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Abstract. The neighbor-joining (NJ) method is widely
used in reconstructing large phylogenies because of its
computational speed and the high accuracy in phyloge-
netic inference as revealed in computer simulation stud-
ies. However, most computer simulation studies have
quantified the overall performance of the NJ method in
terms of the percentage of branches inferred correctly or
the percentage of replications in which the correct tree is
recovered. We have examined other aspects of its per-
formance, such as the relative efficiency in correctly re-
constructing shallow (close to the external branches of
the tree) and deep branches in large phylogenies; the
contribution of zero-length branches to topological errors
in the inferred trees; and the influence of increasing the
tree size (number of sequences), evolutionary rate, and
sequence length on the efficiency of the NJ method. Re-
sults show that the correct reconstruction of deep
branches is no more difficult than that of shallower
branches. The presence of zero-length branches in real-
ized trees contributes significantly to the overall error
observed in the NJ tree, especially in large phylogenies
or slowly evolving genes. Furthermore, the tree size does
not influence the efficiency of NJ in reconstructing shal-
low and deep branches in our simulation study, in which
the evolutionary process is assumed to be homogeneous
in all lineages.

Key words: Phylogenetic inference — Neighbor-
joining method — Large phylogenies — Zero-length
branches — Accuracy — Deep versus shallow branches

Introduction

The scope of molecular phylogenetic studies for infer-
ring short- and long-term evolutionary histories of or-
ganisms and multigene families has expanded greatly
beyond molecular systematics due to an explosive
growth in the number of sequences available in genetic
databases (e.g., Balczarek et al. 1997; Duret et al. 1994;
Higgins et al. 1996; Kumar et al. 1996; Kumar and
Rzhetsky 1996; Li 1997; Nei and Kumar 2000). With
this growth, data sets for molecular phylogenetics have
increased in terms of the number of sequences being
analyzed, and the neighbor joining (NJ) method (Saitou
and Nei 1987) has become one of the most commonly
used methods. It is computationally efficient, has desir-
able statistical properties, and is known to produce trees
as accurate as, or better than, more computationally in-
tensive and global searching methods (Charleston et al.
1993; Gascuel 1994, 1997; Kuhner and Felsenstein 1994;
Nei and Kumar 2000; Nei et al. 1998; Rzhetsky and Nei
1992; Tateno et al. 1994).

Computer simulations provide a convenient way to
assess the efficiency of tree-making methods (reviewed
by Nei and Kumar 2000). For the NJ method, most of
these computer simulation studies have evaluated its
overall performance in inferring phylogenetic trees by
either calculating its performance in inferring the true
tree topology completely or estimating the proportion of
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the correct interior branches in the inferred tree (e.g.,
Hillis 1996; Kim 1998; Nei et al. 1998; Strimmer and
von Haeseler 1996). However, a number of specific
questions regarding the performance of the NJ method
remain unexplored. Are shallow branches (branches
closer to the tips of the tree) easier to reconstruct than
deeper branches? In this case, shallow branches corre-
spond to more recent evolutionary divergences, whereas
deep branches establish evolutionary relationships
among groups that have diverged earlier in the evolu-
tionary history. How does an increase in the number of
sequences affect the correct inference of shallow and
deep branches? What are the relative contributions of the
evolutionary rate and sequence length on the efficiency
of the NJ method? How long should an interior branch
be, in terms of the total number of substitutions, in order
to be reconstructed correctly?

Another common feature of previous simulation stud-
ies has been that often no distinction was made between
expected and realized trees. An expected tree is one in
which all branch lengths are expressed in terms of the
expected number of nucleotide (or amino acid) substitu-
tions per site, whether or not the evolutionary rate is
constant among lineages. A realized tree, on the other
hand, has branch lengths equal to the actual number of
substitutions per site (Kumar 1996; Nei 1987). The same
branch in the realized and expected trees differ in length
because evolution is a stochastic process in which the
realized tree is one “realization” of the expected tree. The

NJ method uses the extant sequences to infer the realized
tree rather than the expected tree (Nei and Kumar 2000).
Note that the realized tree is not a mere “sample” of the
expected tree. Rather, it is an actual quantity to be esti-
mated because the sequences in a real data set are unique
products of the evolutionary process which occurs only
once for a given gene.

When the expected number of substitutions on a
branch is small, the probability that one or more realized
branch lengths is equal to zero is high (Kumar 1996).
This suggests that for closely related sequences (slowly
evolving genes or population level divergence), the to-
pology of the realized tree may contain multifurcations.
Therefore, the performance of all tree-making methods
should be evaluated by comparing the inferred tree to the
realized tree rather than the expected tree (e.g., Kumar
1996; Tateno 1990). What is the difference in the effi-
ciencies of the NJ method in reconstructing the realized
versus the expected trees?

It is worth noting that the expected tree can also have
branches with expected length equal to zero simply be-
cause the product of the evolutionary time elapsed, the
length of the gene, and its rate of evolution is practically
zero. In such cases, the topology of the expected tree is
still bifurcating, but some interior branches are of zero
expected length (e.g., Saitou 1996). For simplicity, we
have assumed that all interior branches in the model tree
have expected branch lengths$1 per sequence.

In this paper, we have taken the first step to address

Fig. 1. A–D. The four basic model topologies used in this study, with the relative branch lengths shown. Composite trees were constructed by
stacking these four trees to giveAx, Bx, Cx, andDx trees. For example,E, F, andG are composite trees consisting of twoA trees (A2), two C trees
(C2), and eightD trees (D8), respectively. All interior branches in the stacked trees have equal relative lengths.
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the questions raised above. We discuss the results ob-
tained in relation to the presumed increase in complexity
of phylogenetic reconstruction with increasing number
of sequences.

Computer Simulations

Model Trees.Following Saitou and Imanishi (1989) and Kumar
(1996), we considered four basic six-taxon model trees. These trees are
drawn in an unrooted fashion in Figs. 1A–D to reflect the fact that the
NJ method produces unrooted trees. Previously these model trees have
been drawn with a root (indicated by a filled circle) to specify an
arbitrary starting point in the computer simulation. Using these four
basic trees, we constructed larger composite phylogenies (Fig. 1), as in
Kumar (1996). For instance, Fig. 1E is a composite tree consisting of
two copies of treeA, where one copy has been grafted onto the other.
We refer to topologies generated in this manner asAx trees, wherex
refers to the number of copies in the composite tree. We constructedAx,
Bx, Cx, andDx trees, wherex varied from 1 . . . 10, 16, and 32 (a total
of 48 model trees containing up to 192 taxa). In all of these model trees,
each interior branch was made to be 1 unit long and the lengths of the
external branches are given in multiples of the interior branch length
(Figs. 1A–D).

All expectedinterior branch lengths in a given model tree were kept
equal in magnitude to compare directly the performance of the NJ
method in reconstructing branches at different depths in the tree as a
function of the branch location (depth) alone. The stacked tree structure
of our large phylogenies also allowed us to study the change in per-
formance of the NJ method from small trees to the larger composite
trees. Alternatively, our composite trees can also be viewed as consist-
ing of multiple monophyletic groups, with each group containing the
same number of sequences. This situation is similar to that in multigene
family evolutionary studies, where gene duplication events need to be
inferred and the data are often available for a similar set of model
organisms. While our composite trees are convenient for statistical
comparisons, the situation in real life is obviously more complicated.
Therefore, we also conducted computer simulations using “hybrid”
composite trees that were stacked with trees taken at random from

among the four basic trees (Figs. 1A–D), as well as a much larger,
228-sequence, chloroplastrbcL gene tree (Hillis 1996) containing in-
terior branches of varying expected lengths (Fig. 2) and lacking the
repeated phylogenetic structure found in our composite trees. This
allowed us to evaluate the generality of the results obtained from the
composite trees.

Rates of Evolution and Sequence Length.We conducted computer
simulations using many sequence lengths and rates of evolution. Be-
cause we are comparing the relative performance of the NJ method in
correctly reconstructing small and large phylogenies, we discuss the
evolutionary rate in the context of the lengths of interior branches,
rather than the maximum pairwise distance between sequences, as the
latter depends upon the number of sequences in the data. A low rate of
evolution refers to an interior branch length of 0.00625 substitution/
site. Multiples of this rate (r 4 0.00625) were used for allA–D model
trees as well as the hybrid model trees. ForrbcL trees, we conducted
computer simulations with up to 10-fold rate differences. The sequence
lengths employed were in multiples of 100 sites for all the model trees.

Simulating Evolutionary Change.For the computer simulation, the
starting point was chosen for each tree (marked by the filled circle in
Figs. 1A–D), and for this “root” an ancestral sequence of a given length
was first generated by randomly selecting nucleotides such that the four
nucleotides are expected to occur with equal frequency in the ancestral
sequence. This sequence was evolved by introducing random nucleo-
tide substitutions to generate the immediate descendents. In any given
branch, the actual (realized) number of nucleotide substitutions was
obtained by selecting a random number from a Poisson distribution
with mean equal to the expected number of substitutions (rate × se-
quence length). A given nucleotide was allowed to change to any of the
other three with equal probability, resulting in the Jukes and Cantor
(1969) model of nucleotide substitution. This process was carried out
for all branches moving away from the root, and a set of sequences was
generated at the end of this process. The final set of sequences at the
external nodes was then used to reconstruct their evolutionary relation-
ships using the NJ method. We generated 1000 simulation replicates for
each case, except for the “hybrid” trees, the 96- and 192-taxonA–D
trees and the 228-taxonrbcL trees, where 100 replications were gen-
erated.

Fig. 2. A 228-taxonrbcL tree.
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Definitions. Tree sizerefers to the number of sequences. Aninterior
branchpartitions an unrooted tree into two subtrees, each containing at
least two taxa. Thecluster sizefor a given interior branch is defined as
the minimum of the two subtree sizes. The cluster size thus directly
measures the minimumdepthof a branch in terms of the number of
sequences contained in the smaller of the two subtrees that it defines.
By this definition, the complexity involved in inferring deep branches
is higher than that for shallow branches, because the minimum number
of taxa to be joined in inferring deep branches is larger than that for
shallow branches in the NJ algorithm. Therefore, the depth of a branch
depends only on the subtree sizes rather than the subtree heights in
terms of the number of substitutions. This definition of branch depth is
more relevant to our analysis because the NJ algorithm always clusters
shallow branches before deeper branches, irrespective of the number of
substitutions.

Performance measures.A number of different measures were used
to quantify the performance of the NJ method.

PM represents the proportion of all simulation replicates in which
the topology of the NJ tree is identical to that of the model tree.

PBM is the proportion of all branches of the model tree that are
reconstructed correctly in the NJ tree.PBM 4 [cavg/(m− 3)], wherecavg

is the average number of correctly inferred interior branches of the
model tree in all simulation replications, andm − 3 is the number of
interior branches for an unrooted tree containingm sequences.

P0 is the proportion of branches in the realized tree that receive zero
substitutions (zero length branches).P0 4 [b0,avg/(m− 3)], whereb0,avg

is the average number of zero-length interior branches in the realized
tree, in all the simulation replications.

PBR is the proportion of all non-zero-length branches of the realized
trees that are reconstructed correctly in the NJ tree.PBR 4 c>0,avg/
[(m − 3) − b0,avg], where c>0,avg is the average number of correctly
inferred non-zero-length interior branches in the realized tree, in all
simulation replications.

pB represents the percentage efficiency in correctly estimating
branches of a given depth (in terms of the number of taxa) or length (in
terms of the number of substitutions).pB 4 b/B, whereB is the total
number of occurrences of the desired type of branches (always non-
zero length) in all the simulation replicates, andb is the number of
cases in which that branch was found in the NJ tree.

Results

Accurate Inference of Complete Trees

Table 1 shows the percentage replicates in which the
model tree topology was reconstructed correctly (PM) for
trees containing increasing numbers of sequences and
sequence lengths, withr 4 0.0125. As expected, it is
more difficult to reconstruct trees when they contain
large numbers of sequences or if the sequences are short
(e.g., Kumar 1996; Strimmer and von Haeseler 1996).
This is because allm − 3 interior branches (nontrivial
partitions) need to be reconstructed correctly for correct
inference of the complete tree, which requires selecting
the sole true tree from a large number of possible trees
(Table 2). Longer sequences improve the efficiency of
tree-making methods, partly because the pairwise dis-
tances can be estimated with better accuracy (lower vari-
ance). Table 1 shows slower rates ofPM decline for
larger sequences as the number of sequences increases.
For instance, for 18 sequences,PM is 8% fors4 200 and

96% for s 4 1000. When the number of sequences in-
creases to 192,PM declines to only 46% fors 4 1000.

Influence of Zero-Length Branches on the Efficiency
of NJ

Figure 3 shows the mean number of zero-length branches
per replication for different tree sizes, withr ands fixed
at 0.00625 and 200, respectively. The probability that a
given lineage (interior branch) has experienced zero sub-
stitutions is given bye−b, whereb is the expected branch
length in terms of the total number of substitutions per
sequence. Fors 4 200 andr 4 0.00625,b 4 0.00625
× 200 4 1.25 substitutions. Since all interior branches

Table 1. Percentage replicates in which the complete model tree is
reconstructed correctly (PM) by the NJ methoda

Sequences

Sequence length

200 500 1000

6 57 87 98
12 22 74 96
18 8 63 96
24 3 54 94
30 1 46 93
36 1 39 91
42 0 33 90
48 0 28 89
54 0 25 86
60 0 21 86
96 0 8 79

192 0 0 46

a Each value is the arithmetic mean over all the topologies given in
Figs. 1A–D, withr 4 0.0125.

Table 2. Number of unrooted trees and the corresponding number of
interior branches for the complete and subtree sizes (numbers of se-
quences) in the simulation study

Sequences Unrooted trees Interior branches

4 3 1
5 15 2
6 105 3
7 945 4
8 10,395 5
9 135,135 6

10 2,027,025 7
12 654,729,075 9
18 1017.28 15
24 1026.75 21
30 1036.94 27
36 1047.69 33
42 1058.90 39
48 1070.51 45
54 1082.45 51
60 1094.70 57
96 10173.10 93

192 10407.79 189
228 10502.06 225
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are of equal expected length in our model trees, the ex-
pected proportion of zero-length branches ise−b. This
expectation is confirmed in the computer simulation re-
sults shown in Fig. 3.

Figure 3 also shows the percentage of branches in the
model and realized trees that were reconstructed cor-
rectly. As expected, the percentage branches correctly
inferred increases with increasing sequence length, for
model as well as realized trees. However, comparison of
the realized tree to the inferred tree shows much higher
PBR values even for smalls values. Interestingly,PBM

(i.e., for the model tree) is essentially a mirror image of
P0, the proportion of zero-length branches in the realized
tree. This suggests that the zero-length branches in the
realized tree contribute significantly towards the decline
in NJ efficiency. Therefore, zero-length branches should
be properly discounted in any estimation of the NJ effi-
ciency, as the NJ method reconstructs realized rather
than model trees. For this reason, we report only the
efficiency of the NJ method in reconstructing non-zero-
length branches.

Percentage Branches Reconstructed Correctly

In order to present succinctly the rather voluminous com-
puter simulation results (from the thousands of model
trees used) in one place, we first present a summary table
(Table 3). In this table, the NJ efficiencies (PBR) were
averaged over all rates, topologies, and sequence lengths
for a given tree size. Results show that the minimum,
maximum, and average NJ efficiencies are similar across
tree sizes, which differ 32-fold in the number of se-
quences (6 to 192). This is further illustrated in Fig. 4,
where NJ efficiencies are similar across tree sizes and
evolutionary rates, for fixed sequence lengths (100, 200,
500 and 1000). In the figure each value is an average
taken from all the topologies for a given tree size and

evolutionary rate, for a given sequence length. In gen-
eral, we find that a medium evolutionary rate leads to a
slightly higher performance when compared to lower or
higher rates.

Our large phylogenies consist of four basic trees, each
of which constitutes a monophyletic group. Table 4
shows the efficiency with which these monophyletic
groups were inferred correctly—observed efficiencies
are similar for different tree sizes for a given sequence
length. It is thus clear that the NJ method is able to infer
groups of the same size with similarly high efficiencies
in large as well as small phylogenies.

Effect of Branch Depth on NJ Efficiency (Table 5)

As mentioned earlier, the depth of a branch is defined by
the size of the smallest subtree connected to it. Further-
more, a branch is considered correctly inferred when it

Fig. 3. Percentage branches of the model trees (PBM) and realized
trees (PBR) reconstructed correctly by the NJ method, with increasing
number of sites, and the corresponding proportion of zero-length
branches (P0; filled circles). The values were averaged over all four
topologies and all tree sizes (Ax, Bx, Cx, Dx trees), forr 4 0.00625.

Table 3. Percentage branches reconstructed correctly (PBR) for trees
of different sizesa

Sequences

Overall efficiency

Average Minimum Maximum

6 92 53 100
12 94 55 100
18 94 54 100
24 95 61 100
30 95 56 100
36 95 60 100
42 95 60 100
48 95 60 100
54 95 60 100
60 95 63 100
96 95 64 100

192 95 61 100

a Each value is an average over all rates of evolution (r 4 0.00625 to
0.0625, in steps of 0.00625), numbers of sites (s 4 100 to 1000, in
steps of 100), and all topologies (Ax, Bx, Cx, andDx).

Fig. 4. Percentage efficiency (PBR) of the NJ method for varying
evolutionary rates (r) and tree sizes (up to 192 sequences). Average
values ofPBR from all Ax, Bx, Cx, andDx trees are shown.
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partitions the tree into two clusters, each containing the
same set of sequences as in the original tree. In trees with
varying expectedinternal branch lengths (e.g., Fig. 2),
the efficiency of reconstructing an internal branch could
be influenced by the branch depth and/or branch length.
This is not the case in our study because all the interior
branches in a given tree are of equal expected length. (Of
course, the realized interior branch lengths may differ
among branches in any given replication). This design
allows us to look at only the location (depth) of the
branch, independent of its length, and facilitates direct
comparison across different parts of a tree. Figure 5
shows the efficiency of reconstruction of branches of
various depths for two sequence lengths. For each se-
quence length we find that the efficiency of reconstruc-
tion of interior branches is largely similar across all
depths of the tree, with deeper branches in fact being
reconstructed with higher efficiency in some cases. This
observation is somewhat counterintuitive because deep
branches are often thought to be more difficult to recon-

struct than the shallow ones (see Discussion later). Fur-
thermore, the efficiency is high for sequence lengths of
500 sites or more and relatively lower for smaller se-
quences.

Efficiency in Reconstructing Branches of Different
Realized Lengths

The number of substitutions per sequence that actually
occurred in a given branch constitutes the realized length
of that branch. This length varies from replication to
replication, whereas the expected branch lengths are
identical. As mentioned under Computer Simulations,
the realized branch lengths are obtained by drawing a
random number from a Poisson distribution, with the
expected branch length as the mean of the distribution, to
simulate the stochastic nature of the evolutionary pro-
cess. How large should the realized branch length be in
order to obtain an NJ efficiency of 95% or higher? Fur-
thermore, how does this length change with sequence
length and evolutionary rate (the two determinants of
expected branch length)? To address these questions, we
computed the percentage efficiency with which branches

Table 4. Percentage replicates in which monophyletic clusters of six
taxa were reconstructed correctlya

Tree
size

Sequence length

200 500 1000

12 77 94 99
18 80 96 100
24 83 97 100
30 83 97 100
36 85 97 100
42 84 97 100
48 84 97 100
54 85 97 100
60 85 97 100
96 84 97 100

192 84 96 100

a Each value is the arithmetic mean over all the topologies given in
Figs. 1A–D and evolutionary rates used.

Table 5. Efficiency of reconstructing branches of various depthsa

Branch
depth

Sequence length

200 500 1000

2 86 96 99
3 85 97 100
4 87 97 100
5 86 97 99
6 83 97 100

12 87 99 100
18 89 99 100
24 91 99 100
30 90 99 100
48 92 100 100
96 93 100 100

a Each value is a percentage, averaged over all the topologies given in
Figs. 1A–D, tree sizes, and evolutionary rates used.

Fig. 5. Probability of correct reconstruction of branches (pB) at vari-
ous depths in trees of different sizes. EachpB value is an average over
10 evolutionary rates and four topologies (Ax, Bx, Cx, andDx trees).
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of different lengths were constructed correctly, irrespec-
tive of their position in the tree. The resulting branch
lengths were standardized;l95 4 [(b − e)/e] × 100, where
b is the minimum branch length required for a 95% ef-
ficiency, ande is the expected branch length. A negative
standardized value shows that a tree with realized branch
length that is smaller than the expected branch length can
still be reconstructed correctly at an average. This stan-
dardization allows us to make comparisons across dif-
ferent rates of evolution and sequence lengths (Fig. 6).

Figure 6 shows that an increase in sequence length
(with evolutionary rate held constant) leads to a signifi-
cant decrease inl95. However, an increase in evolution-
ary rate (with the sequence length held constant) does not
changel95. Therefore, when the total numbers of substi-
tutions in the expected tree are the same, data with longer
sequences will perform better than those with faster evo-
lutionary rates. This is not unexpected because the same
expected Jukes–Cantor distance will be estimated with
lower variance in the former case.

Discussion

In this work, we have presented results from our analysis
of large phylogenies in which all interior branches in the
expected trees were made equal for any given tree. This
stipulation allowed us to examine the relative efficiency
with which the deep and shallow interior branches are
reconstructed correctly. Furthermore, the stacked struc-
ture of our composite model trees is suitable for exam-
ining the relative efficiency of correctly reconstructing
the same branch in small and large trees. As a result, we
are now in a position to establish a “baseline” profile of
the NJ performance. In the following we discuss the
significance of these results and assess their generality
by comparing them to the results obtained from com-
puter simulations involving a 228-taxonrbcL tree (Fig.
2) and some “hybrid” composite trees (see Computer
Simulations).

Our simulation results clearly establish the adverse
effect of the zero-length branches in the realized tree on
the performance of the NJ method (Fig. 3). The NJ
method is for reconstructing realized trees rather than the
expected trees, and therefore, its efficiency should be
measured by comparing the inferred tree to the realized
tree. For instance, Hillis (1996) conducted a computer
simulation using the model tree in Fig. 2 and showed that
the NJ method recovers the expected (“model”) tree
when the sequence length was∼5000 sites. The increase
in efficiency of the NJ method in recovering the model
tree with increasing number of sites can be attributed to
(1) decreasing variance of distance estimates and/or (2)
the decrease in the number of zero-length branches. Us-
ing the expected branch lengths employed by Hillis
(1996), we examined the performance of the NJ method
by considering the influence of the zero-length branches
(Fig. 7). Our results for the efficiency of the NJ method
in reconstructing the model tree are similar to those of
Hillis (1996). However, now it is clear that an increase in
the sequence length directly reduces the number of zero-
length branches, and this is highly correlated (almost as
a mirror image) with the efficiency of the NJ method
(PBM). In fact, the NJ tree is almost identical to the
multifurcating realized tree (>99% branches are correctly
inferred) even for only∼500 sites. This result, along with
those in Fig. 3, underscores the importance of the dis-
tinction between the realized and the model trees in ex-
amining the performance of NJ and other methods. In
fact, a similar effect is seen when the stepwise addition
algorithm is used for the maximum-parsimony method in
computer simulations involving therbcL model tree (re-
sults not shown). Zero-length branches can be eliminated
either by increasing the sequence length or by increasing
the evolutionary rate. Our simulations suggest that the
former is more effective than the latter, as the distances
can be estimated with lower variances in the former case
(also see Fig. 6).

Fig. 6. Average percentage difference between the expected and the
minimum realized branch length per sequence needed forpB $95%.

Fig. 7. Percentage branches of the model (PBM) and realized (PBR)
rbcL trees reconstructed correctly by the NJ method, plotted against
increasing number of sites.Filled circlesshow the corresponding pro-
portions of zero-length branches.
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The efficiency of NJ in terms of the proportion of
branches reconstructed correctly (PBR) in the realized
trees is similar for trees consisting of vastly different
number of sequences. Strimmer and von Haeseler (1996)
have reported similar results, but they did not remove the
negative contribution made by zero-length branches.
Since PBR is similar for large and small phylogenies
(Table 3), the efficiency of reconstructing deeper
branches is likely to be no worse than that of the shallow
branches, if their expected branch lengths are equal. This
was indeed the case, as the branches at different depths
are inferred correctly with similar efficiencies (Fig. 5). In
fact, deeper branches appear to be reconstructed cor-
rectly with a higher probability, in some cases. This is
due in part to the fact that the estimate of the average
distance between groups of sequences, used in recon-
structing deep branches, has a lower variance.

An extrapolation of the results in Fig. 5 comes from
the analysis of our “hybrid” trees as well as the unequal-
internal branch lengthrbcL tree, which contains
branches with depths ranging from 2 to 82 taxa and of
different lengths. The reconstruction efficiency remained
similar across different branch depths, as long as only the
non zero-length interior branches in the realized trees
were considered for measuring the efficiency (Fig. 8).
Recently, many investigators have considered the effect
of taxon sampling on the efficiency of tree-making meth-
ods, in which the main emphasis has been to study and
remedy the effect of long branch attraction for small and
large phylogenies (see Graybeal 1998; Hillis 1998; Kim
1996; Purvis and Quicke 1997; Yang and Goldman

1997). The large model trees used in our computer simu-
lations were formed by stacking smaller trees. This in-
creases the tree size by the addition of sister groups to
existing clusters, rather than the addition of taxa to break
up long branches, as done in taxon-sampling studies.
Therefore, a comparison of our results to those by above
authors is not straightforward.

The NJ method works in a stepwise fashion, inferring
shallow branches first. Therefore, the topological errors
in the early stages of tree reconstruction may propagate
as we move toward inferring deeper branches. Conse-
quently, one may expect deep branches to be more dif-
ficult to reconstruct correctly than shallow branches, all
else being equal. However, this intuitive argument is
clearly not supported, as the efficiency does not decline
with depth (Figs. 5 and 8), suggesting that the accuracy
of the NJ method in the later stages of clustering (deep
branches) is largely independent of the accuracy at the
early stages (shallow branches). To look for an explana-
tion of why this may happen, let us consider the theo-
retical aspects of the minimum-evolution (ME) principle
(Rzhetsky et al. 1995; Rzhetsky and Nei 1992) that forms
the basis of the NJ method.

Consider the tree in Fig. 9, where groupsI andJ are
neighbors, as are groupsK andL. If groupsI, J, K, and
L are reconstructed correctly, then, under the ME prin-
ciple, the correct inference of branche is not affected by
inaccuracies in inferring within-group phylogenies
(Rzhetsky et al. 1995). That is, errors in phylogeny
within groups do not affect higher-level clustering as
long as the monophyly of a group is inferred correctly,

Fig. 8. Reconstruction efficiency for branches at
different depths in therbcL tree, for 200 sites
(A) and 500 sites(B).

551



and the realized branch length (branche) will dictate the
efficiency of correct reconstruction of that branch. When
monophyletic relationships within groups (I, J, K, andL)
are not correctly inferred, then one of two things may
happen. First, groupI may contain some taxa that belong
to groupJ, and vice versa (or such swapping may occur
for K andL). In this case, the reconstruction ofemay not
be affected because the true neighbor groups will tend to
cluster together anyway. The second possibility is the
incorrect grouping of taxa from more distantly related
clusters (e.g., taxa from groupI clustering within group
K). This would depend on the length of branche: for
longere it is more difficult for a taxon to cross over to a
nonsister group. For a deep branch, the number of taxa
around it is large and the random possibility of crossover
of one or more taxa is potentially larger than for a shal-
low branch. However computer simulations for deep
branches show that this is not the case. Rather, the effi-
ciency is at least the same, or sometimes greater, which,
as mentioned earlier, is because the average distances
between groups have lower variance than the pairwise
distances for individual sequences.

In maximum-parsimony analysis, it is generally
thought that homoplasy will hinder accurate reconstruc-
tion of higher-level relationships (deep branches), as the
phylogenetic signal to infer deep branches may deterio-
rate with later evolutionary changes. This intuition needs
to be examined by computer simulation. In the case of
distance-matrix methods such as the NJ method, how-
ever, pairwise distances are computed in a step indepen-
dent of the reconstruction of the evolutionary histories,
and, perhaps consequently, the degradation of the phy-
logenetic signal does not appear to occur.

The argument presented above is only approximate,
as the NJ method implements ME criterion locally (at
each stage of clustering) rather than globally. We have
examined the performance of NJ with respect to the same
optimality criterion as for ME. That is, we compared the
sum of ordinary least-squares estimates of branch lengths
(S) of each of our NJ trees with that of the corresponding
model trees. We found that the NJ tree is less optimal
than the true tree in only 22% of the replicates (see also
Nei et al. 1998). In those cases, the least optimal NJ tree
was only 3% worse than the true tree in terms of theS
value. Relating the effects of sequence length and evo-
lutionary rate on the percentage optimality score differ-

ence (Nei et al. 1998) between the NJ and the model trees
(not shown), we found that for a given sequence length
there is little difference between the optimality score for
the NJ topology and that for the model topology, irre-
spective of the tree size. The worst NJ performance was
for large trees with very small sequence lengths (or very
slow evolutionary rates), as there was a very large num-
ber of statistically equally good trees (Kumar 1996).
Therefore, the results presented in this paper are gener-
ally applicable to methods with underlying principles
similar to the NJ method (e.g., Gascuel 1997).

It is important to exercise caution in extrapolating
results from any computer simulation to real-life situa-
tions. We have assumed that the evolutionary processes
among the lineages have remained the same throughout
the evolutionary history, i.e., the evolutionary process is
stationary. This condition is often met in short-term evo-
lution (e.g., population data) and in slowly evolving
genes but is likely to be violated when we consider long-
term evolutionary histories of genes and species. If the
stationarity condition is not met, the correct inference of
deep branches is likely to be adversely affected (e.g.,
Steel et al. 1993). This aspect will be examined in further
computer simulation studies.
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