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Abstract
Repeated runs of the same program can generate different molecular phylogenies from identical data sets under the 
same analytical conditions. This lack of reproducibility of inferred phylogenies casts a long shadow on downstream 
research employing these phylogenies in areas such as comparative genomics, systematics, and functional biology. 
We have assessed the relative accuracies and log-likelihoods of alternative phylogenies generated for computer- 
simulated and empirical data sets. Our findings indicate that these alternative phylogenies reconstruct evolutionary 
relationships with comparable accuracy. They also have similar log-likelihoods that are not inferior to the log- 
likelihoods of the true tree. We determined that the direct relationship between irreproducibility and inaccuracy 
is due to their common dependence on the amount of phylogenetic information in the data. While computational 
reproducibility can be enhanced through more extensive heuristic searches for the maximum likelihood tree, this 
does not lead to higher accuracy. We conclude that computational irreproducibility plays a minor role in molecular 
phylogenetics.
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Introduction
In computational sciences, irreproducibility is observed 
when the same program, executed multiple times, yields 
disparate results under identical analytical conditions 
(Sonnenburg et al. 2007; Rougier et al. 2017). This phenom-
enon, termed computational irreproducibility, is distinct 
from general irreproducibility of results, which arises due 
to changes in models, methods, algorithms, and data sets 
leading to varying outcomes (Som 2014; Ritchie et al. 
2017; Shen et al. 2017). Conventionally, in the field of mo-
lecular phylogenetics, it has been expected that the execu-
tion of the same program, utilizing the same data set and 
applying the same models and assumptions, will produce 
the same phylogeny. That is, the results will be computa-
tionally reproducible. However, the lack of computational 
reproducibility has been reported in many scientific disci-
plines (Magee et al. 2014; Marjanović and Laurin 2018; 
Zhou et al. 2018; Salomaki et al. 2020; Shen et al. 2020; 
Young and Gillung 2020).

In molecular phylogenetics, Shen et al. (2020) systemat-
ically analyzed computational reproducibility in the infer-
ence of phylogenies using the maximum likelihood (ML) 
method. They compared the phylogenies generated by 
executing the same program twice on identical data sets, 
utilizing the same substitution model and heuristic search 

parameters. The only variation was the random seed used in 
the two heuristic searches for the ML tree. Their analyses 
found that 9–18% of the inferences led to divergent phylo-
genies. On average, these data sets contained less phylogen-
etic information compared to those yielding reproducible 
phylogenies (Shen et al. 2020). Furthermore, the irreprodu-
cible phylogenies were less accurate in reconstructing the 
true tree. These patterns of irreproducibility, especially their 
correlation with phylogenetic inaccuracies, are a matter of 
concern. Consequently, a deeper understanding of the 
causes and effects of computational irreproducibility in in-
ferred phylogenies and their accuracy is imperative.

From an evolutionary perspective, irreproducibility be-
comes a matter of significant concern if a single program 
run generates a phylogeny that reconstructs evolutionary 
relationships with less accuracy than another run of the 
same program. Concerns also arise if the irreproducibility 
is linked to the low optimality score of the inferred phyl-
ogeny, implying that the topological space explored in the 
initial run was insufficient and a potentially more accurate 
phylogeny with higher log-likelihood remained undiscov-
ered. Despite reports of the computational reproducibility 
of phylogenies (Zhou et al. 2018; Shen et al. 2020), these fun-
damental questions remain unresolved. If these concerns 
are validated, irreproducibility in molecular phylogenetics 
could impede the development of general biological 
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patterns, delay scientific consensus, and mislead future evo-
lutionary investigations.

Hence, our study aimed to compare the accuracies and 
log-likelihoods of alternative phylogenies for both 
computer-simulated and empirical data sets that suffered 
from phylogeny irreproducibility. Alongside, we investi-
gated fundamental causes for the observed irreproducibil-
ity patterns, their connection with the accuracy of inferred 
phylogenies, and their respective optimality scores.

Results and Discussion
Our approach involved comparing phylogenies generated 
in separate runs of the same program, both with each 
other and the known (correct) tree. We conducted 
two-run ML analyses of computer-simulated alignments 
of 142 species, originally generated using a model tree 
(fig. 1a) and empirically determined evolutionary para-
meters. These parameters included a wide range of evolu-
tionary rates (0.81–3.95 × 10−9 substitutions per site per 
year), base composition biases (39–82% G + C content), 
and transition/transversion rate ratios (1.35–2.6). From 
this collection, we selected 100 alignments at random for 
analysis using IQ-TREE 2.1.3 (Minh et al. 2020) and 
RaxML-NG 1.1.0 (Kozlov et al. 2019). Furthermore, we re- 
analyzed phylogenies generated by IQ-TREE 2 analysis of 
7,500 alignments (Shen et al. 2020). This allowed us to 
test the generality of patterns observed for the 100-data 
set collection. The sequence alignments in the 7,500-data 
set collection were also simulated using a wide range of in-
formativeness and sequence lengths for the phylogeny de-
picted in figure 1b.

In addition to the computer-simulated data sets, we 
analyzed an empirical data set of gene alignments com-
piled by Chen et al. (2019). Given that the true tree is un-
known for empirical data sets, we utilized a pruned version 
of their multispecies coalescence phylogeny in Chen et al. 
(2019) as the reference tree to ensure that all the inferred 
clades had 100% posterior probability and bootstrap 

support values (fig. 1c). We selected sequence alignments 
of 1,000 genes for IQ-TREE 2 analysis.

Relative Accuracies of Irreproducible Phylogenies
We executed IQ-TREE 2 twice using identical hardware, 
parameters, and heuristic search conditions (except for 
the random seed, see Materials and Methods) for each 
alignment in the 100-data set collection (fig. 2). There 
were 12 instances in which the second-run phylogenies 
(Q2) were different from the first-run phylogenies (Q1) 
(fig. 3a). These findings reaffirmed the presence of signifi-
cant computational irreproducibility previously reported 
by Shen et al. (2020). For these irreproducible phylogenies, 
more than 23% of the evolutionary relationships in Q1 dif-
fered from the true tree (T; mean ΔQ1T = 23.6%). 
Intriguingly, the same amount of phylogenetic inaccuracy 
was observed in the second-run phylogenies. This inaccur-
acy exceeded the difference between Q1 and Q2 (mean 
ΔQ1Q2 = 3.7%). Meaning, on average, ΔQ1Q2 was less 
than ΔQ1T and ΔQ2T (white vs. gray violin plots in fig. 
3b). Comparable trends were found in the RAxML analysis 
of the same data set collection (fig. 3c and d), as the first- 
and the second-run phylogenies (R1 and R2) had a similar 
degree of phylogenetic error (mean inaccuracies = 23.1% 
and 23.0%, respectively). But they were much more similar 
to each other (mean ΔR1R2 = 7.5%).

An analysis of the 7,500-data set collection confirmed 
the patterns observed in the 100-data set collection (fig. 
4a and b). Irreproducibility was found in 7.2% of the align-
ments, and the alternative phylogenies generated exhib-
ited equivalent inaccuracies (54.3% and 54.1%). Given 
that the two data collections were simulated under differ-
ent conditions yet produced similar trends, we anticipate 
these trends to be found for other tree topologies, se-
quence lengths, and substitution patterns. Indeed, a 
1,000-gene collection of empirical data sets produced con-
cordant patterns (fig. 4c and d). Analysis of 20.5% of the 
genes resulted in irreproducible phylogenies, and the first- 
and second-run phylogenies differed equally from the 

(a) (b) (c)

FIG. 1. Topologies utilized as the true tree in reproducibility analysis. (a) Phylogeny of 142 mammalian taxa used to generate the 100-data set 
collection of simulated alignments. (b) The tree used for simulating the 7,500-data set collection. (c) The multispecies coalescence tree of a 
subset of species (14) inferred using Chen et al. (2019) data set to ensure 100% bootstrap support and Bayesian posterior probabilities of 
1.0. This was used as the reference tree for the 1,000-genes collection.
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reference tree (mean difference of 43.6% and 43.8%). Once 
again, the difference between the first- and second-run 
phylogenies was considerably smaller (mean = 20.5%) 
than the inaccuracy of the phylogeny (fig. 4d). Therefore, 
the two runs did not produce phylogenies with significant-
ly different levels of accuracy.

The observed differences in the statistical qualities of ir-
reproducible phylogenies are even less significant because 
the first-run phylogenies already boasted superior 
log-likelihoods compared to the true tree (fig. 5a and c). 
This pattern aligns with previous studies that showed in-
ferred phylogenies to have optimality scores superior to 
that of the true tree (Nei et al. 1998). Notably, the highest 
log-likelihood difference between the true and inferred 
tree was 35.7 for the 100-alignment data set and 142.6 
for the empirical 1,000-genes collection, which is quite 
large. Also, alternative trees tended to have similar 
log-likelihoods (fig. 5b and d). These patterns confirm 
that the difference between the alternate phylogenies is 
generally smaller than their difference from the refer-
ence/true tree. Thus, computationally irreproducible phy-
logenies are substantially less different from one another 
than they are from the true tree in terms of topological ac-
curacy and optimality scores.

Lack of Phylogeny Reproducibility and the Extent  
of the Heuristic Search
In the aforementioned investigation and Shen et al. (2020), 
all the alignments in the data collections were subjected to 
heuristic searches under the same set of parameters. 
However, it is well appreciated that some alignments re-
quire more extensive heuristic searches than others. 
Accordingly, numerous options are available in various 
software to optimize heuristic searches (Kozlov et al. 
2019; Minh et al. 2020; Tamura et al. 2021). Haag et al. 
(2022) have developed a metric, implemented in Pythia 
software, to quantify the complexity of heuristic searches 
related to the presence of many local optima (Sanderson 
et al. 2011; John 2017). Alignments receive a score ranging 
from 0 to 1, with higher scores suggesting that the given 
alignment may require more extensive tree searching to 
reach the ML tree. We found the distribution of Pythia 
scores for 100-data sets collection to be quite broad (fig. 

6). The alignments exhibiting phylogeny irreproducibility 
had a higher average score (0.51), indicating that they 
needed a more extensive heuristic search than the align-
ments with reproducible phylogenies (0.43). The difference 
was substantially larger for the 7,500-data set and empiric-
al 1,000-gene collections (fig. 6).

Therefore, an ideal study investigating the reproducibil-
ity of phylogenies should conduct heuristic searches that 
are responsive to the complexity of the tree space 
searched, ensuring a similar probability of finding the ML 
tree across data sets. However, this is currently not feasible 
as determining the optimal number of heuristic searches 
and the scope of tree searching remains challenging 
(Haag et al. 2022). To test the hypothesis that expanding 
the heuristic search to include the island of trees contain-
ing the true tree would enhance the accuracy of the in-
ferred phylogenies, we devised an experiment in which 
the topology of the true tree was supplied as the initial 
tree to the heuristic search in IQ-TREE 2 analysis. This guar-
anteed thorough exploration of the topological neighbor-
hood of the true tree in the ML tree search. We then 
compared the topology with the highest likelihood pro-
duced by this analysis (Q3) with the true tree (T ) to test 
the hypothesis that a more accurate phylogeny will be in-
ferred if the heuristic search reached and evaluated phylo-
genies in the island that includes the true tree.

Intriguingly, the inaccuracies of the Q3 phylogenies were 
similar to those of Q1 and Q2 (fig. 7a and c). This similarity 
in the accuracy was not due to the identity of Q3 with Q1 or 
Q2, as the topological differences between Q1, Q2, and Q3 

were similar. However, the average log-likelihoods of Q3 

were higher than Q1 and Q2 (fig. 7b and d). Hence, disco-
vering phylogenies with higher log-likelihoods did not im-
prove the phylogeny accuracy for data sets exhibiting 
irreproducibility. We observed analogous trends for data 
sets with reproducible phylogenies (fig. 7e–h).

Forest of Trees With High Log-Likelihoods
To gain a deeper insight into the ensemble of trees with 
likelihoods superior to the true tree (termed the “optimal-
ity forest”), we conducted heuristic searches using various 
initial trees and random seeds for a representative align-
ment from the 100-data set collection. The log-likelihoods 

FIG. 2. An analysis of computa-
tional reproducibility in phylo-
genetics for the 100-data set 
collection. Two runs (1 and 2) 
of the same program using 
the same sequence alignment 
and substitution models may 
not produce the same tree 
(e.g., Q1 ≠ Q2 for IQ-TREE 2), re-
sulting in phylogeny irreprodu-
cibility (ΔQ1 Q2; vertical yellow 
arrow). Red arrows mark com-
parisons between the inferred 
trees and the true tree (T). 
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(a) (b)

(c) (d)

FIG. 3. Frequency of irreprodu-
cible phylogenies and their ac-
curacy in the 100-data set 
collection. Percentage of simu-
lated alignments for which 
identical and different trees 
were produced in two runs of 
(a) IQ-TREE 2 and (c) RAxML. 
The violin plots show the distri-
bution of topological differ-
ences between the first- and 
second-run trees (white, irre-
producibility) and first-run 
and the true tree (gray, accur-
acy) for (b) IQ-TREE 2 and (d ) 
RAxML. The X-axis of violin 
plots corresponds to the dens-
ity of observations, with wider 
parts of the violin correspond-
ing to a higher density of va-
lues. The dotted lines 
correspond to the average va-
lues. “1,” “2,” “Q,” “R,” and “T” 
denote the first run, second 
run, IQ-TREE 2, RAxML, and 
the true tree, respectively.

(a) (b)

(c) (d)

FIG. 4. Reproducibility results for the IQ-TREE 2 analysis of the 7,500-data set and the empirical 1,000-gene collections. Pie charts show the pro-
portions of data sets producing the same (reproducible) and different (irreproducible) phylogenies in two runs of IQ-TREE 2 for (a) 
7,500-alignment data set and (c) empirical 1,000-gene data set. The violin plots show the distributions of topological differences between 
the first- and second-run phylogenies (white violins) and between the first-run and the true tree (gray violins) for (b) 7,500-alignment data 
set and (d ) the empirical 1,000-gene data set. The X-axis of violin plots corresponds to the density of observations, with wider parts of the violin 
corresponding to higher density of values. Dashed lines show the mean values of the distributions. “1,” “2,” “Q,” and “T” denote the first run, 
second run, IQ-TREE 2, and the true tree, respectively.
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and inaccuracies of the discovered and explored phyloge-
nies are depicted in figure 8. This graph contains horizontal 
and vertical bands. Horizontal bands show phylogenies 
with the same inaccuracies but exhibit different 
log-likelihoods, whereas vertical bands comprise phyloge-
nies with similar log-likelihoods yet varying degrees of in-
accuracies. Notably, there is no significant correlation 
between the log-likelihood difference and phylogenetic er-
ror within the optimality forest, as suggested by a flat 

regression line (represented by the gray dashed line). In 
this example, the ML tree (indicated by a red circle) exhib-
ited inaccuracy closely approximating the average for the 
optimality forest. The existence of numerous phylogenies 
in the optimality forest may lead different runs of the 
same program to land on different phylogenies, resulting 
in computational irreproducibility characterized by differ-
ent topologies, log-likelihoods, or accuracies. However, the 
alternative phylogenies inferred due to irreproducibility 
are likely to have similar accuracies, on average (e.g., figs. 
5 and 8).

The presence of an optimality forest suggests that a 
more extensive heuristic search may not improve the ac-
curacy of the phylogenetic inference. However, more ex-
tensive heuristic searches will likely result in more 
reproducible phylogenies. In fact, 100% computational re-
producibility can be achieved through exhaustive searches 
(or very expansive heuristic searches), which would also 
yield the ML tree. However, as our findings suggest, the 
ML tree may not reconstruct the evolutionary relation-
ships more accurately than other trees in the optimality 
forest. Therefore, improving the reproducibility of the in-
ferred phylogeny for a data set does not necessarily lead 
to more accurate evolutionary relationships.

This association between reproducibility and accuracy 
observed by Shen et al. (2020) arose because the optimality 
forest is expected to be bigger for alignments with lower 
phylogenetic information, measured in the units of the 
number of substitutions. For example, the breadth of the 
optimality forest—the difference in log-likelihoods be-
tween the true tree and the tree with the highest 
log-likelihood found—is greater for data sets with fewer 
substitutions in the 100-data set collection (fig. 9a). This 
breadth will decrease to zero when the number of sites, 
and thus substitutions, becomes infinity, as the ML 
method is statistically consistent when all the model 
assumptions are met. Data sets with less phylogenetic in-
formation require more extensive heuristic searches to 
find the ML tree (fig. 9b). When identical heuristic search 
parameters are employed across all data sets in a 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 5. A comparison of optimality scores of irreproducible phyloge-
nies for three data collections. Panels on the left contain violin plots 
showing the distributions of differences in log-likelihoods between 
the first- and the second-run phylogenies (white) and between 
the first-run phylogeny and the true tree (gray) for alignments pro-
ducing irreproducible phylogenies for various combinations of data 
collections and inference methods (a, c, e, and g). The X-axis of violin 
plots shows the density of observations, with wider parts of the vio-
lin corresponding to a higher density of values. A positive difference 
means a higher likelihood for the first-run phylogeny. Panels on the 
right show the average of absolute log-likelihood differences be-
tween phylogenies inferred in two runs of the software and these 
phylogenies’ differences from the true tree (b, d, f, and h). “1,” “2,” 
“Q,” “R,” and “T” denote the first run, second run, IQ-TREE 2, 
RAxML, and the true tree, respectively.

FIG. 6. Violin plots showing the distributions of Pythia scores (tree-
space complexity) of different data set collections that resulted in 
irreproducible (white) and reproducible (gray) phylogenies. The 
X-axis of violin plots corresponds to the density of observations, 
with wider parts of the violin showing a higher density of values. 
A dotted line marks the average Pythia score for each data 
collection.
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collection, some inferred phylogenies become irreprodu-
cible for data sets with less phylogenetic information. 
This results in an artificial correlation between irreprodu-
cibility and inaccuracy, as the data sets with less informa-
tion also yield less accurate phylogenies (fig. 9c).

Conclusions
The computational irreproducibility of phylogenies is a 
natural consequence of employing heuristic searches for 

the ML tree. Heuristic searches are necessitated by the 
fact that the universe of possible trees grows exponentially 
with the number of sequences (Felsenstein 2004). The 
widely used software packages use smart algorithms to 
generate multiple excellent initial trees, which are excel-
lent starting points for heuristic searches. These searches 
evaluate variations of these initial trees through topologic-
al rearrangements and greedy hill-climbing strategies to 
find trees with higher log-likelihoods (Swofford 1999; 
Price et al. 2009; Kozlov et al. 2019; Minh et al. 2020; 
Tamura et al. 2021). This method explores many tree is-
lands and, as we observed, consistently identifies phyloge-
nies with log-likelihoods exceeding those of the true tree 
(figs. 5 and 7). This implies that the heuristic searches im-
plemented in popular programs are highly efficient in ac-
cessing the optimality forest and may achieve accuracies 
comparable to that of the ML tree. Our results suggest 
that the lack of computational reproducibility is not a sub-
stantial issue in phylogenetics. Still, any negative impacts of 
irreproducibility on downstream inferences can be miti-
gated using statistical support metrics (such as bootstrap 
support values) and presenting consensus phylogenies ob-
tained from multiple runs of heuristic searches with differ-
ent seeds and tuning parameters (Navidi et al. 1991; Kumar 
1996; Morel et al. 2021). In our view, the more significant 
challenges that molecular phylogenetics confronts are 
the lack of robustness and the presence of bias because 
of methodological choices for sequence alignment and 
tree inference algorithms, the use of different evolutionary 
models, the selection of genes and genomic segments to be 
analyzed, as well as the inclusion or exclusion of certain 
taxa or sequences.

Materials and Methods
Simulated Data sets
We used 100 simulated data sets generated in a previous 
study (Tamura et al. 2012) under an autocorrelated rate 
model among lineages, as extensive rate correlation has 
been found in many large empirical data sets (Tao et al. 
2019). These data sets were generated under a wide 
range of sequence lengths (258–9,359 sites), evolution-
ary rates (0.81–3.95 × 10−9 substitutions per site 
per year), base composition bias (GC% = 39–82%), and 
transition/transversion rate ratios (1.35–2.6) under 
the HKY model (Hasegawa et al. 1985). We used 
subset alignments of 142 mammalian species from 
the original simulated alignments of 446 vertebrates 
to reduce the computational burden in ML inferences 
(fig. 1a).

We also re-analyzed a collection of 15 × 500 simulated 
sequence alignments (7,500-alignments data set) from 
Shen et al. (2020). Alignments were generated at 15 levels 
of informativeness, where the average number of parsi-
mony informative sites ranged from 20 to 530. At each le-
vel, 500 alignments of 64 taxa with different lengths 
(300–1,000 sites) were simulated under the GTR + G4 
model (gamma rate heterogeneity = 1.0) for modeling a 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 7. Topological and log-likelihood differences between the 
first-run, second-run, and true tree for data sets resulting in irrepro-
ducible phylogenies. The average percent topological difference 
between Q1, Q2, Q3, and the true tree (T ) is shown for (a) 
100-data set collection and (c) 1,000-genes collection. The differ-
ences between log-likelihoods of Q1, Q2, Q3, and T are shown for 
(b) 100-data set collection and (d ) 1,000-genes collection. In e–h, 
the mean topological and log-likelihood differences are shown 
between the reproducible trees for both data set collections.
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complex evolutionary process. More details of simulation 
conditions can be found in the original article (Shen et al. 
2020).

Finally, we randomly selected 1,000 alignments from the 
empirical ruminant data set published by Chen et al. 
(2019). This data set was selected because branch support 
for both ML and MSC analyses was remarkably high for all 
nodes. We repeated the analyses for simulated data using a 
reduced data set including only 14 Bovidae species (fig. 1c). 
Sequence length ranged from 201 to 12,216 bp, and the 
substitution model used for each alignment was selected 
by ModelFinder (Kalyaanamoorthy et al. 2017).

Phylogenetic and Log-Likelihood Differences Between 
Trees
In the analysis of the 100-alignments collection, we used 
IQ-TREE 2.1.3 (Minh et al. 2020) and RAxML-NG 1.1.0 
(Kozlov et al. 2019) for each data set twice (run 1 and 
run 2) under the HKY substitution model (matching the 
simulation conditions) and a log-likelihood epsilon of 
0.0001 for optimization. A small epsilon value was used 
to better optimize the likelihood value in the ML inference 
and match the analysis conditions used in a previous study 
(Shen et al. 2020). To ensure consistency, the initial seed of 
the two runs was fixed to be 111 and 123 for the first and 
second runs, respectively. Using the same seed in both runs 
would mandatorily result in the same phylogeny. We com-
pared the log-likelihood values between the trees of two 
runs and the true tree. The phylogeny of 142 mammalian 
species for simulating the alignment was used as the true 
tree for each sequence alignment. We also used the 
Robinson–Foulds distance (dRF) to quantify phylogenetic 
differences between trees and report the percent differ-
ence calculated as dRF/(2 × (m−3)) × 100, where m is the 
number of tips.

For the 7,500-alignments collection, the first and second 
trees produced by IQ-TREE 2 and RAxML-NG and asso-
ciated metadata were directly retrieved from the supple-
mentary materials in Shen et al. (2020). For a direct 
comparison, log-likelihoods of the first run IQ-TREE 2 
and RAxML-NG trees were re-estimated using the same 
initial seed used in the original article in IQ-TREE 2. We 

also compared the topological differences between phylo-
genies produced in the first and second runs and the phyl-
ogeny error of all the inferred trees for each simulated data 
set. The true tree for each corresponding alignment was 
the 64-taxa phylogeny used for simulating the alignment. 
We only discuss results where trees were inferred using 
IQ-TREE 2 and 2 CPUs. Results from multiple CPUs ana-
lyses, star tree simulations, and RaxML runs were qualita-
tively similar, so they are not presented.

Finally, we evaluated the difficulty in inferring the cor-
rect tree from each alignment with Pythia (Haag et al. 
2022). The Pythia score evaluates the difficulty of inferring 
the ML tree based on the complexity of the tree space. We 
associated this score with the phylogenetic information in 
each alignment, represented by the total number of substi-
tutions. A small fraction of the alignments had to be ex-
cluded from this analysis because Pythia does not 
calculate scores for alignments containing two identical 
sequences.

The Optimality Forest of Trees
We conducted 100 heuristic searches in MEGA-CC (Kumar 
et al. 2012; Tamura et al. 2021), starting with different ini-
tial trees to estimate optimal likelihood trees. These initial 
trees were produced by the bootstrap procedure in 
IQ-TREE 2 on all the sequence alignments in the 
100-data set collection. Generally, programs do not output 
intermediate trees, so we modified MEGA-CC such that all 
the intermediate trees evaluated during the heuristic 
search were retained. Then, IQ-TREE 2 was used to com-
pute the log-likelihoods of all these intermediate trees to 
identify trees with optimality scores better than the true 
tree. Note that the intermediate trees may vary among 
programs. The width of the optimality forest is the 
log-likelihood difference between the final inferred tree 
and the true tree. For all other data sets, the width of 
the optimality forest was calculated as the difference be-
tween the maximum log-likelihoods of the inferred phylo-
genies and the true tree, which yields an estimate of the 
minimum width because more heuristic searches with dif-
ferent random seeds and initial trees may produce phylo-
genies with higher likelihoods.

FIG. 8. The forest of phylogenies 
with log-likelihoods higher 
than that for the true tree for 
an alignment of 142 species 
and 9,359 bases. This optimal-
ity forest contains 110 distinct 
phylogenies (black dots) with 
a higher ML than the true 
tree (the open black circle at 
the bottom left). The gray 
dashed line represents the lin-
ear regression line. The large 
red circle is for the phylogeny 
with the highest log-likelihood. 
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