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Abstract

Summary: Metastases cause a vast majority of cancer morbidity and mortality. Metastatic clones are formed by
dispersal of cancer cells to secondary tissues, and are not medically detected or visible until later stages of cancer
development. Clone phylogenies within patients provide a means of tracing the otherwise inaccessible dynamic
history of migrations of cancer cells.

Here, we present a new Bayesian approach, PathFinder, for reconstructing the routes of cancer cell migrations.
PathFinder uses the clone phylogeny, the number of mutational differences among clones, and the information on
the presence and absence of observed clones in primary and metastatic tumors. By analyzing simulated datasets,
we found that PathFinder performes well in reconstructing clone migrations from the primary tumor to new metasta-
ses as well as between metastases. It was more challenging to trace migrations from metastases back to primary
tumors. We found that a vast majority of errors can be corrected by sampling more clones per tumor, and by
increasing the number of genetic variants assayed per clone. We also identified situations in which phylogenetic
approaches alone are not sufficient to reconstruct migration routes.

In conclusion, we anticipate that the use of PathFinder will enable a more reliable inference of migration histories
and their posterior probabilities, which is required to assess the relative preponderance of seeding of new metasta-
sis by clones from primary tumors and/or existing metastases.

Availability and implementation: PathFinder is available on the web at https://github.com/SayakaMiura/PathFinder.
Contact: s.kumar@temple.edu

1 Introduction metastases (Alves et al., 2019; Chroni et al., 2019; El-Kebir et al., 2018;
Miura et al., 2018; Somarelli ez al., 2020). Essentially, the genetic hetero-
Metastasis (uef1otdvar, in Greek, to change or transfer) is the spread of geneity of tumors and clones is becoming a valuable tool to map the ori-
abnormal cells from the initiated (the primary tumor) anatomical site to gin and progression of cancer in patients. In these efforts, molecular
secondary tissues. Cancer is estimated to cause worldwide more than evolutionary and phylogenetic approaches are useful for deciphering how
1.8 million deaths a year (Siegel et al., 2020). More than 90% of cancer cancer cells evolve, and the pathways of their move from the site of origin
morbidity and mortality are due to metastases (Welch and Hurst, to other anatomical sites (Alves et al., 2019; Chroni et al., 2019; El-Kebir
2019). Cancer cells from both primary and metastatic tumors have the et al., 2018; Miura et al., 2020; Somarelli et al., 2017).
potential to seed metastases both locally and at a distance. For example, Figure 1a shows the phylogeny of five observed clones
Over time, cells in primary tumors and metastases undergo mutations, (C1-CS5) and their tumor locations in a patient with colorectal cancer
producing extensive intra- and inter-tumor genetic heterogeneity observed (CRC2 patient) (Leung et al., 2017). In this patient, the primary (P)
in patients (Williams et al., 2019). The genetic variation found in tumors tumor was found in the colon and metastasized to the liver (M). Based
can be used to infer evolutionary relationships of clones within patients as on the clone phylogeny and the location of observed clones, Leung et al.
well as migration paths of cancer cells that have seeded and formed (2017) concluded that a polyclonal migration event seeded the
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Figure 1. (a) A phylogeny of cancer cells in a metastatic colorectal cancer patient (CRC2 patient); see Zafar et al. (2019). Cancer cells with the same genotype comprise clones
(C1-CS3), and the lengths of branches are proportional to the number of sequence differences between clones. The phylogeny is rooted on the germline sequence, which repre-
sents a healthy and not-mutated cell sequence (normal). Here, the primary tumor was found in the colon and contained three clones (C1, C2 and C4), whereas the metastatic
tumor occurred in the liver and contained two clones (C3 and CS). In addition to the presence of five clones in this patient, this phylogeny shows that at least four other clones
existed (ancestral clones, A1-A4). (b) Migration history in which two different clones from the colon, together or at different times, migrated to the liver and seeded metasta-
ses. This solution was inferred by Leung et al. (2017) and, further supported by Zafar et al. (2019) who applied the MACHINA approach (El-Kebir ez al., 2018). (c) An alter-
native migration history in which clones travelled from colon to liver, but also from liver to colon, after the formation of the metastasis from clones from the primary tumor.
This migration history was inferred by MACHINA when the number of tumor sources of seed clones was not constrained (El-Kebir et al., 2018)
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Figure 2 Clone phylogeny (a) without branch lengths and (b) with branch lengths. In panel (a), three possible migration histories are shown, because the ancestral clone A2
may have been present in the primary tumor or in one of the two metastases. In panel (b), the most likely migration history is shown based on the clone phylogeny with branch
lengths, because A2 is nearly identical to clone C2 (and genetically different from clones C1 and C3). Branch lengths provide crucial information. The information deducted by
branch lengths can be used into giving insight for choosing the most likely migration path (P—M1—M2).

metastasis in the colon. That is to say that multiple genetically different minimal difference from their ancestral progenitor clones (e.g. C2
clones from the colon seeded the metastasis. In this example, ancestral from A2), whereas others show much larger differences (e.g. C3
clones A3 and A4 are the progenitors of the two clones that seeded the from A3). Therefore, a probabilistic approach is likely to improve
metastasis in the liver (Leung et al., 2017). the accuracy of migration histories inferred, beyond those made pos-
Both Leung et al. (2017) and Zafar et al. (2019) inferred two sible by the maximum parsimony approaches.o,

P—M cell migration paths (Fig. 1b). So the ancestral clone location In this article, we describe a computational method, named as
(ACL) is estimated to be P for both A3 and A4. Zafar et al. (2019) PathFinder, that uses not only the evolutionary relationship but also
used MACHINA, a computational approach in which the number the genetic differentiation among clones to infer migration paths.
of migration eventsand the number of tumors acting as the source of The importance and significance of a probabilistic approach are evi-
migration are minimized (El-Kebir ez al., 2018). In counting the dent from the toy example shown in Figure 2. When the branch
number of migration paths, MACHINA considers multiple cell length information is not available, ACL for ancestral clone A2 can
migrations between the same two tumors (co-migrations) as a single be P, M1 or M2, making it impossible to distinguish among the
one migration event. The minimization of the number of migration three possible migration histories (Fig. 2a.I-IIl). However, when
events is equivalent to the use of the maximum parsimony principle observing the clone phylogeny with branch lengths, we see that an-
in molecular phylogenetics for inferring ancestral states and phylo- cestral A2 and observed C2 clones are genetically identical. So, one
genetic trees. However, the maximum parsimony approach of would intuitively infer that A2 is found in the same tumor as does
MACHINA does not use the information on the amount of genetic the observed clone C2, i.e. ACL for A2 is likely M1 (Fig. 2b).

differentiation among clones, which can vary extensively in clone Consequently, the most likely migration history is P=M1—M2.

phylogenies, as seen in Figure la. Some observed clones show a The PathFinder approach, described in the next section, predicts
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that the P=M1—M2 path is much more likely than the other two pos-
sibilities. In contrast, MACHINA infers independent seedings of the
two metastases from the primary tumor (P—MT1 and P—M2) as the
most probable migration scenario. This is because MACHINA does not
use branch lengths and minimizes the number of sources that contribute
seed clones. Therefore, the inference of the origin and movements of
tumor clones will benefit from the use of a probabilistic approach.

PathFinder employs a Bayesian statistical molecular phylogenet-
ic framework for inferring ACLs and generates clone migration
pathways between tumors that have the highest posterior probabil-
ities (PPs). PathFinder’s probabilistic approach enables us to select
from alternative hypotheses of clone migrations statistically. For ex-
ample, PathFinder will allow one to distinguish between the poly-
clonal seeding and reseeding events (Fig. 1b and ¢, respectively) as
well as the source of seeding of new tumors, i.e. primary tumor ver-
sus metastasis (e.g. Fig. 2). Such distinctions are essential for our
understanding of metastasis. It is now becoming clear that metastat-
ic processes are complex with multiple clones seeding tumors, mul-
tiple tumors acting as the source of migrations and even
bidirectional seeding events occurring (Brown et al., 2017; Choi
et al., 2017; Eirew et al., 2015; Gundem et al., 2015; Hoadley et al.,
2016; Sanborn et al., 2015).

In the following, we present the PathFinder approach. Then, we
show its accuracy in inferring metastatic migration histories by using
computer-simulated datasets in which metastases were seeded by
only single clones (monoclonal) or by multiple clones (polyclonal),
and seeding sources included metastases, in addition to primary
tumors. We compare the performance of PathFinder with
MACHINA. We also assessed the impact of minimization of tumor
sources and preference of co-migration pathways, which are used in
MACHINA, on PathFinder’s probabilistic inferences (El-Kebir
et al., 2018). Finally, we applied PathFinder for analyzing datasets
from patients with basal-like breast cancer to show the utility of an
evolutionary-aware probabilistic framework on clone migration
inferences in a real-case scenario (Hoadley et al., 2016).

2 Materials and methods

2.1 The PathFinder method

PathFinder assumes that the clone phylogeny, the alignment of clone
sequences and the anatomical locations of every observed clone are
known. Using the aforementioned information, PathFinder will infer
the location for every ancestral clone (ACL) by using a Bayesian ap-
proach and build clone migration histories. For simplicity, we use a
phylogeny containing three clones (Cy, C, and C;) that are found in
a primary tumor (P) and two metastases (M1 and M2), respectively
(Fig. 3). In this phylogeny, the normal cells serve as the outgroup,
and there are two ancestral clones (A; and A;) for which the

Normal

x X X

Figure 3. A phylogeny of three clones (C;, C; and C;) found in three tumors (P, M1
and M2, respectively). Clone relationships with branch lengths (b’s) are shown,
along with the locality in which each clone is found. A; and A, are the ancestral
clones, and “Normal” refers to the germline/non-cancer cell sequence.

anatomical location is not known. PathFinder infers ACLs for A,
and A, by advancing the Bayesian approach of ancestral state infer-
ence (Yang et al., 1995) (Fig. 3). In this case, we estimate branch
lengths of the clone phylogeny by using the clone sequence align-
ment along with the estimates of ACLs. In this joint inference, the
instantaneous rates of state changes between the presence and ab-
sence of variants are assumed to be equal, and between different
tumor states are assumed to be equal as well.

In this case, x1, x2, and x3 represent the location of clones Cy,
C,, and C;s, respectively. y; and y, are the ACLs of clones A; and
A;. Vector x = (x1, X3, x3) and y = (y1, y2). The probability of
observing a given configuration of x is

flx;b) = ZZP)” X Py x, (b1) x waz(bl) X P;vzxz(b3) X Pyzxs(b4)

Yooy

)

where b = (b1, by, bs,bs) is the vector of branch lengths in the ex-
ample clone phylogeny derived from clone sequence alignment.
Here, Pjj(b;) is the probability that the given clone will remain in
the same location (i=j) or move to a different location (i #j) after
by, substitutions on branch k. To compute Pj;(by), we use a mathem-
atical model of instantaneous state change in which the probability
of movement from any location to another one is equal.

Pursuing the Bayesian approach for computing the posterior
probability of each possible configuration for two ancestral clones
y = (Y1, y2), we write:

fla; b) = f()f (xly; b) /f (%, b), ()
where f(y) is the prior probability of occurrence of y and is given by
fy)= Py x Pyy, (b2). (3)

The conditional probability of observing x for a given set of an-
cestral clone locations y is:

f(xly; b) = > 4)
7130 Py (01)XPyyy (53)x Py (b4).

Using this information, we compute the posterior probability of
the presence of an ancestral clone (e.g. A;) in the metastasis M1 by

PP(A; in M1) = f(y2 =Ml|x;b) = > f()f(xly; b)/f(x;b).

yiy1=M1
(5)

Similarly, we compute the posterior probability of the presence
of A, in metastasis M2 and primary tumor P. The ACL for A; will
then be the location with the highest posterior probability. By de-
fault, PathFinder assumes that the seeding events began from the
primary tumor, e.g. (El-Kebir et al., 2018), so we set ACL(A;) =P.

In the explanation above, for simplicity purposes, each clone
was assumed to be present in only one location. However, in tumor
datasets from patients, we often encounter the same clone in mul-
tiple locations. For these datasets, we include each such clone in the
clone phylogeny as many times as the number of different locations
in which it is present. We append a data column to the clone se-
quence alignment, which contains the tumor location. In this way,
tips of the clone phylogeny are distinguished by their location in the
phylogeny used in PathFinder.

After estimating PP of all ACLs for all the ancestral clones in the
clone phylogeny, we traverse the clone tree to generate all possible
migration histories (MHs) as directed graphs of cell migrations
whenever ACLs are not the same for the pair of nodes connected by
a branch. The probability of migration history, Py, is simply the
product of the posterior probabilities of all the ACLs involved in
that history. By default, the graph with the highest Py is chosen to
represent the migration history. If a clone phylogeny is not strictly
bifurcating, i.e. some nodes give rise to more than two descendants,
then PathFinder will explore all possible sets of candidate bifurca-
tions for each polytomy (e.g. three alternative bifurcations for a
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polytomy involving three branches) to select the ACL that receives the
highest PP by applying Equations (1)—(5) to alternative phylogenies.

Alternately, one may sum the probability of each cell migration
edge over all possible migration histories and then assemble a con-
sensus migration history (cMH). One may specify a threshold PP to
consider an ACL to be included in the candidate list for generating a
collection of possible MHs; we used a cut-off of 0.15, but similar
results were obtained by using 0.05. In the final reconstruction, the
researcher has the option only to retain migration edges that showed
an edge probability of 0.5 or higher, which we found to be very ef-
fective in removing spurious edges. With this option, we found that
maximum probability MH was as accurate as cMH (see Fig. 8). It is
worth noting that PathFinder reports all the alternative migration
histories, and their normalized probabilities such that the sum of
probabilities from all alternative migration histories considered is 1.
The software is programmed in python and available for use on
Windows machines (https://github.com/SayakaMiura/PathFinder); a
Linux version is currently under development.

2.2 Assembly and analysis of computer simulated data
To evaluate and benchmark the performance of PathFinder, we used
an independently available data collection that has been analyzed in
other studies (Chroni et al., 2019; El-Kebir et al., 2018). This collec-
tion consists of datasets simulated with clone evolution and tumor
growth models under various scenarios. For these datasets, the num-
ber of tumors sampled varied from 5 to 7, which we refer to as 5
datasets, and between 8 and 11, which we refer to as 8-tumor data-
sets 8 dataset. Overall, the number of tumors was 5-11, the number
of clones was 6-26 and the number of single-nucleotide variants
(SNVs) was 9-99 (El-Kebir et al., 2018).

The complexity of the simulated datasets varied based on the
number of tumor clones migrating, the number of tumor sites acting
as sources and/or recipients of migration, and the number of meta-
static clones migrating back to the primary tumor. In total, we tested
PathFinder on 80 simulated datasets and four seeding scenarios
determining the complexity of migration paths (Fig. 4). The datasets
are available from https:/github.com/raphael-group/machina. More
details about these datasets can be found in El-Kebir et al. (2018)
and Chroni et al. (2019).

PathFinder software was used to analyze these datasets to gener-
ate consensus migration histories (¢(MHs) using the options noted
above. For comparative analysis, we retrieved MACHINA results
from the PMH-con approach applied perviously by Chroni et al.
(2019). PMH-con was chosen because it showed the highest accur-
acy when compared to PMH-TR and a Bayesian biogeographic ap-
proach (BBM) (Chroni et al., 2019). Settings in PMH-con included
constrained of the primary tumor at the root of the tree, and no
restrictions were placed on the possible seeding scenarios and the
number of migrations and comigrations.

In all of these analyses, similar to Chroni et al. (2019) approach,
the focus was on the accuracy of inference of migration histories

Y LA A A
M1 M1 M1
Y Y Y A 4
M2 | M2 | | M2 ] M2
mS pS pM PR

Figure 4. Examples of clone seeding scenarios used for generating simulated data
(El-Kebir et al., 2018), arranged by complexity: single clones migrating from single
tumor sources (75, monoclonal single-source seeding) or from multiple tumors (pS,
polyclonal single-source seeding), and multiple clones migrating from multiple sour-
ces (pM, polyclonal multi-source seeding) or migrating from metastasis back to pri-
mary (pR, polyclonal reseeding). Redrawn from Chroni et al. (2019).

when the clone sequences and phylogeny are already known. Errors
are usually involved in de-convoluting clones from bulk sequencing
data, and in imputing missing data and correcting false positives and
false negatives in single-cell sequences exist. However, an analysis of
those errors is beyond the scope of our article, and therefore, they
are not discussed.

2.3Accuracy measurements

For each migration history, we recorded migration paths inferred
correctly (true positives; TPs), migration paths not found (false
negative; FNs), and incorrect migration paths (false positives; FPs).
We then computed F;-score for each dataset, which is the harmonic
mean of precision and recall:

precision x recall

Fl =2 X —
precision + recall
where
. . TP

precision(G, G*) = ™4 Fp

and
B TP
recall(G, G*) = TP L EN

Fi-scores were estimated for individual migration histories
inferred. When multiple migration histories were inferred for a data-
set, F-score represented the simple average of Fl-scores of each mi-
gration history. For a collection of datasets, the average F1-
score was also the arithmetic mean of the dataset-specific F-scores.

2.4 Analysis of an empirical dataset

We applied PathFinder to Al and A7 datasets from two patients
with basal-like breast cancer (Hoadley et al., 2016). The A1 dataset
included 8 clones from a primary and 4 metastases (329 SNVs),
whereas the A7 dataset consisted of 10 clones from primary and 5
metastases (478 SNVs) (Hoadley er al., 2016). We used clone phy-
logenies that were rooted using the germline sequences (normal
cells) as outgroups to perform a tumor migration inference in
PathFinder.

3 Results and discussion

3.1 Single-source, monoclonal seeding (mS)

The monoclonal (m) seeding of metastases represents the simplest
scenario of migration histories (mS). In this case, each metastasis
was seeded by only one clone, and it received clones from only one
tumor (single source). First, we analyzed the #5 datasets consisting
of 5-7 tumors. PathFinder produced correct migration histories for
9 out of 10 datasets (average F; = 0.975). There was only one error
in one dataset in which a P—M3 seeding event was predicted, in-
stead of P=M1—M3. We found this error to be due to insufficient
sampling of clones that were present in M1 (Fig. 5). The missing
clone originated from the primary tumor and was the ancestor of
the clone that seeded tumor M3. Therefore, more extensive sam-
pling of clones from each anatomical site would be needed to elimin-
ate such errors.

In the #8 datasets, there was an increase in the number of tumors
(8=11), the number of clones (19.2), as well as the size of the migra-
tion histories. The average number of migration paths for 8 datasets
was 7.6, as compared to 4.1 for £5. For t5 datasets, PathFinder pro-
duced correct migration histories for seven datasets (average F; =
0.92). In one of the three datasets for which PathFinder MH con-
tained errors, the problem was caused by the non-sampling of some
key primary tumor clones. This problem can only be remedied by
sampling more clones per anatomical site.

For the other two datasets, PathFinder errors were unavoidable
because different clones with identical sequences existed in two
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Figure 5. Incomplete clone sampling causes multiple errors. The clone that migrated
from M1 to M3 (panel a) was not sampled, so a P=M3 seeding event was inferred
(false positive), instead of a P—~M1 (false negative) and a M1—M3 (false negative)
(panel b). These three errors cannot be corrected by any computational methods, be-
cause there is no way to assess the presence of the ancestral clone A2 without a
branching point in the clone phylogeny.

source tumors, making it impossible for any computational method
to distinguish which tumor provided the seeding clones. In practical
data analysis, it may be possible to mitigate such errors by sampling
more genomic sites (SNPs) that can distinguish clones.

These results show that the inference of migration histories of a
large number of anatomical sites increases the complexity of migra-
tion paths and requires more extensive sampling of clones and
SNPs.

3.2 Single-source, polyclonal seeding (pS)

Next, we present results from the analysis of datasets in which mul-
tiple clones seeded metastasis, i.e., polyclonal seeding (pS). All the
seeding clones came from the same source (S) for a given metastasis.
In the simulated data, 2-3 clones seeded each metastasis. PathFinder
produced correct results for eight of the #5 datasets (F1 = 0.95). In
the #8 datasets, we observed errors in four migration histories (F; =
0.95). The average number of migration paths for these datasets was
9.1 as compared to 5.5 for ¢5 datasets. For two of the #8 datasets,
computational errors were unavoidable because of incomplete sam-
pling of clones. The error in the third dataset was caused by the fact
that the ancestral clone A2 was equally different from its descendant
clones found in two tumors (M1 and M4). In this case, PathFinder’s
probabilistic approach predicted the ACL to M1 or M4 with similar
probabilities, resulting in two equally likely possibilities:
P—M4—M1 and P-M1—M4 (Fig. 6). For such data, the phyl-
ogeny alone is not sufficient, and we need additional information to
remedy the lack of resolution, e.g., mutational signatures
(Christensen et al., 2020).

(@) (b) (c)
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Figure 6. An example from polyclonal seeding scenario in which the migration his-
tory inferred by PathFinder was inconclusive. Here, the error was caused by the fact
that an ancestral clone (A2) is equally different from its descendant clones in tumors
M1 and M4, e.g. branch lengths for C24 and C42 clones are very similar (panel a).
This results in very similar posterior probabilities for two migration paths:
P—M4—M!1 (panel b), and P=M1—M4 (panel c). To overcome this type of errors,
we need other information (e.g. mutational signatures) in addition to clone
phylogenies

<

3.3 Multiple-source, polyclonal seeding (pM)

Next, we explored even more complex and realistic migration his-
tories, in which each metastasis was seeded by multiple clones (2-3,
polyclonal p) that came from multiple tumors (M). For the ¢5 data-
sets, PathFinder predicted correct migration histories for 50% of the
datasets (F1 = 0.92), with errors in datasets again caused by an in-
complete sampling of clones, making it computationally impossible
to reconstruct some of the migrations. Therefore, a more accurate
migration history would require more extensive sampling of clones
from each tumor.

The migration histories for 8 datasets became much more exten-
sive, containing 10.5 migation paths, as compared to 6.8 for £5 data-
sets. The F; score was 1.0 for four of the datasets, 0.90-0.96 for
four datasets, and lower for the remaining two datasets (0.55 and
0.73). In these cases, again, most of the PathFinder errors were due
to a lack of sufficient sampling of clones required to detect migra-
tions. Also, many key clones sampled from multiple tumors were
identical that made it difficult to discern the origins of seeding clones
in the worse performing dataset. Therefore, more extensive sam-
pling of clones and sequencing of additional SNPs will be needed to
improve the performance of computational methods.

3.4 Multiple-source, polyclonal seeding and
reseeding (pR)

The most challenging datasets for PathFinder were those in which
the primary tumor was receiving clones back from one or more
metastases. That is, clones migrated from some metastases back to
the primary tumor (reseeding events). These pR datasets were also
multiple-source (more than two tumors). They included multiple (1-
2) clones seeding metastases and the reseeding events (single or mul-
tiple seeding events from metastasis back to primary). For the 5
datasets, 60% of the migration paths were entirely correct (F; =
0.89). In the worst-performing dataset, no seeding clones were part
of the randomly selected clone sample in one of the source tumors,
which meant that one could never infer a vast majority of M—M
seeding events as well as reseeding. The #8 datasets (F1 = 0.75) had
an average number of migration paths of 10.1 as opposed to 7.2 for
t5. Datasets with incorrect migration graphs presented similar issues
as the datasets from the most straightforward seeding scenarios.

3.5 Performance by the number of tumors and

migrations types

With the sampling of a higher number of tumors (5-7 versus 8-11),
a higher number of clones were also sampled from 13.4 to 20 (a
66% increase, on average), but the error (=1 — Fy) increased from
0.09 to 0.16. This increase is proportional to the increase (63%) in
the number of migration events. Therefore, the higher the number of
migration events, the more the error in inferring them correctly.
Overall, the highest accuracy decrease was seen for simulated data-
sets that involved reseeding. In these cases, the error increased from
14% to 31% for t5 and 8 datasets.
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Figure 7. Overall performance of PathFinder for different types of (a) migration histories and (b) datasets with small and large number of tumor sites sampled. Standard errors
are also shown. (c) A tabular comparison of the difference in F-scores of PathFinder between the seeding scenarios is shown. The z-scores and the corresponding P values are

shown below and above the diagonal, respectively.
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Figure 8. Scatter plot of Fyscores of PathFinder (consensus migration history, MH)
and (i) of those with MACHINA’s hierarchical (circles) and (ii) of those with
PathFinder’s most probable MH (triangles). The graph shows the results for which
PathFinder found multiple alternative MH (31 datasets).

As expected, less complex migration histories (mS type) were
much easier to infer than the complex ones (pR type). The overall
accuracy of mS, pS, pM and pR histories are shown in Figure 7.
These patterns arose because P—M migrations were the easiest to
infer (F; = 0.92) followed by M—M (F; = 0.84). F; for M—P was
more complex, because PathFinder predicted no correct M—P paths
for 21 datasets. For others, F; was 1.0. The S migration histories
consisted of a lot of P—=M migrations (81%), along with a small
fraction of M—M migrations (19%). In contrast, pS, pM, and pR
contained many fewer P—M migrations (77%, 64%, and 48%,
respectively).

3.6 The usefulness of MACHINA criteria and the

performance of most probable MHs
The parsimony approach in MACHINA uses a hierarchical mini-
mization scheme, which not only strives to generate the most parsi-
monious migration history by minimizing the number of migrations,
but also optimizes the number of co-migrations such that each co-
migration is considered a single event. Thus, co-migrations, i.e., the
events of multiple clones migrating, are preferred. Finally, it mini-
mizes the number of tumors that can act as a source of seeding
clones. We tested if this type of multi-level optimality scheme will be
beneficial in selecting more accurate migration histories when
PathFinder produces multiple MHs with non-zero probability.
There were 31 (out of 80) datasets for which PathFinder detected
multiple  migration histories with  different F;  scores
(0.07<P<0.81). After applying MACHINA’s hierarchical

optimality scheme, the F;scores of the migration histories inferred
did not improve in most of the cases (Fig. 8). Overall, the average F;
for the PathFinder’s consensus MH was 0.83, which is close to that
after applying MACHINA’s scheme. This could be taken to mean
that the use of a probabilistic approach obviates the need to impose
a parsimony principle to infer or fine-tune MH inferences. Figure 8
also shows that the difference between the choice of a consensus
MH and the one with the highest probability is rather small, as their
Fiscores were the same (0.83, respectively). So, one may choose to
infer either a consensus or the highest probability migration history
in biological analyses.

3.7 Comparisons of PathFinder with MACHINA

In Figure 9, we show the comparative performance of PathFinder
and MACHINA approaches. Results for MACHINA were obtained
from Chroni et al. (2019), who also analyzed the same datasets
under the same conditions. For simpler cases that involved single
clones migrating from single tumors (mS), PathFinder improved
upon MACHINA by 2%. For datasets with polyclonal seeding (pS),
PathFinder improved the performance by 9%. In both cases, as
noted earlier, many errors are due to insufficient tumor or SNVs
sampling, so it is unlikely that one could improve this accuracy
much more for these two datasets. The same is likely true for pM
datasets, in which PathFinder performed 10% better than
MACHINA. These are significant improvements considering that
only 7-19% of migration paths were incorrect for these three types
of migrations. For the pR datasets with the reseeding, which are the
most complicated migration histories, there was not a noticeable dif-
ference between PathFinder and MACHINA (Fig. 9a). Finally,
PathFinder performed better than MACHINA for datasets with
small and large number of tumors (Fig. 9b). Many of the differences
were not statistically significant in the #-tests, mainly because of
small sample sizes as the number of datasets analyzed is small within
categories.

These results establish the utility of a probabilistic (PathFinder)
over a parsimony based approach (MACHINA), as the clone migra-
tion inferences benefited from the use of branch lengths, showing
the power of an evolutionary-aware framework on deciphering es-
pecially difficult cases with multiple clones moving between tumors.
At the same time, it is prudent to acknowledge that even a parsi-
mony based approach, as developed in MACHINA, is adequate for
many datasets.

3.8 Breast cancer analysis

We applied PathFinder to two published datasets of basal-like breast
cancer (Patients A1 and A7) (Hoadley et al., 2016). We first discuss
the A7 dataset that contained ten clones from a primary tumor
(breast) and five metastases (brain, lung, rib, liver, and kidney). The
evolutionary relationships of these clones and the associated tumor
sites are shown in Figure 10a. Data analysis by PathFinder predicted
two migration events from primary to metastases (P—M paths) and
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Figure 9. Comparative performance of PathFinder (black bars) and MACHINA (gray bars) for (a) different types of migration histories and (b) datasets with small and large

number of tumor sites sampled. Standard errors and P values by #-test are also shown.
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Figure 10. Analysis of Patient A7 with basal-like breast cancer (Hoadley ez al., 2016). (a) Clone phylogeny and tumor location of each clone as reported in the original study.
Nodes A1-A4 are ancestral nodes. (b) Clone migration history predicted by PathFinder. Inference of migration paths includes P—=M and M—M paths, all of which have a

high P =1.0. Colors correspond to the tumor location where clones were sampled from

five migration events between metastases (M—M paths) (Fig. 10b).
All migration events were highly supported in the Bayesian analyses
(P=1.0).

The P—M paths involved seeding events from the breast tumor
to lung and brain metastases (Fig. 10b; P =1.0). The breast to lung
seeding is inferred because the ancestral clone A1 was estimated to
be present in the lung tumor with a P =1.0. This is because the gen-
etic sequence of observed clone C2 is predicted to be the same as
that of A1 (Fig. 10a). The brain metastasis is also predicted to be
seeded by clones from the breast, because the clones found within
the brain (C4) are closer to the ancestral clone A4 than the lung
clones.

PathFinder predicted multiple instances of metastasis to metasta-
sis (M—M) in this patient (Fig. 10b). This seeding scenario is differ-
ent from the conclusion of Hoadley et al. (2016), who proposed that
the primary tumor directly seeded all the metastases. We argue that
this is not reasonable based on the observed clone phylogeny and
the genetic differences between the clones. We explain our reasoning
by using as an example the cluster containing clones C3, C5, C8 and

C9. All of these clones are found in the liver, kidney and rib metasta-
ses. If the migration history proposed by Hoadley er al. (2016) were
to be accurate, i.e. breast seeded the metastases in the liver, kidney,
and rib, then we would expect some breast tumor clones to be pre-
sent near their most recent common ancestor (ancestral clones A2
and A3). However, no such clones were observed in the phylogeny,
and the best inference in the absence of additional clone sampling is
to posit many seedings between metastases. Overall, PathFinder sug-
gests more M—M seedings than the P—M seedings in this patient.
Next, we present the migration history for Patient Al inferred by
PathFinder. The Al dataset included five clones from a primary
tumor (breast) and four metastases (adrenal, lung, spinal, and liver)
(Fig. 11a). PathFinder inferred seven P—M, and one M—P paths.
There were four more migration events (colored in gray, Fig. 11b),
but they were supported by low probability values (<0.5). For this
dataset, PathFinder predicted that all metastases were founded by
clones that migrated from the primary tumor, which is evident from
the structure of the phylogeny and consistent with the Hoadley et al.
(2016)’s conclusions. The ancestral tumor sites for the nodes A1, A3
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Figure 11. Patient A1 with basal-like breast cancer (Hoadley et al., 2016). (a) Clone phylogeny and tumor location of each clone as reported in the original study. Nodes A1-
A4 were ancestral nodes. (b) Clone migration history predicted by PathFinder. Inferences of migration paths included P-M, M—M and M—P paths. Predicted probabilities
greater than 0.5 are depicted above the arrows. Colors correspond to the tumor location where clones were sampled from.

and A4 were predicted to be the primary tumor, even though the mi-
gration inferences are not highly supported (Fig. 11b).

For example, the probability of the path to spinal was relatively
low (0.52). The spinal tumor site contained only clone C9, and its
direct ancestral node was Al. Although the ancestral tumor site of
A1 was predicted to be breast (primary), all branches connected
to this node A1 were relatively long with branch lengths similar to
each other. Under this situation, the ancestral tumor site cannot
be unambiguously determined by the information of branch
lengths. As a result, the migration event that originated from the
node Al obtained low probability support, i.e. the P—M path
(breast—spinal).

Similarly, the probabilities of migration paths to adrenal and
lung metastases were not very high (0.67 and 0.53, respectively). In
these cases, the ancestral tumor site at node A3 was challenging to
infer by using only the phylogenetic information. The ancestral node
A3 was leading to many clones that were found within the breast
(primary), while the lung and adrenal metastases contained clone
C2 that was directly connected to A3 with a zero branch length.
Since node A3 was the direct descendant of the root of the phyl-
ogeny, the ancestral tumor site at the node A3 was likely breast.
However, we cannot negate the possibility of lung or adrenal meta-
stases as the ancestral tumor sites at this node, resulting in low sup-
port for these migration paths to lung and adrenal sites.

Interestingly, PathFinder detected a reseeding event from the
lung metastasis (P=1.0) (Fig. 10b). This is because clone CS8,
observed in the breast tumor, is a direct descendant clone of clone
CS5 that is found within the lung. Since clone C5 is not observed
within any other tumor sites nor C5 has any other direct descendant
clones, only a reseeding event can explain this observed pattern.

Opverall, PathFinder predicted alternative migration histories for
these two empirical datasets, including many seeding events between
metastases as well as a reseeding event in which a metastatic clone
moved back to the primary tumor. Our findings are supported by
various studies in metastatic breast cancer that discuss extensive het-
erogeneity of tumors as a result of seeding or reseeding events by
multiple clones between metastases (Savas et al., 2016; Yates et al.,
2017). Applying PathFinder in empirical data analysis enabled us to
discover more migration paths between clones and explore alterna-
tive migration histories.

4 Conclusions

Accurate computational methods for inferring cell migration routes
are needed to answer fundamental questions in cancer biology, such
as: How often do metastatic tumors arise from primary tumors
(P—M) versus metastatic tumors (M—M)? How often do cells from
metastases move back to primary tumors (reseeding M—P)? How
often do tumors exchange clones (M—M and P—M)? We also need
to know if these propensities differ among cancer types and patients.

The sequencing of increasing numbers of cancer cells and tumors
from many patients is poised to provide data essential to unravel the
complexity of cancer cell movements. These data will not be able to
fulfil their promise without the development of accurate methods to
infer clone migration histories between tumors.

Therefore, the statistical estimation of clone migration histories
is vital in cancer research, because it models the origin and move-
ments of cancer cells between tumors. The only existent method for
clone migration inferences is based on the maximum parsimony
principle (El-Kebir ez al., 2018), with attempts from researchers to
also explore models borrowed from the field of biogeography (Alves
etal., 2019; Chroni et al., 2019). We have presented a new Bayesian
method that uses the clone phylogeny, including clone branch
lengths, to predict migration histories. This approach increases the
accuracy of estimated migration histories, and provides a direct way
to compare alternative possible migration histories.

By analyzing the anatomy of errors in the simulated data, we
have shown that many of the errors were caused by the lack of suffi-
cient sampling of clones in each tumor site and of a limited number
of nucleotide variants for each tumor clone. This could be remedied
by using additional information such as clone-specific mutational
signatures, structural variants, copy-number alterations and epigen-
etic changes. We hope to integrate such information in the
PathFinder approach as it is becoming easier to obtain genomic and
other type of data from multiple tumors within a patient.
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