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A stepwise algorithm for reconstructing minimum evolution (ME) trees from evolutionary distance data is proposed. 
In each step, a taxon that potentially has a neighbor (another taxon connected to it with a single interior node) is 
first chosen and then its true neighbor searched iteratively. For m taxa, at most (m - 1)!/2 trees are examined and 
the tree with the minimum sum of branch lengths (S) is chosen as the final tree. This algorithm provides simple 
strategies for restricting the tree space searched and allows us to implement efficient ways of dynamically computing 
the ordinary least squares estimates of S for the topologies examined. Using computer simulation, we found that 
the efficiency of the ME method in recovering the correct tree is similar to that of the neighbor-joining method 
(Saitou and Nei 1987). A more exhaustive search is unlikely to improve the efficiency of the ME method in finding 
the correct tree because the correct tree is almost always included in the tree space searched with this stepwise 
algorithm. The new algorithm finds trees for which S values may not be significantly different from that of the ME 
tree if the correct tree contains very small interior branches or if the pairwise distance estimates have large sampling 
errors. These topologies form a set of plausible alternatives to the ME tree and can be compared with each other 
using statistical tests based on the minimum evolution principle. The new algorithm makes it possible to use the 
ME method for large data sets. 

Introduction 

In the reconstruction of phylogenetic trees from a 
matrix of pairwise distances, the principle of minimum 
evolution (ME) is frequently used (Kidd and Sgaramel- 
la-Zonta 197 1; Saitou and Nei 1987; Saitou and Iman- 
ishi 1989; Rzhetsky and Nei 1992, 1993). Rzhetsky and 
Nei (1993) have formally shown that the expected value 
of the sum of all branch lengths (S) is smallest for the 
true tree if an unbiased estimate of distances is used and 
the branch lengths are estimated by the ordinary least 
squares (OLS) method. An exhaustive search guarantees 
that the minimum evolution tree will be found, but it is 
not practical when many taxa (>lO) are used. Conse- 
quently, several computationally less intensive algo- 
rithms have been proposed. For instance, the neighbor- 
joining (NJ) algorithm (Saitou and Nei 1987) combines 
a pair of sequences by minimizing the S value in each 
step of finding a pair of neighboring sequences. Because 
the S value is not minimized globally, the NJ tree may 
not be the ME tree if pairwise distances are not additive. 
Saitou and Imanishi (1989) showed that the NJ tree is 
very similar to the ME tree when the number of se- 
quences used is small. This prompted various strategies 
of searching for the ME tree in the neighborhood of the 
NJ tree by conducting topological rearrangements 
(Rzhetsky and Nei 1992). However, these strategies may 
not work well when the number of sequences is large, 
especially when the correct tree contains many small 
interior branches (Rzhetsky and Nei 1992). It was then 
suggested that different tree topologies examined be 
generated by a bootstrap procedure (Rzhetsky and Nei 
1994). However, the bootstrap method for generating al- 
ternative topologies can only be used if the original data 
can be resampled. In the bootstrap method much time 
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is expended in resampling the data and re-estimating the 
pairwise distance matrix for generating topologies by 
the NJ method, which are not guaranteed to be distinct 
from the topologies found in previous replications. 
Moreover, the computation of OLS estimates of S in- 
dependently for every topology examined may require 
a prohibitive amount of computer time. 

In the following we present an algorithm that “heu- 
ristically” searches for the ME tree(s) in a stepwise 
manner similar to the NJ method and we suggest a dy- 
namic procedure for efficiently computing the OLS es- 
timates of S required to compare alternative topologies. 
We evaluate the efficiency of the new algorithm in re- 
covering the correct tree by means of computer simu- 
lation. In this paper, we call the evolutionary entities 
(DNA sequences, species, etc.) taxa for the sake of con- 
venience. Furthermore, a taxon is said to have a neigh- 
bor if it is connected to another taxon through a single 
interior node in the true tree (Saitou and Nei 1987). For 
instance, taxa 1, 2, 5, and 6 in figure 1A have neighbors, 
but the others do not. However, if we combine taxa 1 
and 2 to form taxon 7, then 3, 7, 5, and 6 will have 
neighbors. Clearly, there are at least four taxa with 
neighbors in any bifurcating tree consisting of four or 
more taxa. 

Algorithm 

The proposed algorithm employs the fact that a bi- 
furcating tree can be reconstructed in a stepwise fashion 
by first identifying a taxon (called leading taxon) that 
has a potential neighbor and then inferring its true 
neighbor. This algorithm is quite similar to the NJ meth- 
od but, unlike with the latter, a large number of potential 
ME trees are examined and the misidentification of 
neighbors due to disturbing factors such as stochastic 
errors of nucleotide or amino acid substitutions is rem- 
edied to a large extent. Furthermore, all topologies ex- 
amined by this algorithm will be different. 

In the new algorithm, a leading taxon at the first 
step of search is first obtained. To accomplish this, we 
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FIG. l.-An unrooted tree of six taxa, l-6. 7-10 are interior 
nodes. Modified from Saitou and Nei (1987). 

begin with a star tree consisting of m taxa (fig. 
compute the sum of its branch lengths (S,) as 

1B) and 

(1) 

where T = ~i<j d,. Now consider the tree in figure lC, 
where taxa 1 and 2 have been paired. In this case, the 
sum of branch lengths (S,,) is given by 

T 
s12 = - - 

Rl + R2 
+d 

12 

m-2 2(m-2) 1’ 
(2) 

where d12 represents the pairwise distance between taxa 
1 and 2, and 

R, = c &X7 R2 = c d2x (3) 
X X 

(Saitou and Nei 1987; Studier and Keppler 1988; Nei 
1990). In this fashion, we compute S, for all m(m - l)/ 
2 possible pairs of taxa. Since the quantity T/(m - 2) 
is a constant in all Sti’s, we need not compute it for 
comparing S, values. 

Now we select a pair of taxa that gives the smallest 
S, value, say S,,. For a purely additive tree, a and b are 
true neighbors, and either of them can be chosen as a 
leading taxon. However, the additivity condition is rare- 
ly satisfied with actual data, and a and b may not be 
true neighbors. Therefore, we find the smallest S from 
the two sets { Sai; i # b} and {S,; j # a}. If the mini- 
mum S, is found in the first set, a is chosen as the 
leading taxon; otherwise b is chosen (see Appendix). We 
now have a leading taxon for the first step of the taxon 
pairing. 

Next, we arrange the m - 1 taxa to be paired with 
this leading taxon in the ascending order of their S, val- 
ues (i.e., from the best to the worst). We temporarily 
regard the first taxon in the list to be the neighbor of 
the leading taxon and combine them into a single com- 
posite taxon, and keep other potential neighbors for later 
use. The pairwise distance between the composite taxon 
u of the selected pair i and j and the other taxa (k; k # 
i, j) is then computed by the following equation (Studier 
and Keppler 1988) 

--) Select leading taxon at 
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FIG. 2.-The flowchart of the Stepwise Minimum Evolution Tree 
algorithm. it refers to the number of unpaired taxa at a given stage of 
taxon pairing. 

dku = (dik + djk - do)/2. (4) 

From the resultant set of m - 1 taxa, we again 
select a leading taxon and pair it with one of the m - 
2 remaining taxa in a manner similar to that of the first 
step. As before, we keep all other potential neighbors of 
this leading taxon for later use. We repeat this procedure 
until a leading taxon is selected at every step of taxon 
pairing (m - 3 steps). At this stage, we obtain the first 
tree, which is identical with the NJ tree, and compute 
its S value (S,,). Because we keep other potential neigh- 
bors of the leading taxon at each step of taxon pairing, 
we can go back and try each of them to search for a 
tree with the smallest S in a recursive manner (fig. 2). 

In this algorithm, the choice of a correct leading 
taxon at every step of taxon pairing, except for the first 
step, is conditional on the selection of leading taxa and 
their potential neighbors in the previous steps. If correct 
leading taxa are selected in any one pass of the search, 
the set of topologies examined is guaranteed to include 
the correct tree. This is because all n - 1 possible pairs 
are tried in each step, where n is the number of unpaired 
taxa. It follows that at most (m - 1) a.. 5 - 4 - 3 = (m 
- 1)!/2 distinct topologies (search paths) will be ex- 
amined in this search (called the full search). 
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Table 1 
Pairwise Distances and the S, Matrices for the Model 
Tree in Figure 3A 

A. Pairwise distances 

I 2 3 

2 . . . 1.3498 
3 . . . 1.6243 1.2696 
4 . . . 1.8943 1.6600 1.5576 
5 . . . 1.3744 1.5737 1.5263 

B. S, at the first step 

I 2 3 

2 . . . 3.7677 
3 . . . 3.8842 3.7718 
4 . . . 3.9141 3.8619 3.7899 
5 . . . 3.7604 3.9250 3.8805 

C. S, at the second stepa 

i) When 5 and 1 paired to form 6 

6 2 3 

2 . . . 2.3725 
3 . . . 2.4265 2.3589 
4 . . . 2.3589 2.4265 2.3725 

ii) When 5 and 4 paired to form 6 

I 2 3 

2 . . . 2.2340 
3 . . . 2.3214 2.2371 
6 . . . 2.237 1 2.3214 2.2340 

4 

1.4964 

4 

3.7605 

Non.-Constant factor T/(m - 2) given in equation (2) was not included 

in the computation of S,,. 
a In case of ties, the pair first encountered was chosen. This choice does not 

affect the computation in the four-taxon case. 

Below we give a simple example to illustrate how 
the new algorithm works in a stepwise manner: Consider 
the distance matrix given in table 1 A, for which the tree 
in figure 3A is the correct tree. This distance matrix was 
obtained in one replication of the computer simulation 
(described later). In table lB, the S, values computed 
by using equation (2) are given. In this table, the pair 
(1, 5) has the smallest S,, and S,, is smallest in the set 
{ S12, S13, S14, &, Ss3, &}. Therefore, we select taxon 
5 as the leading taxon and arrange the potential neigh- 
bors of taxon 5 in the ascending order of their S, values. 
Since taxon 1 heads this list, we combine (1, 5) to form 
a composite taxon 6 (fig. 3C9. We now compute the S, 
for taxa 2, 3, 4, and 6 (table lC[i]). We find that S,, is 
the smallest S, and that Sz6 is smallest in the set { S2,+, 
&, Sz6, &}, so taxon 6 is chosen as the leading taxon 
at this stage. We combine 6 and 4 into a composite taxon 
(called taxon 7), because taxon 4 is first in the list of 
potential neighbors. At this stage, there are only three 
unclustered taxa (2, 3, and 7) that can be connected only 
in one way. This is in fact the NJ tree but is different 
from the correct tree (fig. 3A). In any case, this is a 
temporary ME tree and the search proceeds further. 

In figure 3C[i], we clustered the leading taxon 6 
with 4, but there are two other potential neighbors of 
taxon 6, namely 2 and 3. Pairing 6 with 2, we obtained 
the tree in figure 3C[ii], and pairing 6 with 3 we ob- 
tained the tree in figure 3C[iii]. Both of these trees have 
a higher S value than the NJ tree. 

Until now, we have examined all trees that were 
generated by the choice of taxon 1 as a potential neigh- 
bor for leading taxon 5 in the first step of the taxon 
pairing (fig. 3B and c). Next, we combine taxa 5 and 4 
into a composite taxon 6 (fig. 30). From the set of taxa 
1, 2, 3, and 6 we again select a leading taxon (taxon 1 
in this case; table lC[ii]) and rank its potential neighbors 
in ascending order of their S, values. We pair taxa 1 and 
2 and obtain the tree in figure 3D[i]. This tree has a 
smaller S than the NJ tree, so it becomes our new tem- 
porary ME tree. This tree is also identical with the true 
tree. Furthermore, the pairs (1, 6) and (1, 3) result in 
trees in figure 3D[ii] and [iii] that are more similar to 
the true tree than the NJ tree in terms of topology. 

In a similar fashion, we combine taxon 5 with 3 
and examine all possible resultant trees. We also com- 
bine taxon 5 with 2 and examine all possible trees (not 
shown). At the end, we would have examined 12 trees 
and found that the tree in figure 3D[i] is the ME tree. 

Computationally Efficient Search Strategies 
Strategies to Restrict the Tree Space Searched 

As mentioned earlier, the full search using the step- 
wise algorithm will examine (m - 1)!/2 distinct topol- 
ogies. Even though this number is considerably smaller 
than the number of all possible topologies (table 2), it 
increases rapidly with increasing number of taxa in the 
data set. There are many simple ways to reject unlikely 
topologies without examining them. Two of them are as 
follows. 

First, if the S, for pairing the leading taxon with 
one of its potential neighbors is considerably larger than 
the smallest S, value in the search step (say, S,,), this 
pair is unlikely to lead to a tree with a smaller S. There- 
fore, we may ignore all the pairs that show S, higher 
than (1 + p)S,,. We call p a proportional search factor. 
In the following, we show the results of computer sim- 
ulations with and without using this search strategy. 
(The values of S, and S,, do not include the constant 
T/(m - 2) as mentioned earlier.) It is also possible to 
ignore the pairs for which S, > (S,,,, - Su,min)p, but 
this and other similar possibilities are not pursued in this 
paper. 

Second, if some of the pairwise distances between 
a combined taxon and the other taxa become negative, 
we may ignore the search paths that are generated from 
these taxon pairs, since the actual branch lengths are not 
very likely to be less than 0. Of course, negative pair- 
wise distances may occur even for correct taxon pairs if 
the corresponding branches are very short or if the es- 
timates of distances have large sampling errors. In this 
case, in place of 0, we may use a small negative value 
as a threshold cutoff. 

Fast Method for Computing Ordinary Least Squares 
Estimates of the S Value 

When searching for the ME tree, the computation 
of the OLS estimates of S values for each tree indepen- 
dently would require a large amount of computational 
time and this strategy is not practical for even moder- 
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Potential neighbors: 1,4,3,2 

Leading taxon sekcted: 6 
Potential neighbors: 4,2,3 
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FIG. 3.-Application of the new algorithm to the distance matrix in table 1A that was generated by computer simulation using the tree in 
A; a = 0.06, nucleotide sequence length = 500. S is the sum of branch lengths. Only two of four paths leading from B are shown. 

ately large data sets (m > 10). For algorithms in which 
the successive trees examined are different from each 
other in only a few branch rearrangements (e.g., the 
stepwise algorithm and Rzhetsky and Nei [ 19921 algo- 
rithm), the S values can be computed efficiently by not- 
ing that the OLS estimate of any interior (or exterior) 
branch length of a tree depends only on (1) the numbers 
of taxa in the four (or three) clusters of taxa connected 
to this branch and (2) the intercluster distances among 
these four (or three) groups (Rzhetsky, Kumar, and Nei 
1995). So, as long as the taxa in each cluster remain the 
same in a given topology (the branching orders of taxa 
within each cluster are free to change), the branch length 
need not be re-estimated. By implementing a strategy 
that examines only the branches that have been dis- 
turbed from the time when the OLS estimates were last 
computed, the time required to search for the ME tree 
using OLS estimates of S is improved tremendously (fig. 
4; compare OLS and FastOLS curves). 

ME Criterion Based on a Simple Method of 
Estimating Branch Lengths 

Theoretically, the S values obtained by using the 
OLS method are required for comparing different tree 
topologies (Rzhetsky and Nei 1993). However, in the 
present algorithm, the computation of the OLS estimate 
of a branch length requires additional O(m*) operations 

Table 2 
Number of Different Topologies Needed to be Examined 

No. of 
Taxa 

4 . . . . . . . 
5 . . . . . . . 
6 
12.:::::: 
100 . . . . . 

NE NN NA 

- 3 3 
15 12 - 

105 60 20 
108.8 107.3 -350 
10’82 10’55 - 

NoTE.-N~ is the number needed for exhaustive search, N, is the maximum 

number with the new algorithm, and N, is the average number needed to be 

examined in the computer simulation results reported in this paper. 

as compared to the Fitch and Margoliash (FM; 1967) 
method used for estimating branch lengths in the NJ 
method, which requires only 0( 1) more operations (see 
equation 6 in Saitou and Nei 1987). Thus the search for 
the ME tree can be speeded up considerably by using 
the FM method of estimating branch lengths (fig. 4; 
compare FM to OLS and FastOLS). However, the effect 
of this approach on the efficiency of the ME method in 
recovering the correct tree needs to be examined in the 
computer simulation. 

Computer Simulation 

We considered four basic model trees: two con- 
stant-rate and two varying rates (among lineages) trees, 
each consisting of six taxa (fig. 5A-D; Saitou and Im- 
anishi 1989). We then derived six composite 12-taxon 
trees: four consisting of two copies of the same tree (fig. 
SAA-DD) and two consisting of one copy each of the 
two different trees in the same rate class (fig. 5AB, CD). 
Nucleotide sequences of length 300, 600, and 1,200 nu- 
cleotides and overall maximum pairwise divergences of 
about 0.1 (low) and 1 .O (high) substitutions per site were 
considered in the computer simulation. 

The scheme of computer simulation used for all 
model trees is as follows. First, an ancestral sequence 
of a given number of nucleotides was generated with 
the assumption that all four nucleotides occur in equal 
frequency. This sequence was assumed to evolve ac- 
cording to a predetermined branching pattern of the 
model tree. The descendent sequence for a given branch 
was obtained by introducing random nucleotide substi- 
tutions in its immediate ancestral sequence. These ran- 
dom nucleotide substitutions were introduced following 
a Poisson distribution with the mean equal to the ex- 
pected branch length. In this way, we obtained the se- 
quence data for all terminal taxa in the model tree. The 
pairwise distances for the sets of sequences generated 
in this manner were then obtained (Jukes and Cantor 
1969). This procedure was repeated to generate 500 rep- 
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FIG. 4.-Comparison of the time required to complete search for the ME tree in 200 simulation replications for 12-taxon model trees (fig. 
5) by three different methods of computing S values based on the estimates of branch lengths by ordinary least squares (OLS), optimized OLS 
(FastOLS), and Fitch and Margoliash (FM) methods. On abscissa, the name of the tree from figure 5, the number of nucleotides, and the 
evolutionary divergence considered in the simulation are shown. The number of trees examined per replication is shown with dotted lines. All 
results are from proportional search with a 10% search factor; simulations were conducted on an IBM PC 486/66 MHz computer. 

licate data sets in each case of simulation, unless oth- 
erwise mentioned. 

Model Trees and Realized Trees 

In the study of reconstruction of phylogenetic trees 
by computer simulation, it is important to distinguish 
between the model tree and the realized tree. The model 
tree is the tree with all branches expressed in terms of 
expected number of nucleotide substitutions per site, 
whereas the realized tree is the one with branch lengths 
equal to the actual number of substitutions per site (Nei 
1987). This difference arises because nucleotide substi- 
tutions occur stochastically, and, thus, the realized num- 
ber of substitutions for a branch in a computer simula- 
tion may be different from the expected number of sub- 
stitutions per sequence when the expected number of 

(4 (‘w (W 

(DW 

E b 

L!!? b 

FIG. 5.-The model trees used for simulation. Each interior 
branch is one unit long (a for constant and b for variable-rate trees) 
and the length of external branches are given in multiples of a or b. 
Low divergence refers to Q = 0.00625, b = 0.01 (maximum pairwise 
divergence of -0.1 substitutions per site) and high divergence refers 
to a = 0.0625, b = 0.05 (maximum pairwise divergence of -1.0 
substitutions per site). 

substitutions per site (x) multiplied by the number of 
sites (n) is small. 

For example, in the model tree A in figure 5, x+z 
= 0.00625 X 300 = 1.8 for the case of small divergence 
and the small number of nucleotides. Since the number 
of substitutions per sequence (N) follows the Poisson 
distribution with mean and variance equal to 1.8, it var- 
ies substantially among different replications of the sim- 
ulation. Furthermore, N will be 0 with a probability of 
e-l.* = 0.165. In tree A, there are three such short in- 
terior branches. Therefore, the probability that at least 
one of the three interior branches has N = 0 is 1 - (1 
- 0.165)3 = 0.4 18. This indicates that with a probability 
of 0.418, the realized tree is expected to be a multifur- 
eating tree and its topology is different from that of the 
model tree (table 3; PR+,). 

Table 3 
Efficiency of the NJ Method in Recovering Model and 
Realized Trees 

300 NUCLEOTIDES 600 NUCLEOTIDES 

MODEL PRZM PNJZM PNJ=R pR=M PNJ=M pNJ=R 

A . . . . . 59 56 78 93 82 87 
B . . . . . 70 61 80 95 82 85 
C 87 
0::::: 84 

75 81 99 94 95 
73 83 99 94 95 

AA . . . 23 20 57 82 66 72 
BB.... 2 19 53 86 59 67 
AB . . . 27 20 52 83 60 69 
CC.. . . 64 49 65 97 85 88 
DD . . . 66 50 66 98 90 91 
CD . . . 64 48 63 97 87 88 

NOTE.-Proportion of replications in which the topology of the realized tree 

is the same as that of the model tree (PRZM), the topology of the NJ tree is same 

as that of the model tree (P,,=,), and the topology of the NJ tree is same as 
that of the realized tree (PNJCR), for the case of low divergence (-0.1 substitu- 
tions per site). 
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Table 4 
Efficiency of Identifying the Correct Leading Taxa in Every Step of Taxon Pairing with 
300, 600, and 1,200 Nucleotides 

p, (P,‘) PII 0%‘) pm (Pm’) 
MODEL 300 600 1,200 300 600 1,200 300 600 1,200 

Low divergence: 
A . . . 99 (100) 100 100 93 (99) 99 100 56 (78) 82 (87) 96 
B . . . 99 (100) 100 100 96 (89) 99 (96) 100 61 (81) 82 (85) 96 
C 
D ::: 

100 100 100 99(100) 100 100 75 (81) 94 (95) 99 
100 100 100 98 (99) 99(100) 100 73 (93) 94 (95) 99 

AA . . 97 (99) 99 (100) 100 70 (95) 95 (98) 100 20 (57) 66 (72) 93 
BB . . 96 (98) 100 100 69 (94) 96 (97) 99 19 (54) 60 (67) 93 
AB . . 96 (99) 99 100 72 (96) 92 (96) 100 20 (52) 60 (69) 92 
cc . . 99 100 100 91 (96) 99 100 49 (65) 85 (88) 99 
DD . . 99 100 100 91 (96) 98 (99) 99 50 (66) 90 (91) 99 
CD . . 99 100 100 88 (95) 99 100 48 (63) 87 (88) 98 

High divergence: 
A . . . 99 100 100 89 96 100 45 66 95 
B . . . 99 100 100 93 98 100 44 71 93 
C 
D ::: 

99 100 100 98 100 100 65 88 98 
100 100 100 98 100 100 66 88 99 

AA . . 93 (98)a 99 100 71 (89)” 93 99 14 (28)” 47 90 
BB . . 96 (98)” 99 100 67 (76)” 91 99 9 (14) 39 87 
AB . . 92 (98)a 99 100 66 (81)” 91 100 11 (20)a 41 90 
cc . . 99 100 100 94 98 100 48 81 97 
DD . . 99 100 100 94 99 100 46 85 97 
CD . . 98 100 100 93 98 100 47 76 99 

NOTE.-PI: proportion of replicates in which the selected pair contained at least one leading taxon; P,,: correct leading 

taxon was selected; P,,,: the taxa in the selected pair were each other’s neighbors. Values in the parentheses were obtained 

by using the realized tree as the correct tree (P,‘, PII’, P,,,‘; shown if different). 

a With p distance. 

Most tree-building methods are intended to esti- 
mate realized trees rather than the model trees. There- 
fore, it is important to compare the topology of a re- 
constructed tree with that of the realized tree. If we com- 
pare the reconstructed tree with the model tree, we may 
underestimate the efficiency of a tree-building method 
in recovering the correct tree. Table 3 shows the results 
of comparison of the reconstructed tree by the NJ meth- 
od with the model tree and realized tree for the case of 
n = 300. It is clear that the reconstructed tree agrees 
with the realized tree more often than with the model 
tree. For this reason, we will also consider the compar- 
ison of reconstructed trees with realized trees in this 
paper. Of course, this problem becomes trivial when x-n 
is large. 

Efficiency of Finding Leading Taxa 

In the new algorithm, the identification of correct 
leading taxa in different steps of taxon pairing is critical, 
because otherwise the correct tree will not be included 
in the tree space searched. Since a leading taxon is se- 
lected from the pair of taxa with smallest S, in each 
step, the efficiency of finding a correct leading taxon 
depends directly on the likelihood that the selected pair 
contains at least one taxon that has a neighbor in the 
correct tree (Pi) and that the correct taxon is chosen as 
a leading taxon from this pair (P,,). Table 4 shows how 
often these conditions are met in every step of taxon 
pairing. Since realized trees may contain multifurcations 
in some cases (table 3), the values of Pi and Pii for the 

case when the realized trees were used for comparison 
(Pi’ and Pit’, respectively) are also shown in this table. 

Table 4 shows that the selected pair almost always 
contained at least one taxon that had a potential neigh- 
bor in the correct tree (a leading taxon), irrespective of 
the sequence length and the magnitude of evolutionary 
divergence studied. The approach adopted for choosing 
a leading taxon from the selected pair also appears to 
be efficient, except for the case of small number of nu- 
cleotides and low divergences where the realized tree 
often differ contain zero-length branches (Pi’ > P, and 
Pii’ > Pii). Selection of correct leading taxa also appears 
to be difficult for constant rate trees AA, BB, and AB 
(fig. 5) for the case of small number of nucleotides and 
high divergence. However, the use of proportion of nu- 
cleotide differences (p distance), instead of the Jukes- 
Cantor (1969) distance (d), improves the values of Pi 
and Pi, significantly, even though the p distance is not 
an unbiased estimate of the evolutionary divergence (see 
also Rzhetsky and Nei 1993). It appears that the pres- 
ence of many large pairwise distances (d I 1) whose 
estimates have rather large variances, whenever the se- 
quences are short, affects the ability of the new algo- 
rithm to select correct leading taxon. For instance, in the 
model tree given in figure 5AA, the variance of the larg- 
est expected d (= 1.125 substitutions per sites) is about 
20 times that of the variance of the corresponding p 
distance (=0.582). For the case of n = 300, the estimate 
of d = 1.125 has a standard error of kO.127. Thus, d 
= 1.0 (second largest expected distance in tree AA) lies 



590 Kumar 

Table 5 
Efficiency of the ME Method in Recovering Model and 
Realized Trees 

300 nucleotides 

(A) CD q highd 

DD n lewd 

cc 

AB 

BB L AA 

D 

C 

B 

A 

100 75 50 25 0 0.0 1.0 2.0 

Low DIVERGENCE HIGH DIVERGENCE 

TREE 300 600 1,200 300 600 1,200 

A . . . . 
B . . . . 
C 
D :::: 
AA . . . 
BB . . . 
AB . . . 

cc . . . 
DD . . . 
CD . . . 

56 (78) 
61 (81) 
74 (81) 
73 (83) 
20 (56) 
20 (54) 
20 (53) 
49 (63) 
52 (68) 
50 (65) 

83 (87) 96 45 65 95 
82 (85) 96 44 72 93 
94 (95) 99 66 88 98 
94 (95) 99 66 88 99 
65 (72) 93 15 42 89 
59 (67) 93 9 38 86 
60 (68) 92 11 38 89 
86 (88) 99 48 81 97 
92 (92) 99 53 89 98 
87 (89) 98 52 79 98 

No=.-Proportion of replicates where the ME tree was identical with re- 

alized tree are shown in the parenthesis (if different). Saitou and Nei’s method 

(500 replications) and the OLS method (200 replications) gave almost identical 

results. 

within one standard error of d = 1.125, and these similar 
magnitudes of pairwise distances with large sampling 
errors may obscure the phylogenetic information in the 
present case. At any rate, since the S value of the correct 
tree is expected to be the smallest, Pi, (and Pii’) repre- 
sents the upper bound on the efficiency of the new al- 
gorithm in recovering the correct tree in our simulations, 
which are quite high. 

The proportion of replications in which the taxa in 
the selected pair are each other’s neighbors in every step 
of taxon addition (Pii1 and Pin’) are also given in table 
4. Pin is also the efficiency of the NJ tree in recovering 
the true tree. Clearly, the NJ method is not expected to 
perform very well with a large number of sequences 
(e.g., 12 in the present case) because both taxa in the 
selected pair are rarely neighbors if sequence lengths are 
short or only moderately long. Pi, and Pn’ are substan- 
tially larger than Pi,, and PnI’, respectively, in most 
cases. 

Efficiency of the ME Method in Finding the 
Correct Tree 

Number of Trees 

600 nucleotides 

(W 

i 
100 75 50 25 0 

Number of Trees 

% difference in S 

CD 

DD 

cc 

AB 

BB 

AA 

D 

C 

B 

A 

0.0 1.0 2.0 

% difference in S 

FIG. 6.-The largest percent difference between S, and S,, that 

is needed to include model trees in the set of equally likely trees in 

>90% replications, whenever the model tree was examined in the 
search but was different from the NJ tree. Mean number of trees for 
whrch S - S,, 5 S, - S,, or S < SNJ are also shown. 

expect to find many bifurcating topologies for which the 
S values are quite similar (or statistically equal). To ex- 

close to that of the ME tree. For the case of 300 nucle- 

amine if this is the case, we determined the percent dif- 
ference in the S values of the NJ tree (SN,) and the model 

otides and low divergence, we find that the model tree 

tree (S,) whenever the model tree did not have the 
smallest S value. We also counted the number of trees 
examined in the search for which the difference in their 
S values from the SN, was less than or equal to the dif- 
ference between the S values of the NJ tree and the 
model trees, i.e., S - SNJ 5 S, - SNJ or S < SN,. The 
NJ tree was used as a reference because it can always 
be obtained and because its S value is expected to be 

3 and 5), and, in both cases, as the number of taxa in 

The efficiency of the ME method in recovering the 

the model tree increases the probability of recovering 

correct tree is similar to that of the NJ method (tables 

the correct tree decreases. Furthermore, the efficiency of 
the ME method appears to be slightly lower for high 
divergence as compared to the low divergence cases. For 
model trees consisting of six taxa (fig. 5A-D), these ef- 
ficiencies are identical to those reported by Saitou and 
Imanishi (1989) and by Rzhetsky and Nei (1992), who 
used the same model trees in their simulations. 

was usually present within l%-2% (S value) neighbor- 
hood of the NJ tree (fig. 6A); this much difference in S 
is generally not statistically significant (e.g., by Rzhet- 
sky and Nei 1992 test). This also holds for the high- 
divergence case for sequences of length 300. With 600 
nucleotides (fig. 6B), the model tree is found within 1% 
neighborhood of SN, for the low- as well as the high- 
divergence case. For longer sequences, we found that 
the NJ, the ME, and the correct trees were almost always 
identical in topology. Although the correct tree is included in the tree 

space searched using the new algorithm (table 4; Pii), 
the probability that the ME tree is the correct tree is 
considerably lower (table 5). Thus, the correct tree often 
does not have the smallest S value. This may be due to 
sampling errors associated with the estimation of pair- 
wise distances and the presence of zero-length interior 
branches in the realized tree. In both these scenarios, we 

Clearly, the mean number of trees examined for 
which S - SNJ 5 SM - SNJ (or S < SN,) is the largest 
for the case of shortest sequence lengths and high di- 
vergence (fig. 6). As expected, these numbers are small- 
er for the case of 600 nucleotides as compared to that 
of 300 nucleotides. This is because of fewer interior 
branches with zero-length in the realized trees (see table 
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3) and because the pairwise distances are estimated with 
smaller variances as the sequence length increases or 
when the pairwise distances are small. For longer se- 
quences, these errors are further reduced, and the to- 
pology of the ME tree was almost always identical with 
that of the model tree. 

For six-taxon trees in figure 5A-D, Rzhetsky and 
Nei’s (1992) results showed that the correct tree was 
almost always present within two topological rearrange- 
ments from the NJ tree and that the average topological 
distance (dT; Robinson and Foulds 1981) was about 2.3. 
Therefore, search for the ME tree in dT 5 4 neighbor- 
hood of the NJ tree is likely to contain the correct tree 
most of the time. However, we find that the average dT 
between the NJ tree and the correct tree is more than 4 
in the case of 300 nucleotides for 12-taxa trees (results 
not shown). Therefore, d-,- > 4 neighborhood of the NJ 
tree is also needed to be searched if Rzhetsky and Nei’s 
(1992) method is used. With a larger number of taxa 
and/or slower evolving sequences, the average dT be- 
tween the NJ and the correct tree is likely to increase 
further. In such cases, the search for the ME tree using 
the present algorithm or improved methods suggested 
by Rzhetsky and Nei (1994) would be more appropriate. 

Computational Efficiency of the New Algorithm 
Computationally Efficient Alternatives to the Full 
Search 

In simulations with model trees A-D (fig. 5), we 
examined all possible potential neighbors of the leading 
taxa in each step of taxon pairing. We then repeated 
these simulations by employing the proportional search 
factors for restricting the tree space searched. The results 
obtained in this way were almost identical with those 
obtained with the full search, but the numbers of trees 
examined per replication (and the time taken) were up 
to two times smaller when the proportional search factor 
of 10% was used (results not shown). 

In simulations with 12-taxa model trees, the full 
search was not computationally feasible; it required the 
examination of about 20 million trees in each of the 
6.2.3.500 simulation replications (model trees X rates X 
lengths X replications). Instead, we used search factors 
of 10% and 20% in the simulation study. The results 
obtained from these experiments were almost identical. 
However, the number of trees examined per replication 
in the case of 20% search factor was lo-30 times larger 
than those in the 10% search. As expected, the number 
of trees examined in the search decreased with increas- 
ing sequence length (fig. 4). A large number of topol- 
ogies were examined when 10% search factor was used 
for constant-rate trees AA, BB, and AB with a small 
number of nucleotides and high divergence. This is be- 
cause many topologies exist that are statistically indis- 
tinguishable from the ME tree in their S values (fig. 6A). 

Use of a Simple Method for Estimating Branch 
Lengths 

As mentioned earlier, the computation of branch 
lengths by the Fitch and Margoliash (1967) method is 

High d 

. 

25 50 

FM 

75 25 50 

FM 

15 100 

FIG. 7.-The proportions of all replicates in which the S value 
for NJ tree (S,,) was smaller than that for the model tree (SM; 6 < 0), 
where S values were computed from branch lengths estimated by the 
FM and OLS methods. The proportions of all replications in which 
the NJ tree had larger S value than the model tree (6 > 0) are also 
shown for each case. A = 300 nucleotides, 0 = 600 nucleotides. 

much faster than that by the OLS method. However, the 
S values for a tree obtained using the branch lengths 
estimated by FM and OLS methods may be different 
and, therefore, the ME tree found using these two meth- 
ods of estimating S values may not be identical in to- 
pology. This may adversely affect the efficiency of the 
ME method in recovering the correct tree. Clearly, the 
ME criterion based on the FM estimates of S values is 
expected to perform with the same efficiency as the OLS 
method only if the sign of the difference of S values for 
any given tree and the correct tree is the same for the 
FM and OLS methods. In this case, the use of either 
method would result in the selection of the same tree as 
the ME tree. To study this problem, we used the NJ tree 
as a reference, because the ME tree is not known be- 
forehand, and computed the proportion of all replicates 
in which the estimate of S computed by OLS and FM 
methods were smaller for the NJ tree than for the model 
tree (8 < 0) whenever the NJ and model trees were not 
identical. The NJ tree was used as a reference because 
its S value is generally very close to that of the ME tree, 
which would enable us to detect even small differences 
in efficiencies of FM and OLS methods. The results 
from FM and OLS estimation methods were highly cor- 
related for the cases of low as well as high divergence 
(fig. 7). Furthermore, the efficiency of the ME method 
with the FM estimates was almost identical to that with 
the OLS estimates, as given in table 5. These observa- 
tions are consistent with the fact that the NJ and ME 
methods of phylogenetic reconstruction have similar 
theoretical bases (Saitou and Nei 1987; Rzhetsky and 
Nei 1992; Gascuel 1994). This observation and the fact 
that the use of the FM method requires only a fraction 
of the time needed in the OLS method suggest that the 
FM method of estimating branch lengths may be useful 
when searching for the ME tree for data sets containing 
a large number of taxa (>20). 

Discussion 

In this paper, we have presented an algorithm that 
searches for an optimal tree heuristically by minimizing 
the sum of branch lengths, which can be computed by 
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ordinary least squares or by the Fitch and Margoliash 
method. Using computer simulations, we have shown 
that the tree space searched almost always contains the 
correct tree, unless the number of nucleotides considered 
is rather small (table 4; Pii). This holds true for both the 
“full-search” and the proportional-search strategies. 
Furthermore, the performance of the ME method in our 
simulations with proportional-search factor for six-taxon 
trees is almost identical to that obtained by Rzhetsky 
and Nei (1992) in their topological distance method. 
However, unlike in their method, the sum of branch 
lengths at different stages of taxon pairing, not the dif- 
ference in topology, is used as the primary criterion for 
generating alternative topologies in our algorithm. Thus, 
the number of trees examined by the stepwise search 
algorithm is influenced by the number of taxa in the 
study, stochastic errors of distance estimates, and the 
instability of the tree. For instance, in a stepwise search 
with a 10% search factor, the largest number of trees 
was examined for the cases in which the efficiency of 
the ME (and NJ) method was lowest in the 12-taxon 
trees (see fig. 4 and table 5). In contrast, the number of 
trees with &- = 2 (or 4) would be the same (or similar 
in magnitude) as long as the number of taxa in the data 
set is equal in the topological distance method (see, 
however, Rzhetsky and Nei 1994). In the “bootstrap” 
method (Rzhetsky and Nei 1994), the number of trees 
examined will depend directly on the number of repli- 
cations conducted. 

The stepwise nature of the new algorithm allows 
us to reject many partial trees (and thus search paths) 
that would inevitably lead to trees with larger S than the 
temporary ME tree. This optimization and the reduction 
of the computational time overhead attained by using 
FastOLS or FM methods for estimating S values make 
the search for the ME tree practical for large data sets. 
In fact, some of these optimizations can easily be in- 
corporated into the Rzhetsky and Nei (1992, 1994) 
methods to improve their efficiency. At this moment, a 
tentative comparison of the computational efficiency of 
the Rzhetsky and Nei (1994) methods with that of the 
new algorithm would be similar to the comparison of 
OLS and FastOLS (or FM) curves in figure 4, if we 
assume that both methods examined equal number of 
trees. 

As shown in table 5, the probability that the small- 
est tree found is identical to the correct tree in topology 
is rather low even for 12-taxon trees when the evolu- 
tionary distances are estimated with large sampling er- 
rors. This is also the case for the NJ method and may 
be true for other tree-making methods whose perfor- 
mance usually is equal to or worse than that of the NJ 
method (Nei 1991). In an empirical study of the relative 
efficiency of different tree-making methods, it was 
found that the performance of NJ and ME methods were 
similar in reconstructing a known tree of 11 vertebrate 
species for different mitochondrial protein-coding genes 
(Russo, Takezaki, and Nei 1996). In addition, the to- 
pological distances between the correct tree and the ME 
and NJ trees were also almost equal in their study. Thus, 

our simulation results agree closely with those in Russo, 
Takezaki, and Nei’s empirical study. 

Figure 6 shows that whenever the NJ tree (or ME 
tree) is not the correct tree, the S value of the correct 
tree is only l%-2% different from that of the NJ tree 
(fig. 6; table 5 in Rzhetsky and Nei 1992) and that many 
trees with similar S values exist. Thus, the new algo- 
rithm can be used with a 10% or 20% search factor to 
identify most (or all) of the trees that are plausible under 
the ME criterion. These trees can then be compared with 
other trees in the set or some given tree by testing the 
statistical significance of the difference in their S values 
using the OLS method (Rzhetsky and Nei 1992, 1994). 
It is also possible to build a confidence set of trees (Na- 
vidi, Churchil, and von Haeseler 1991) such that the 
difference in S values between the trees included in this 
set and the minimum tree (or the NJ tree) is not more 
than a given cut-off value (specified as absolute differ- 
ence or in units of standard deviations). For data sets 
with many sequences, we could identify clusters of se- 
quences that form monophyletic groups in all the equal- 
ly good trees and then conduct four-cluster analysis 
(Rzhetsky, Kumar, and Nei 1995) to ascertain a pre- 
ferred branching order. 

We have explored the efficiency of our algorithm 
using simulations with only a few model trees. In some 
limited simulations with model trees consisting of 24 
sequences, we found results similar to the ones present- 
ed above. In the future, we plan to conduct extensive 
simulation analyses to further evaluate the usefulness of 
the new algorithm. 

Acknowledgments 

I thank Drs. Andrey Rzhetsky and Ziheng Yang for 
valuable suggestions on an earlier draft of this manu- 
script, and Dr. Masatoshi Nei for motivating this work. 
This research was supported by grants from the National 
Institute of Health and the National Science Foundation 
to M.N. A simple DOS-based computer program is 
available on request from the author. In the future, this 
method will be made available in a more user-friendly 
computational environment in the MEGA program 
package (Kumar, Tamura, and Nei 1993). 

Appendix: Selecting the Leading Taxon 

If S,, is the smallest S value in a given step of taxon 
pairing, there are four different possibilities regarding 
the neighbor status of a and b in the “true” tree. (i) a 
and b are immediate neighbors (e.g., 1 and 2 in fig. l), 
(ii) neither a nor b has a neighbor (e.g., 3 and 4), (iii) 
both a and b have neighbors, but they are not each oth- 
er’s neighbors (e.g., 1 and 6), (iv) a has a neighbor, b 
does not (e.g., 1 and 3) and vice versa. In case (i) choice 
of a leading taxon is trivial, whereas in case (ii) the 
choice of any taxon from the pair would result in an 
error. We ignore the possibility that neither a nor b has 
a neighbor, an assumption that does not seem to affect 
the results seriously (table 4; Pi). Now, either a or b has 
a neighbor. If a has a neighbor u in the correct tree, we 
would expect S,, to be the smallest in the set { Sia, Sib; 
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where i, j # a, b} (Saitou and Nei 1987). On the other 
hand, if b has a neighbor v, Svb is expected to be the 
smallest in the set { Sia, Sjb; where i, j # a, b}. Therefore, 
to select a leading taxon from the pair (a, b), we find 
the smallest S, from the set { Si,, Sib; where i, j # a, b}. 
If the minimum S, is found in the set (Sia’S), it indicates 
that a is the leading taxon, otherwise b is chosen. In the 
following, we present a simple application of the above 
argument (not a proof) for four- and five-taxon cases. 

Four-taxon Case 

Because every taxon in a tree of four taxa has a 
true neighbor, the leading taxon chosen also has a true 
neighbor. Therefore, the new algorithm will always find 
the ME tree. 

Five-taxon Case 

In a bifurcating tree consisting of five taxa, there 
is only one unlabeled tree (fig. 3A). In the first step of 
search, the smallest S, can be either from the set X = 

{Si2, &, Sr4, G, &, &1 or set Y = &, &, %, 
&}. If the smallest S, (S,,) is from set X, either taxon 
can be chosen as a leading taxon since both taxa in 
every pair have neighbors. However, if the S,, is from 
the set Y, in which taxon 3 does not have a neighbor, 
we examine Sia (i # a, b) and Sjb 0’ # a, b). Let US 
assume that Si3 is the smallest S,. We find the minimum 
S from the set of S, values { Si2, Sr4, Si5, SZ3, &, &}. 
Since the two branches that are connected to the interior 
node where the branch leading to taxon 3 joins are non- 
zero, Si2 is expected to be the smallest of all the S values 
in this set (Saitou and Nei 1987). In this case, taxon 1 
is common to both Sr3 and Sr2, and is, therefore, cor- 
rectly chosen as the leading taxon. This argument ap- 
plies to other pairs in Y because they are equivalent in 
terms of their position on the tree in figure 3A. Obvi- 
ously, if we combine two taxa correctly in a five-taxon 
tree, we are left with a four-taxon tree for which the 
minimum tree is guaranteed to be found with the present 
algorithm. 

Similar argument can be applied to a six- or higher 
taxon tree but the explanation may be more complicated 
depending on the number of unlabeled trees for the giv- 
en set of taxa. 
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