicted to drive highly similar expression patterns (Figure 4A).

We considered whether possible false positive predictions could

account for this observation; if the occurrence of a second,

functionally similar CRM prediction in a gene’s control region is

an artifact of false positives, they should also be found near other

randomly selected genes. However, we find that enrichment of

functionally similar CRMs near the target gene is highly significant

(p value = 4E-4, Table S3). Given the previous identification of

‘‘shadow’’ CRMs in the dorsal-ventral patterning network [30],

the utilization of functionally similar CRMs may be a more

common theme of cis-regulatory organization than currently

recognized.

Genome-Wide Discovery of A/P CRMs
We applied the PGP method to a larger collection of 144 genes

with patterned expression along the anterior-posterior axis [12].

(A/P-22 genes were not included.) We automatically extracted the

A/P expression profiles of these genes from the FlyExpress

database [29], transformed the intensity values into binary

expression domains (Methods), and identified flanking sequences

with PGP at the same empirical p value threshold used above.

(Predicted sequences that did not have above-average binding site

presence for one of the activators in the model or for the broadly

expressed activator Stat92E were discarded.) We identified 123

putative CRMs from 68 genes, henceforth called the ‘‘FlyExpress’’

gene set (data at http://veda.cs.uiuc.edu/lmcrm; the 60 most

significant predictions are shown in Figure 4B). The distribution of

PGP scores and their empirical p values is similar to that of A/P-22

and very different from that of bona fide non-modules that were

identified as false positives in a cluster-based method to identify

CRMs (Figure 3E and Figure S6). 44% of the predicted CRMs

overlapped a ChIP-chip peak (at 1% FDR; 65% when considering

peaks at 25% FDR; Table S4). The predictions included CRMs

for genes with a single expression domain and genes with multiple

expression domains (e.g., slp1 and ara, respectively; Figure 4B).

Among CRMs corresponding to genes with multi-domain

patterns, 53% capture only one of the domains of the endogenous

pattern (e.g., drm; Figure 4B) while 47% capture more than one

domain (e.g., emc).

Sixteen of the above CRM predictions overlapped previously

verified modules, of which 12 have blastoderm stage expression

that agrees with the predicted expression profile from our model

(Table S9). These provide an independent experimental validation

for our CRM and activity prediction pipeline. In addition, we

tested seven CRM predictions using new reporter transgenes.

These lines were created as part of an ongoing project to

systematically examine regulatory regions surrounding a subset of
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Figure 4. Expression patterns of predicted CRMs compared to known gene expression patterns. (A) Several genes in the A/P-22 set have
two or more related CRMs (either predicted or known) that drive similar expression patterns. For each gene, the endogenous expression domain is
shown (red), along with predicted expression profiles of CRMs (blue). Labels in bold indicate known CRMs. Predicted expression pattern is shown with
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Drosophila genes with patterned expression in the nervous system

[31]. Only predictions in intergenic or intronic regions of at least

10 Kbp were chosen for analysis. Selections included regions

flanking genes manually annotated as ‘‘strong’’ or ‘‘weak’’ A/P

patterned expression. 4 of 7 tested regions exhibited reporter gene

expression patterns resembling the predicted pattern (Figure 5).

For one of these, Ubx, the anterior boundary of reporter expression

is in the correct region of the embryo, but initiation of the pattern

is delayed relative to the endogenous gene and more strongly

resembles the endogenous gene expression pattern at this slightly

later stage; it has more posterior expression and a striped pattern

likely reflecting the activity of later acting repressors not included

in our model. Two of the remaining tested reporters (pdm2 and emc)

exhibit expression in the developing CNS, where many of the

same TFs that regulate A/P patterning are re-expressed

(unpublished data). It is possible that the same combinations of

TFs that predict an A/P pattern in our model can act to direct

patterned expression in the developing CNS. We note that the

specificity we observed here (57%) is about the same as that

recorded in our cross-validation tests on the A/P gene set.

We also examined the genome-wide locations of all segments

with high PGP scores (and not just those located near the genes

whose expression was modeled). We found these segments to be

preferentially located near A/P patterned genes. However, we also

observed a large number of segments (with high PGP) that are

apparently not associated with patterned genes (Table S12). This

suggests that the genome harbors a relatively large number of

segments with PGP, and only a small subset of these actually

realize this potential. This finding further supports our rationale of

searching only in the neighborhood of a gene for segments with

the potential to drive the gene’s expression pattern.

A Regulatory Network for Anterior-Posterior Axis
Patterning in Drosophila

Unlike binding site clustering methods, the PGP method uses

both the binding specificities of TFs and their expression pattern to

predict the activity pattern of a CRM. Using the PGP method, it is

possible to computationally assess the contribution of each TF to

the CRM by asking if altering the expression of the TF affects the

quality of the prediction. We used this strategy to infer direct

regulatory interactions between TFs and CRMs, depicted as edges

in the transcriptional regulatory network. To visualize the effect of

removing an individual TF from the model, we simulated a

‘‘knock down’’ of the TF (by setting its expression to 0) and

compared the predicted CRM expression in this ‘‘in silico mutant’’

background and in ‘‘wild type’’ (Figure 6A, knock down patterns

shown in green). Unlike traditional in vivo genetic assays, where

observed changes may be the indirect effect of mis-regulation of

other genes, this approach examines the direct contribution of a

TF to a specific CRM. In order to assign a statistical significance to

this contribution, we developed an alternative procedure (Methods

and Figure 6A): CRM activity predictions were generated using

color intensity proportional to expression value. (B) Gene expression pattern (red, top) is shown along with predicted expression pattern (dark blue,
bottom) of 60 CRMs predicted in the FlyExpress set.
doi:10.1371/journal.pbio.1000456.g004

Figure 5. Experimental validation of predicted CRMs. (A) Predicted expression profiles are shown for genomic segments near four genes with
A/P patterning from the ‘‘FlyExpress’’ set (noc, SoxN, Antp, and Ubx). The predicted expression is shown as a blue curve and the binarized blastoderm
expression of the endogenous gene is shown as thick red lines. Additional reporters from three genes, pdm2, emc, and apt, were not active in early
embryos (unpublished data). (B) The cis-regulatory activity of each region was tested in a transgene reporter construct. Spatial activity was
determined by RNA in situ using a probe to a Gal4 reporter gene. Expression of the Ubx_1 reporter begins slightly after the blastoderm stage
resembling the expression of the endogenous gene.
doi:10.1371/journal.pbio.1000456.g005
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random permutations of the TF’s concentration profile and

compared to the ‘‘true’’ activity, thus creating a null distribution of

similarity scores (depicted in blue). The score obtained with the

actual profile (black dot) was compared to this distribution,

generating an empirical p value. When there are few binding sites

in the CRM, the TF pattern has little influence on CRM

predictions and the null distribution of scores is very narrow

(unpublished data). When there are more binding sites in the

CRM, there is a broader distribution of similarity scores from the

random profiles, and the position of the actual profile within this

distribution reflects the combined contribution of the binding sites

and the normal TF expression pattern on CRM activity. Using

this procedure to infer a p value for every TF–CRM combination,

we constructed a transcriptional regulatory network (Figure 6B,

Figure 7) involving the 35 CRMs where the model’s quality of fit

had been ‘‘good’’ or ‘‘fair’’ (Figure 1B).

A total of 102 regulatory edges were predicted (at p value ,0.05)

between the 10 TFs and 35 CRMs, revealing a very dense

network. (See http://veda.cs.uiuc.edu/lmcrm.) 82 edges were

supported by ChIP-based evidence of occupancy at the strongest

level (1% FDR). 63 of the 102 edges have been previously reported

in the literature, mostly by examination of CRM activity in mutant

embryos lacking the TF (Table S5). In some cases, confidence in

experimentally determined TF–CRM edges is further increased by

in vitro confirmation of TF binding sites by DNaseI footprinting.

For 12 of the 35 CRMs analyzed above, the FlyReg database [32]

catalogs at least one such interaction with either BCD, CAD, KR,

KNI, HB, GT, or TLL. These validated TF–CRM edges were

significantly enriched in our network (Hypergeometric test, p

value = 0.0026) (Figure S7).

This network model can address specific questions about the

role of individual TFs in A/P patterning. For example, the

concentration of the repressor CIC is a direct output of the

terminal patterning system [33], but it is not known whether this

mechanism acts solely by determining the terminal expression

patterns of TLL and HKB. Terminal gene expression could be

either entirely regulated by these factors or the terminal system

might also directly regulate additional targets via CIC. The

regulatory network model predicts that CIC directly targets at

least six CRMs corresponding to five distinct genes—tll and hkb as

well as cnc, fkh, and kni (Figure 2G). Thus, this result extends our

observation above that CIC binds to the Torso response element

and indicates that control of CIC levels by the terminal regulatory

system indirectly regulates many genes via tll and hkb but also has

some additional direct targets besides tll and hkb. Existing

experimental evidence also points to a role of the terminal system

in regulating these CRMs or their associated genes [34–36],

although evidence of direct influence has been missing. This

finding complements our current understanding of the terminal

patterning system, which has thus far been shown to act only

through the TFs TLL and HKB [36,37].

We used the above statistical procedure to construct a

regulatory network for all of our CRM predictions (62 in the A/

P-22 set, 123 in the FlyExpress set); the TF–CRM interactions

composing this network are cataloged in Table S6. Analysis of the

predicted network reveals several common patterns. A recurring

theme in the TF–CRM interactions is potential ‘‘auto-regulation’’

by activators. For example, all three predicted modules near the

cad gene had significant regulatory input from CAD, and in each

case, this predicted auto-regulation was supported by ChIP data

(at 1% FDR). Similarly, four out of five predicted modules for fkh

are predicted to have FKH-driven activation. fkh auto-regulation

(in salivary glands) has been experimentally shown [38]. On the

other hand, auto-regulation by repressors is not seen in our

Figure 6. A gene regulatory network for A/P patterning. (A) Inference of TF–CRM interaction. For each motif, a histogram (blue) of RMSE
scores (between real and predicted expression) is obtained from random permutations of the TF concentration profile, leading to a p value of the
observed RMSE score (black dot on x-axis). Top right panel shows the true (red) and predicted (blue) expression profiles. Also shown is the effect of in
silico ‘‘knock down’’ of each TF (panels on right, red border), and the corresponding RMSE score (red dot on x-axis of histograms). The expression
profiles of the CAD activator and the HB and TLL repressors are shown in Figure 1A. (B) Predicted regulatory network for 10 TFs and 35 experimentally
characterized CRMs. Edges reflect a regulatory influence from TF to CRM, at an empirical p value threshold of 0.05. Directionality of influence is shown
by arrow for activators and flat line for repressors.
doi:10.1371/journal.pbio.1000456.g006
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Figure 7. Examples of how maternal and gap patterned TFs together give rise to patterned expression. Shown are nine sample CRMs,
their expression domains (in pink) along the A/P axis (left: anterior), their regulators (as per the predicted regulatory network of Figure 6B), and their
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predictions, as anticipated. Another common theme observed was

that of mutual repression by pairs of TFs, e.g., HB–KNI, GT–KR,

KR–KNI, HB–KR, GT–KNI, and TLL–KR, some but not all of

which were reported previously [22,39–41]. We also used edges of

this network to characterize the ‘‘complexity’’ of CRMs. About

three TFs on average had edges leading into each CRM, for most

target patterns, except that CRMs driving expression at the

anterior seem to have relatively low complexity and those active in

bins 80–90 have slightly greater complexity (Figure S8). When we

examine the degree distribution of the network from the

perspective of the TFs, all 10 TFs contributed almost uniformly

to the predicted CRMs (Figure S9).

We compared the above-mentioned network to that predicted

by Stark et al. [13], which was based on the presence of conserved

(predicted) binding sites in 2 Kbp promoters of all Drosophila genes.

However, we found very little overlap between the two networks

(Note 5 in Text S1), which we attribute to the fact that only a small

percentage of our predicted CRMs (and of experimentally

validated A/P CRMs) are located in the 2 Kbp regions

immediately upstream of genes.

Comparable Performance of Binding Site Profiles and
ChIP Data within Models of Transcriptional Networks

Genome-wide ChIP assays provide the location and strength of

TF occupancy in vivo. Compared with cell culture or yeast

experiments, intact organisms represent potentially more chal-

lenging contexts to interpret ChIP data since TF expression can

vary across space and time. A recent analysis of CRMs acting in

mesoderm development demonstrates that time course ChIP data

can predict multiple distinct classes of CRM activity patterns in

whole embryos [8]. In contrast, complementary computational

methods lack the in vivo context of ChIP but can provide a

potentially general approach to predict regulatory networks, even

in cells and tissues that are difficult to characterize experimentally.

A high-quality genome-wide ChIP dataset is available for eight of

the A/P TFs during early embryogenesis [6,19]. In the previous

sections, we have used this dataset to confirm that a majority of the

PGP-derived CRM predictions correspond to in vivo occupancy

by one or more TFs. In this section, we evaluate if the TF–CRM

interactions predicted by the PGP method can approach the

quality of predictions derived from ChIP data.

Predicting expression patterns. For the eight TFs for

which ChIP data are available [6,19], we replaced the motif score

profiles with ChIP scores and retrained the regression model using

these data. By statistical measures, the overall quality of fit of the

ChIP-based model was inferior to that with multi-species motif

profiles (Table 2, e.g., average correlation coefficient of 0.36

compared to 0.48 achieved with motif profiles). Specific examples

reflecting an inferior model include assigning a positive coefficient

(activating role) to the well-known repressor GT (Table S7) and

less statistically significant coefficients for other repressors (KR,

KNI). Thus, in the context of this experimental system,

computational binding site prediction together with comparative

genomics may have equal or even greater utility than the use of

ChIP-based measurements of TF occupancy.

Predicting functional occupancy. Schroeder et al. [2]

presented a method for a systems-level perspective on the

occurrence of functional binding sites in segmentation modules.

Their method sums the motif scores for a TF for all of the CRMs

active at each position along the A/P axis. They noted that for

CRMs that drive expression in the same domains as a TF, there is

the expected overrepresentation of binding sites for activators

(positive correlation) and an under-representation of binding sites

for repressors (anti-correlation). These correlations should be more

pronounced if functional TF binding in the CRMs is more

accurately described. We examined these correlations with our

multi-species motif profiles as well as with ChIP-chip scores of

occupancy (Figure S10). For six of the eight factors, the degree of

correlation was comparable for either approach; however, for KNI

and GT, the motif profiles showed a marked improvement in anti-

correlation with the respective concentration profiles. This analysis

further supports the conclusion that motif scores based on cross-

species comparison may better estimate the regulatory effect of a

factor than ChIP data that measure biochemical occupancy but

lack the evolutionary filter for regulatory function.

Predicting regulatory TF–CRM interactions. Of the 102

significant regulatory network edges predicted above (Figure 6B),

94 correspond to the TFs BCD, CAD, HB, GT, KR, KNI, HKB,

and TLL for which ChIP data are available. 80 of these 94

predicted edges have ChIP-based support at the highest level of

confidence (1% FDR), seven more at the 25% FDR level, and only

seven are not corroborated by ChIP data. However, such

extensive agreement between motif-based edge predictions and

ChIP data could reflect widespread biochemical occupancy [6]

that does not have a regulatory function in this context. Indeed,

there is a strong tendency for occupancy by most of the eight

factors in the set of known modules: of all possible TF–CRM

combinations, 76% had ChIP support at 1% FDR.

We compared predicted TF–CRM edges based on ChIP-

chip data to the FlyReg literature-based regulatory network

mentioned above, using either the 1% FDR or top 100 ChIP

scores as a cutoff for interactions (Figure S7). Again, the trend

of frequent TF occupancy in ChIP data had a significant

impact on this analysis. The PGP-based regulatory network

actually exhibited a greater enrichment for the validated TF–

CRM interactions than the ChIP-derived network, primarily

by predicting fewer interactions but with higher precision.

Among the examples of interactions predicted by ChIP, but

not PGP, we found multiple surprising examples of ChIP data

indicating TF occupancy that should adversely affect the

module’s expression profile. Specifically, we identified CRMs

with ChIP signals for the repressors KR, KNI, or GT, and

whose activity domain overlaps the bound repressor. Overall,

we found 19 such cases of apparently ‘‘incongruous’’

occupancy (Figure 8, Table S8). In 17 of these cases, we did

not find corresponding support for evolutionarily conserved

binding sites from our multi-species motif profiles. These

examples indicate a discrepancy between motif-based evidence

and ChIP evidence and appear to be cases where the observed

biochemical occupancy does not act to shape the activity

pattern of the CRM.

respective expression domains (in color code matching that of Figure 6B). Arrows indicate activation and barred lines indicate repressive influence.
Repressor domains shown are required to be overlapping with an activator’s domain of influence. Solid edges indicate that the regulatory influence is
supported by previous experimental evidence in the literature, while dashed edges indicate novel interactions. Labels of TF expression domains are in
black or white for better color contrast and have no semantic difference. *The edge between DSTAT and eve_stripe5 is not based on our model
predictions (since DSTAT is broadly expressed and was not included in the model) but on the presence of DSTAT binding sites (motif score greater
than 4 standard deviations above genomic mean) in the CRM.
doi:10.1371/journal.pbio.1000456.g007
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Discussion

As large numbers of genome sequences become available,

annotation of how different genomic segments contribute to

organismal function remains a central challenge. Despite the

relative simplicity of the genetic code, annotation of the protein-

coding regions of large genomes has undergone continued revision

as new experimental datasets and computational approaches have

been developed. Computational annotation of CRMs is signifi-

cantly less advanced, in part due to the incomplete description and

complexity of metazoan TF-DNA binding specificities. However,

even after determining binding motifs for the central regulators of

Drosophila anterior-posterior patterning network [14], we found it

difficult to use existing clustering strategies to systematically search

for the targets of these factors. Here, we describe an alternative

strategy—use binding site motifs to predict the A/P activity

pattern for a given DNA sequence and determine the similarity of

the predicted activity pattern to an experimentally determined

expression pattern. The PGP can be used to annotate the non-

coding genome, similar to the ‘‘regulatory potential’’ score of [42];

unlike the regulatory potential, which generally classifies non-

coding sequences as regulatory or neutral, PGP ranks sequences

by their ability to contribute to the specific expression pattern of a

nearby gene. It further facilitates a quantitative inference of TF–

CRM interactions, whose validity may then be assessed through in

vivo observations. We have specifically applied this approach to

the A/P network, but it should be applicable to any system in

which adequate expression data are available for relevant TFs,

CRMs, and target genes.

One key distinction between using PGP to characterize CRMs

instead of binding site clusters is that this method can

automatically select appropriate combinations of TFs to contribute

to a CRM’s activity. By only considering TFs expressed at the

appropriate time and place, this approach partly addresses issues

associated with TF specificity overlap and pleiotropy. A second

advantage is the rich class of expression patterns with which it may

be used. The current implementation accommodates expression

states composed of any combination of 100 positions along the A/

P axis and can be expanded in a straightforward way to include

additional spatial and temporal dimensions. These expression

patterns can even be the result of automated image-processing

pipelines, such as the one used here for A/P patterns. This is in

contrast to the more limited classes of manually determined

expression patterns considered in previous studies [8]. The

regression model also has the advantage that the explicit activity

pattern predictions are easily interpreted, compared to other

machine-learning techniques such as Bayesian networks [43] or

support vector machines [8]. As noted above, replacing binding

site profiles with ChIP-based occupancy data in our model did not

lead to superior predictions. This negative result is somewhat

contrary to the findings of Zinzen et al. [8], who exploited ChIP

data on five TFs (at five different time points) to successfully

predict spatio-temporal expression patterns of many CRMs

involved in mesoderm specification. Integration of both ChIP

and motif presence information may hold the key to significantly

improved predictions and will be an exciting area for future

research.

Generating the experimental datasets required to apply this

method more broadly should be feasible with current technologies.

The bacterial one-hybrid system and other methods should

generate DNA binding specificities for most Drosophila TFs

[14–16,44]. Systematic determination of the temporal and spatial

expression patterns of TFs is critical and not a minor task;

however, it should be far more straightforward than applying

genome-wide ChIP methods to the many different possible cell

types present at different developmental stages. In addition to TF

binding specificities and expression patterns, two other datasets are

required. First, large-scale descriptions of gene expression patterns

must be available; these are currently being generated for the

Drosophila embryo [29,45,46]. Second, a training set of CRMs with

diverse activity patterns must be identified; for the Drosophila

embryo, these can be curated from the literature [47] or generated

in moderate to high throughput reporter studies [31]. While we

have treated CRM and gene expression patterns as binary values

at a single developmental time point, quantitative spatial and

temporal expression data are readily accommodated in this

approach and should capture more comprehensive and subtle

aspects of transcriptional regulatory networks. We note that the

specific components of the model used here for predicting

segmentation modules may change as more genomes and relevant

TF motifs are characterized in the future. At the same time, our

tests suggest (Tables S10, S11) that including more genomes (and

to some extent additional motifs) may not lead to dramatic

improvements.

The logistic regression model used here is very similar to the

more popular linear regression model [48], combining weighted

contributions from all TFs, except that the logistic model imposes

the combined output to saturate at high values (Figure S11). This

model is ‘‘simpler’’ than a previously published thermodynamic

model to predict regulatory function from sequence [20], in that it

has fewer parameters to be trained from data. At the same time, it

Figure 8. Incongruous occupancy by repressors. (A) Four
examples of incongruous occupancy, from ChIP data, by repressors
(GT or KR) in known CRMs. Shaded areas above horizontal axis indicate
domains of expression driven by the CRM (red = real, dark blue =
predicted). Shaded areas below axis are regions where a repressor (GT
in blue or KR in green) is present and will thus inhibit expression if it
occupies the CRM. (B) Motif presence or absence in cases of
incongruous occupancy indicated by ChIP. ‘‘Multi-species Motif’’ shows
whether the multi-species motif score is strong (.2 standard deviations
above genomic mean), weak (above genomic mean), or neither. ‘‘D.mel
Motif’’ shows, for cases where the multi-species score indicates motif
absence, whether motif score in D. melanogaster is above genomic
mean or not.
doi:10.1371/journal.pbio.1000456.g008
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performs well compared to the thermodynamic model and has the

added advantages of easily incorporating multiple species

comparisons and of computation that is orders of magnitude

faster. This enables fast, genome-wide prediction of other CRMs,

examination of the effect of each motif on each putative CRM,

and empirical assessment of its statistical significance through

permutation tests. However, the regression model does not

incorporate known mechanistic features of CRM function, such

as cooperative TF binding. More detailed models of CRM

function have been developed for individual enhancers [40,49,50],

which can accurately describe changes in CRM activity over

developmental time or due to mutation. In principle, these models

or other approaches to capture how binding site arrangements

contribute to expression could replace the regression model in the

overall framework to measure PGP. Models with additional

parameters may provide better predictions but require additional

prior knowledge, while models with fewer parameters may

generalize better. We also note that the motif scores used in our

model are based on evolutionary conservation at the ,500 bp

resolution and are thus robust to local turnover of sites [51]. The

approach is also applicable with single-species motif scores

(although this led to poorer performance in our setting), which

may be significant for discovery of CRMs that are not as well

conserved [52].

This analysis of the Drosophila A/P patterning using PGP is the

most complete description of this network to date. The

quantitative descriptions of how TF inputs generate the activity

pattern of specific CRMs and the explicit predictions of individual

TF–CRM interactions provide a level of detail not typically

generated by other approaches. In this study, we have highlighted

a few specific novel observations on the predicted regulatory

network, such as which genes regulated by the terminal system are

direct or indirect targets of CIC. We have also identified and

experimentally confirmed the activity of four new CRMs of the A/

P patterning network, regulating the genes Antp, noc, SoxN, and

Ubx. In addition, we identified several general conclusions about

the network, including the frequent occurrence of positive

autoregulation by activators and mutual repression by spatially

adjacent repressors. One of the most striking results is how often

individual genes have multiple CRMs predicted to direct the same

embryonic expression pattern. Individual examples of such

‘‘sibling’’ CRMs have been previously described in both the A/P

and D/V embryonic patterning networks, but the current analysis

indicates that they may be more frequent than previously

appreciated. (A more complete experimental analysis of this

aspect of cis-regulatory architecture will be required given the

observation that at least some of these CRMs are in fact ‘‘cousins’’

that appear to use similar TF binding sites to drive patterned

expression in a different tissue.) Application of the PGP method to

other transcriptional regulatory networks should reveal if similar

overall regulatory themes act in other developmental contexts.

Recent ChIP-chip analysis of multiple TFs regulating Drosophila

embryonic patterning provides a quantitative dataset to compare

with our computational approach [6,19]. Overall, ChIP data

suggest far more binding events than expected to be required to

directly control patterned gene expression [6], consistent with

earlier predictions of widespread genome binding by TFs [53,54].

Presumably, as long as occupancy does not interfere with

patterning, it can be tolerated. In contrast, computational TF

binding site profiles incorporate multiple species comparisons to

probe where TF binding sites are under evolutionary selection,

which should reflect a conserved role in patterning. In our

comparison of ChIP data and TF binding site profiles for the A/P

network, we find that evolutionarily conserved binding sites

provide greater specificity and that this leads to better gene

expression prediction models and a greater enrichment of known

TF-CRM interactions. Interestingly, we found several examples of

disagreement between motif-based and ChIP-based prediction of

binding where the ChIP occupancy appears to be antagonistic to

the known activity pattern of the CRM. For future work in cells

where high-quality ChIP data are available, integrating ChIP

scores and multi-species motif profiles may allow higher

confidence predictions of CRM position, function, and regulation

by combining both experimental evidence for availability and

occupancy with evolutionary evidence for function [13,55]. For

cells where ChIP data are not available, determining the PGP of

genomic regions can provide a general strategy to annotate

regulatory regions.

In summary, this work presents a general computational

framework for analyzing transcriptional regulatory networks

through a systematic integration of sequence (from multiple

species), expression, and TF binding specificity data, all of which

are hallmarks of the genomics toolkit available today. Application

of the framework provides systems-level insights into the regulation

of anterior-posterior patterning in the Drosophila embryo.

Methods

Motif Score Profiles
All motif profiles are made available through the Genome

Surveyor interface at http://veda.cs.uiuc.edu/lmcrm.

Brownian Motion Averaging
Given a phylogeny and a profile value for each leaf node or

extant species, our task is to compute an evolutionary average of

the given values. Following [56], we consider a random variable

evolving according to a Brownian Motion process along each

branch, with the process on each branch being conditional on the

value of the variable at the parent node of that branch. The

temporal expectation of this random variable, over all branches, is

the desired average. Exploiting the observation that the random

variable has a Gaussian distribution at every (non-root) node with

mean and variance defined by the value at the parent of that node,

researchers have shown [18] how this temporal average may be

calculated in time O(n2), where n is the number of species. We

developed an alternative, O(n) algorithm for this purpose based on

the upward-downward algorithm paradigm for trees (Text S2)

[57].

Evaluation of Motif Score Profiles Using ChIP-Chip Data
The top 100 bound regions of a TF, each defined as the 500 bp

centered on a ChIP peak, were used, along with 5,000 length-

matched sequences selected at random from non-coding regions.

For each sequence, the motif score was computed, and the sets of

scores for the bound and random regions were compared using the

Wilcoxon Rank-Sum test.

Logistic Regression Model
The basic model for predicting CRM expression patterns is as

follows:

El,b~sig wl
0z

X
i[tf

wicibCl
i

 !
ð1Þ

where El,b is the expression value (between 0 and 1) of the CRM l

in bin b (the A/P axis is divided into 100 equal bins), cib is the
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concentration of factor i in bin b, Cl
i is the motif score of factor i in

the CRM l, wi is the regression coefficient for factor i, wl
0 is the

‘‘basal’’ expression level of CRM l, sig(x) is a ‘‘sigmoid’’ function

1/(1+exp(2x)).

The free parameters are wl
0 (one for each CRM) and wi (one for

each factor). Use of the CRM-specific parameter wl
0 is motivated

by (i) the fact that the discrete (0/1) expression values that form the

desired output do not reflect the variation in basal gene expression

levels and (ii) an opportunity to compensate for, at least partially,

the lack of complete knowledge of relevant TFs, especially of

ubiquitous activators and/or repressors. Note that the concentra-

tion and motif score terms occur together (cibCl
i ) and this product

is called the ‘‘covariate’’ of factor i for CRM l in bin b. An

additional higher order term, called ‘‘BCD2,’’ is used in our model.

BCD2 is the square of the covariate ‘‘BCD’’ for the factor BCD.

Utilizing the glm (generalized linear model) function in R’s ‘‘stats’’

package [58], we trained the parameters of the model using

iteratively reweighted least squares (IWLS) to minimize the error

between predicted and true expression values. The ratio between

the trained parameter and its estimated standard error was treated

as a z score for calculating its statistical significance. The overall

quality of fit of the model to the data was measured by standard

statistics such as the root mean squared error (RMSE), mean

Correlation Coefficient (CC), and the Akaike Information Content

(AIC) (Note 6 in Text S1). All analyses were performed within the

R programming environment.

PGP
Given a predicted expression profile (real numbers between 0

and 1 for each bin along A/P axis) and an endogenous expression

profile (0 or 1 values for each bin), we defined the PGP score as

follows:

PGP~0:5| 1z

P
b[bins

Eg,b|ÊEg,bP
b[bins

Eg,b

{3|

P
b[bins

(1{Eg,b)|ÊEg,bP
b[bins

(1{Eg,b)

0
B@

1
CA, ð2Þ

where Eg,b is the expression value (0 or 1) of the gene g in bin b and

ÊEg,b is the predicted expression value (between 0 and 1). This score

ranges from 21 to +1. It rewards correctly predicted domains of

expression and penalizes false prediction of expression. If the

endogenous profile has multiple domains of expression, a subset of

those domains are selected based on the predicted profile and then

compared to the predicted profile using PGP. See Figure 3B,

Figure 3C, and Note 2 in Text S1 for additional details.

Regulatory Network Edge Prediction
First, we computed the ‘‘root mean square error’’ (RMSEwt)

between the model’s prediction in ‘‘wild type’’ and the true

expression. Next, the concentration profile of a factor was

permuted randomly and the RMSE was determined for each

permutation. Repeating this step 1,000 times, we obtained an

empirical p value of RMSEwt, which represents how important this

factor (in particular, its concentration profile) is to the CRM’s

expression pattern.

Fly Express Data Mining
A/P axis expression profiles were calculated from ,36,800

BDGP in situ expression images (lateral orientation). The images

were first converted into a standardized format and aligned using

the FlyExpress image processing pipeline [59]. The resultant

1286320 standardized images were then manually inspected and

corrected, as necessary. For generating an A/P expression profile,

the expression values were calculated for each of the 320 points

along the A/P axis by taking the average of the intensity values

within a window around the middle of the Dorsal-Ventral

axis. All images for a given gene and developmental stage 4–6

were visually examined to identify those with A/P patterns and

select a representative image, whose A/P profile was further

discretized into domains of expression and non-expression along

100 equal-sized bins along the axis, as described in Note 7 in

Text S1.

In Vivo Analysis of CRM Activity
Genomic regions encompassing predicted CRMs were tested as

transgene reporter constructs as described previously [31] using labeled

RNA probes to assay expression of the Gal4 reporter gene by in situ

hybridization to mixed stage embryos. Candidate CRMs for the

following genes were tested (with release 5 coordinates for the tested

fragment): noc (2L:14487040–14490562), SoxN (2L:8831242–8833223),

Antp (3R:2774228–2775839), Ubx (3R:12503151–12505092), apt,

(2R:19455701–19458627), emc (3L:745029–746591), and pdm2 (2L:

12669616–12672809).

Supporting Information

Figure S1 Distribution of prediction error on test data
obtained from 1,000 replicates of 2-fold cross-valida-
tion, on the original data (red) and randomized data
(blue). The cross-validation was done by designating a randomly

chosen half of the 4,600 points (46 CRMs6100 bins) as training

data and testing the trained model’s predictions on the remaining

half. Prediction error was defined as the root mean squared error

on the test points. A randomized dataset was constructed by

randomly permuting the matching between CRMs and their

expression profiles. The model is never able to achieve, for the

randomized data, the kind of low error rates it achieves on real

data (p value = 1.2e-34 based on one-tail Wilcoxon rank-sum).

This strongly suggests that the regression model is not ‘‘over-fit’’ to

the data of 46 CRMs and their respective expression patterns.

Found at: doi:10.1371/journal.pbio.1000456.s001 (0.17 MB TIF)

Figure S2 Concentration profile of BCD in our model
(with anterior on left). Shown is the effect of BCD, blue, the

effect of quadratic form of BCD, green, and the combined effect of

both terms, brown, for the CRM btd_head.

Found at: doi:10.1371/journal.pbio.1000456.s002 (0.11 MB TIF)

Figure S3 Comparison between predictions with multi-
species (BM) and single species (D. mel) motif profiles
for three modules in which single species perform better
than multi-species. The white, yellow, and orange colors

represent non-significant, moderate (above genomic mean), and

significant (.2 standard deviation above genomic mean) motif

counts, respectively.

Found at: doi:10.1371/journal.pbio.1000456.s003 (0.20 MB TIF)

Figure S4 The PGP score, when applied to measure the
similarity between predicted and known expression
patterns of a CRM, is highly correlated with our visual
categorization of the predicted expression as being a
‘‘good,’’ ‘‘fair,’’ or ‘‘bad’’ match to the known expres-
sion pattern. These visual categorizations were catalogued in

Figure 1B. Shown here is the distribution of PGP scores (means

and 25th and 75th quartiles) for each of these three categories,

which have 20, 15, and 11 CRMs, respectively.

Found at: doi:10.1371/journal.pbio.1000456.s004 (0.10 MB TIF)
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Figure S5 Assessment of the PGP method on A/P-22 set
using model trained on all known CRMs. Graph shows the

number of retrieved known CRMs (y-axis) as a function of the

number of predicted CRMs (x-axis). The dashed line indicates an

empirical p value threshold of 0.015, which was used in our final

predictions.

Found at: doi:10.1371/journal.pbio.1000456.s005 (0.11 MB TIF)

Figure S6 PGP empirical p value for CRMs predicted in
the gene sets ‘‘A/P-22’’ (62 CRMs), ‘‘FlyExpress’’ (123
CRMs), as well as the ‘‘False Positive’’ set of eight
CRMs. The latter consists of eight experimentally validated CRMs

that do not drive any detectable expression in the embryo. These

are nub_+5, pdm2_+3, pdm2_+5, and pdm2_+8 from [2] and

PCE8008, PCE8021, PCE8023, and PCE8007 from [11]. Addi-

tional bona fide CRMs from [11] are not considered because their

neighboring genes are not A/P patterned, which implies that those

non-CRMs will not even receive a score under our PGP scheme.

Found at: doi:10.1371/journal.pbio.1000456.s006 (0.11 MB TIF)

Figure S7 (Top) Overlap between the predicted and
experimentally validated regulatory network edges. FR

represents 33 experimentally validated edges (from FlyReg)

between 12 known CRMs and 7 TFs (BCD, CAD, KR, KNI,

HB, GT, and TLL). LR is the set of regulatory edges predicted by

our linear regression model for the same set of CRMs and factors.

‘‘ChIP’’ refers to edges inferred based on TF occupancy revealed

by ChIP-chip (at 1% FDR). ‘‘ChIP100’’ is the same dataset, except

that only the top 100 bound regions are considered. The total

number of possible edges is 1267 = 84. (Bottom) Sensitivity,

precision, and Hypergeometric p values of overlap of each

method’s edge predictions with the ‘‘test’’ regulatory network

comprising 33 experimentally validated edges from FlyReg.

Found at: doi:10.1371/journal.pbio.1000456.s007 (0.15 MB TIF)

Figure S8 (Top) Distribution of the average number of
motifs present (motif score .0) in all predicted CRMs
driving expression in a bin along the A/P axis. (Bottom)

Average number of motifs (TFs) with ‘‘regulatory edges’’ to all

predicted CRMs driving expression in a particular bin along the

A/P axis.

Found at: doi:10.1371/journal.pbio.1000456.s008 (0.17 MB TIF)

Figure S9 Shown is the fraction of genes/CRMs target-
ed by each transcription factor (as per our regulatory
edge prediction method) in the A/P-22 and FlyExpress
gene sets. The number of interactions with genes/CRMs is

almost uniform across TFs.

Found at: doi:10.1371/journal.pbio.1000456.s009 (0.15 MB TIF)

Figure S10 The contribution of individual transcription
factors to the 46 known CRMs, as a function of the
position along the A/P axis where the CRMs drive
expression. For each position (x-axis), shown are the average

motif score (black) and ChIP-chip score (blue) of the factor in

CRMs driving expression at that position. The red curve is the

concentration profile of the transcription factor. Note that for KNI

and GT, the black curve (motif score based) shows much better

anti-correlation with the TF profile than does the blue curve (ChIP

based).

Found at: doi:10.1371/journal.pbio.1000456.s010 (0.32 MB TIF)

Figure S11 The logistic function used in our logistic
regression model. The logistic function is a commonly used S-

shaped function that takes values between 0 and 1. The logistic

function used here is y = 1/(1+exp(2x)).

Found at: doi:10.1371/journal.pbio.1000456.s011 (0.07 MB TIF)

Table S1 The first row summarizes the visual classifi-
cation of the quality of fit (as ‘‘good,’’ ‘‘fair,’’ or ‘‘bad’’)
between the model’s prediction and known expression
patterns of 46 known CRMs. The second row shows the

results of a similar visual classification of predictions from a

previous thermodynamic model of [20]. These results should not

be interpreted as a strict comparison of models, since the numbers

and identities of CRMs used in the two analyses are slightly

different, the numbers of motifs used as input are different, and the

numbers of free parameters trained by the models are widely

different. Moreover, the predictions from the Segal et al. model

are not publicly available in a machine-readable format.

Found at: doi:10.1371/journal.pbio.1000456.s012 (0.03 MB

DOC)

Table S2 (A) Covariates of our model and the signifi-
cance of their contributions: the first column lists the
model covariates (predictors). The second column is the

trained value of the regression coefficient (wi) of each covariate,

and the third column is the significance of the coefficients

(computed as described in Methods). Grayed rows correspond to

TFs inferred to be activators (positive coefficients), while others are

repressors (negative coefficients). (B) The trained value of the

‘‘baseline’’ parameter for each CRM: the baseline values range

from ,24.5 to ,3 with an average of 21.4

Found at: doi:10.1371/journal.pbio.1000456.s013 (0.06 MB

DOC)

Table S3 Statistical evidence for prevalence of func-
tionally redundant (‘‘sibling’’) CRMs near maternal and
gap genes. CRMs driving a particular aspect of a target gene G’s

expression pattern were predicted genome-wide using the PGP

method. These CRMs may be located in the control region of

gene G itself, or not. Those located in the control region of the

target gene itself are called ‘‘real’’ and the rest are called

‘‘random.’’ The one or more predicted CRMs in the control

region of the same gene (which may or may not be the target

gene), driving the same expression pattern, are defined as a CRM

set. A CRM set may be ‘‘solitary’’ (cardinality of one) or

‘‘redundant’’ (cardinality of more than one). The predicted CRMs

constituting a redundant CRM set are functionally redundant

CRMs, potentially. Also, as noted above, a CRM set may be

‘‘real’’ (if located in the control region of the target gene) or

‘‘random.’’ A 262 contingency table is thus defined and its

statistical significance estimated by the Fisher’s exact test. The p

value obtained for this table is 4.0E-4, strongly suggesting that

‘‘real’’ CRMs (i.e., predicted CRMs more likely to be true

positives) are enriched for the property of having functionally

related partners (‘‘siblings’’).

Found at: doi:10.1371/journal.pbio.1000456.s014 (0.03 MB

DOC)

Table S4 Properties of FlyExpress predicted modules,
shown for various selection criteria. The grayed row

corresponds to the criteria used in the paper. The first column

shows the PGP p value threshold used in prediction of modules.

The second column lists the type of additional filter applied for

selecting modules: ‘‘Best of each gene’’ indicates that only the

module with the lowest p value for the gene was selected.

‘‘Activator presence’’ filters out the modules that do not have any

activator (BCD, CAD, FKH, DSTAT, ZLD) binding sites (motif

score above genomic average). The third column is the number of

modules predicted using the selection criteria tabulated in columns

1 and 2. The fourth and fifth columns show the proportion of

modules with ChIP support at 1% FDR and 25% FDR,

respectively.
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Found at: doi:10.1371/journal.pbio.1000456.s015 (0.03 MB

DOC)

Table S5 Literature evidence of predicted regulatory
network edges. Columns A and C indicate CRM and TF

predicted to regulate that CRM; columns D and E indicate ChIP

(1% FDR, 25% FDR, or top 100) and DNaseI footprint (FlyReg)

support, respectively. Columns F and/or G indicate any literature

support for the predicted regulatory interaction, in the form of the

PMID (PubMed ID) of the appropriate reference, and ‘‘Y’’ for

positive evidence (almost always in the form of expression changes

in TF mutant), ‘‘N’’ for no support or negative evidence.

Found at: doi:10.1371/journal.pbio.1000456.s016 (0.04 MB XLS)

Table S6 Predicted gene regulatory network of A/P-22
plus FlyExpress genes, mediated by 185 predicted
CRMs.
Found at: doi:10.1371/journal.pbio.1000456.s017 (0.05 MB XLS)

Table S7 Regression coefficient of each covariate (and
statistical significance of its contribution) when the
motif profiles of BCD, CAD, HB, KNI, KR, GT, HKB,
and TLL were replaced with corresponding ChIP-on-
chip scores, and the model was trained again. Grayed

rows correspond to TFs inferred to be activators (positive

coefficient). Note that GT is inferred as an activator despite its

well-known role as a repressor. Also note that in comparison to the

regression coefficients inferred using motif scores (Table S2A),

well-known activators (BCD, CAD, FKH) have a stronger p value

here, and repressors have a poorer p value.

Found at: doi:10.1371/journal.pbio.1000456.s018 (0.03 MB

DOC)

Table S8 Examples where a CRM has ChIP support
for a factor whose expression domain overlaps that of
the CRM itself, and which might therefore repress the
CRM’s activity. We considered the following expression

domains of repressors: GT: bins 20–40 and bins 70–80, KR:

bins 40–60, KNI: bins 60–70. CRMs that have expression in a

domain where one of the above repressors is expressed and

have 1% FDR ChIP support for occupancy by that repressor

are listed below. Such listing is shown for known CRMs. ‘‘MS-

motif-count’’ is our motif score from multi-species averaging;

.0 and ,0 indicate above and below the genomic mean,

respectively; ‘‘significant’’ indicates .mean + 2 6 standard

deviation. We examined the ChIP scores profiled through a

Genome Browser interface (http://veda.cs.uiuc.edu/lmcrm) to

confirm that the ChIP peak is actually centered within the

CRM. In case of KNI ChIP, two tracks were considered. For

column ‘‘Motif Evolution,’’ we consider the individual motif

counts in six species (D. melanogaster (mel), D. ananassae (ana), D.

pseudoobscura (pse), D. virilis (vir), D. mojavensis (moj), D. grimshawi

(gri)) and note which species have motif count .mean + 2 6
standard deviation.

Found at: doi:10.1371/journal.pbio.1000456.s019 (0.04 MB

DOC)

Table S9 12 predicted CRMs that coincide with known
CRMs, and whose experimentally tested activity match-
es the predicted expression pattern. *Figure and table

references in column 2 refer to graphics within the cited reference

(column 3).

Found at: doi:10.1371/journal.pbio.1000456.s020 (0.03 MB

DOC)

Table S10 Significance assessment of adding additional
transcription factors to the original model. We included

BOWL, BTD, NUB, SLP2, and DSTAT (one at a time) in the

model to examine if the quality of fit improves. Of these five

models evaluated, only the one containing DSTAT shows

significant improvement in the quality of fit (see Table 2 for

comparison with the original model). However, the model with

DSTAT did not improve the sensitivity or specificity of CRM

prediction on the ‘‘AP-22’’ set (unpublished data).

Found at: doi:10.1371/journal.pbio.1000456.s021 (0.03 MB

DOC)

Table S11 The effect of using motif profiles from
multiple genomes by two criteria: (A) Agreement
between motif profiles and ChIP-on-chip data; shown
are the p values of Wilcoxon Rank-Sum test, as in
Table 1, and (B) the quality of model fit using three
different goodness of fit measures, as in Table 2. (Part of

the data in these tables are also shown in Tables 1 and 2.) We note

that by criterion (A), there is a significant improvement in going

from single species to two species, and also in going from two

species to 6 or 11 species comparison, although the latter two are

about as effective as each other. By criterion (B), the 6 species

motif profiles show the best results (in terms of AIC) followed by 11

species profiles. Considering both criteria, we conclude that while

multi-species comparisons clearly improve performance, the

advantage of including additional genomes is not as clear in

beyond a few genomes.

Found at: doi:10.1371/journal.pbio.1000456.s022 (0.04 MB

DOC)

Table S12 Genome-wide locations of segments with
high pattern generating potential scores. We segmented

the entire genome (after masking for exons) into non-overlapping

windows of length 500 bp (‘‘all windows’’). The windows with high

PGP scores (p value ,0.0005) for all genes in ‘‘A/P-22’’ set (‘‘high

PGP windows’’) were examined and compared to all windows, in

terms of locations with respect to A/P patterned genes. Each

window was considered to be ‘‘next to A/P genes’’ if either its

closest neighboring gene is an A/P gene or it is within 10 Kbp of

an A/P gene. (The list of A/P genes used here, curated from

BDGP images, is shown at http://veda.cs.uiuc.edu/lmcrm.) High

PGP scoring windows have 10% chance of being located next to

A/P patterned genes, compared to 8% for arbitrary windows

(Hypergeometric p value 0.0014). In addition, 10% of high PGP

windows that are not next to A/P patterned genes have ChIP

support at 1% FDR compared to 6% for arbitrary windows not

next to A/P patterned genes.

Found at: doi:10.1371/journal.pbio.1000456.s023 (0.03 MB

DOC)

Text S1 Supplementary notes. (Notes 1, 2, 3, 4, 5, 6, 7,
8, 9, 10.)
Found at: doi:10.1371/journal.pbio.1000456.s024 (0.12 MB PDF)

Text S2 Supplementary methods.
Found at: doi:10.1371/journal.pbio.1000456.s025 (0.11 MB PDF)
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