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Abstract: 16 
High-throughput chromosome conformation capture sequencing (Hi-C) is a key 17 
technology for studying the three-dimensional (3D) structure of genomes and chromatin 18 
folding. Hi-C data reveals important patterns of genome organization such as 19 
topologically associating domains (TADs) and chromatin loops with critical roles in 20 
transcriptional regulation and disease etiology and progression. However, the relatively 21 
low resolution of existing Hi-C data often hinders robust and reliable inference of 3D 22 
structures. Hence, we propose TRUHiC, a new computational method that leverages 23 
recent state-of-the-art deep generative modeling to augment low-resolution Hi-C data 24 
for the characterization of 3D chromatin structures. Applying TRUHiC to publically 25 
available Hi-C data for human and mice, we demonstrate that the augmented data 26 
significantly improves the characterization of TADs and loops across diverse cell lines 27 
and species. We further present a pre-trained TRUHiC on human lymphoblastoid cell 28 
lines that can be adaptable and transferable to improve chromatin characterization of 29 
various cell lines, tissues, and species.  30 
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1 Introduction 33 

The technology of high-throughput chromosome conformation capture sequencing (Hi-34 
C) has emerged as a pivotal approach for studying three-dimensional (3D) genome 35 
organization1. This technology builds upon the principles of chromatin conformation 36 
capture assay (3C) and enables researchers to explore the interactions of chromatin 37 
across the entire genome. The analysis of Hi-C data at desired resolutions would 38 
facilitate a comprehensive understanding of genome-wide chromatin structures, such 39 
as A/B compartments1, topologically associating domains (TADs)2 and chromatin 40 
loops3, thereby shedding light on the essential functions of the 3D genome2. 41 
Nevertheless, biologically meaningful identification of fine-grained structural features, 42 
especially TADs and loops, necessitates higher resolution or read depth of Hi-C 43 
sequencing.  Achieving this resolution demands costly high-coverage deep sequencing 44 
to ensure sufficient read depth for accurately capturing chromatin interaction 45 
frequencies4. Consequently, many existing Hi-C datasets present relatively low 46 
resolution, defined by larger genomic bins divided from the genome due to cost 47 
constraints limiting their utility in discerning finer chromatin structures5,6. This issue has 48 
prompted the development of computational methods for Hi-C data enhancement in an 49 
attempt to leverage existing low-resolution Hi-C data to infer corresponding high-50 
resolution Hi-C data for various genomic downstream analyses. 51 

The computational enhancement of Hi-C data shares conceptual similarities with the 52 
image super-resolution task in computer vision7,8. Hi-C sequencing reads are typically 53 
transformed into contact matrices that can be visualized as image-like heatmaps, 54 
suggesting a potential application of super-resolution techniques (Figure 1a). However, 55 
directly applying image-based super-resolution methods to Hi-C contact maps is less 56 
effective due to the unique structural properties of Hi-C contact matrices. Unlike natural 57 
images, Hi-C contact matrices are inherently symmetric around the diagonal and 58 
contain biologically meaningful constraints, such as sparsity in long-range interactions 59 
and high variability across genomic regions. The number of rows and columns in a Hi-C 60 
matrix corresponds to the length of the genome divided by the resolution (bin size, 61 
smaller bin size of fixed genomic intervals)9. Key 3D chromatin features such as TADs 62 
are visually represented as triangular regions with elevated signal intensity on the heat 63 
maps, and chromatin loops are depicted as concentrated focal points (Figure 1a)10. 64 
Thus, developing specialized Hi-C resolution enhancement methods that incorporate 65 
biological domain knowledge is essential for accurately reconstructing high-resolution 66 
Hi-C contact maps.  67 
 68 
Various deep learning methods have been developed to address the resolution 69 
enhancement challenge,  predominantly based on two architectures: convolutional 70 
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neural networks (CNNs) and generative adversarial networks (GANs), as well as their 71 
variants. Existing CNN-based methods include HiCPlus5, HiCNN7 and HiCNN28, SRHiC11, 72 
and DFHiC12, while current GAN-based methods contain hicGAN6, DeepHiC13, HiCSR14, 73 
VEHiCLE15, and EnHiC16, accompanied with an integrated CNN and GAN-based model 74 
termed HiCARN17. These methods differ in terms of the loss function and model 75 
architecture that led to varying performances. HiCPlus pioneered the use of CNN 76 
architecture with mean squared error (MSE) loss, while HiCNN introduced a deeper 77 
convolutional network. hicGAN was the first to incorporate a GAN framework to 78 
generate high-resolution contact maps conditioned on low-resolution inputs. HiCNN2 79 
proposed three customized CNN architectures, and SRHiC later combined ResNet18 and 80 
WDSR arrchitectures19. Subsequent models such as DeepHiC and HiCSR introduced 81 
multiple loss components to improve performance. VEHiCLE employed a variational 82 
autoencoder within a conditional GAN framework, while EnHiC20 addressed the issue of 83 
image artifacts through a novel decomposition and reconstruction block. HiCARN 84 
employed a lightweight Cascading Residual Network (CARN)21, and the latest method, 85 
DFHiC, integrated peripheral genomic information through their implementation of 86 
convolution layers. Beyond these, genome graph-based approaches have recently 87 
emerged to infer genome sequences from Hi-C reads and generate more accurate Hi-C 88 
contact matrices22.   89 
 90 
The aforementioned methods primarily adopt an image super-resolution approach, 91 
where the Hi-C matrix is segmented, independently processed for resolution 92 
enhancement, and then reassembled. However, this approach does not fully account for 93 
the biological significance of Hi-C contact matrices, where interaction intensities are 94 
inherently tied to the hierarchical nature of 3D chromatin organization. Existing methods 95 
rely heavily on convolutional layers. Convolution layers can effectively model local 96 
patterns but fall short in capturing long-range chromatin interactions and global 97 
structural context. As a result, enhanced contact maps often lack structural coherence 98 
and biological fidelity. These limitations underscore the need for new approaches 99 
capable of integrating both local and global dependencies. Transformer-based 100 
approaches have achieved major breakthroughs in computer vision and natural 101 
language processing. However, the quadratic computational cost of the attention 102 
mechanism makes it prohibitive to apply it directly to image-like inputs with thousands 103 
of features. A solution is to use CNNs to capture local patterns and reduce the 104 
dimensionality of the input before using transformer blocks23. Based on these 105 
principles, we propose a novel Hi-C data resolution enhancement approach (TRUHiC) 106 
that integrates a customized and lightweight CNN-based U-2 Net architecture 107 
empowered by a transformer block. This hybrid architecture leverages the strengths of 108 
both convolutional and attention-based mechanisms. The U-2 Net’s deeply nested 109 
structure is well-suited for capturing fine-grained, multi-scale local features in contact 110 
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maps while maintaining a low computational overhead, an important consideration for 111 
high-throughput genomic data. At the same time, the transformer block enables the 112 
model to effectively capture long-range dependencies and complex interaction patterns, 113 
which are essential for reconstructing 3D genome organization. To the best of our 114 
knowledge, this is one of the first methods24 to harness the transformer’s attention 115 
mechanism for capturing global chromatin interaction patterns from low-resolution Hi-C 116 
contact matrices. Understanding these interactions at a finer scale is crucial for 117 
improving 3D genome reconstruction and enabling more accurate downstream 118 
biological interpretations. We demonstrate that our method outperforms state-of-the-art 119 
techniques in both contact map generation and chromatin structure identification, as 120 
evidenced by superior evaluation scores across multiple experiments.  121 

Furthermore, existing models, which are typically trained on artificially low-resolution 122 
datasets, often experience a dramatic drop in performance when applied to biological 123 
replications. To overcome this limitation25, we propose TRUHiC-LCL, a cell-line-specific 124 
(CLS) model for lymphoblastoid cell lines (LCLs) trained on a large real LCL-specific Hi-125 
C dataset (n=43). This approach addresses limitations in existing methods by 126 
mitigating biases that arise from training on limited and artificial low-resolution 127 
datasets and providing a genome-wide representation of chromatin interactions. As a 128 
result, the model improves adaptability to real-world applications and enhances 129 
chromatin structure inference. To promote accessibility and further advance Hi-C data 130 
analysis, we have released both TRUHiC and TRUHiC-LCL as open-source frameworks, 131 
which surpass existing methods and enable broader applications in 3D genome 132 
research. 133 

2 Results 134 

2.1 Super-resolution reconstruction of Hi-C contact maps from downsampled low-135 
resolution Hi-C data 136 
 137 
TRUHiC takes low-resolution Hi-C contact maps as the input and attempts to augment 138 
their resolution. The architecture of TRUHiC (see Figure 5) is based on the U-2 Net, and 139 
we equipped it with a transformer block to enable the resulting models to capture both 140 
short- and long-range interactions among the genomic regions and make context-aware 141 
predictions. We use low-resolution contact maps as the input and train the model in a 142 
supervised manner to predict the respective high-resolution contact maps. Also, we 143 
leverage mean absolute error (MAE) and signal-to-noise ratio (SNR) in our loss function 144 
with equal weights. To rigorously assess TRUHiC’s performance in reconstructing high-145 
resolution Hi-C contact maps, we trained the model on chromosomes 1-17 of the 146 
GM12878 cell line and tested the resulting model on chromosomes 18-22 with a down-147 
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sampled rate of 1/16 (see Methods for downsampling details). For a comprehensive 148 
comparison with existing models, including DFHiC, HiCNN2, and HiCARN, we applied 149 
identical data preprocessing to that of TRUHiC to ensure the exact same data input is 150 
used to train and evaluate every method. Next, we saved each model for the 151 
subsequent experiments in this subsection and subsections 2.2 and 2.4. To 152 
comprehensively evaluate the quality of the enhanced Hi-C contact maps, we employed 153 
multiple image quality assessment metrics that capture different aspects of 154 
reconstruction fidelity (see Methods for details), including Peak Signal-to-Noise Ratio 155 
(PSNR), Signal-to-Noise Ratio (SNR), Spearman correlation coefficient (SPC), Pearson 156 
correlation coefficient (PCC), Structural Similarity Index Measure (SSIM), Mean 157 
Squared Error (MSE), Jaccard Index (JI), F1 scores, and GenomeDISCO Scores 158 
(GDS)26. These metrics were calculated to compare the enhanced low-resolution Hi-C 159 
matrices generated by TRUHiC against the competing methods. As summarized in 160 
Table 1, TRUHiC consistently outperforms the other enhancement methods across all 161 
metrics in the test set.  162 

All enhancement models, including TRUHiC, were trained on an 80GB A100 NVidia 163 
GPU, and the training time and memory consumption for each model on the Hi-C 164 
dataset with an input size of 40*40 are summarized in Supplementary Table S1. 165 
TRUHiC demonstrates a balanced trade-off between computational speed and memory 166 
efficiency compared to competing methods.TRUHiC does not require any additional 167 
data normalization and denormalization and uses the raw data directly. In contrast, 168 
DeepHiC and HiCARN need additional data normalization and denormalization 169 
procedures, as they described in their papers. However, during experiments, we 170 
observed that DeepHiC and HiCARN performed better on raw data. Therefore, all 171 
competing models in this study were trained and evaluated on the raw Hi-C data to 172 
ensure a fair comparison. 173 
 174 

Cell line Method PSNR⬆ SNR⬆ SPC⬆ PCC⬆ GDS⬆ SSIM⬆ MSE⬇ 

 
 
 
 
GM12878 

HiCNN2 25.1040 102.8193 0.6304 0.6890 0.9112 0.5452 226.2458 

HiCARN1 25.1686 102.7036 0.6388 0.6961 0.9106 0.5428 247.7091 

HiCARN2 25.4459 106.3763 0.6484 0.7039 0.9112 0.5410 269.0648 

DFHiC 26.0993 115.1918 0.6841 0.7315 0.9212 0.5663 193.4211 

TRUHiC 26.2321 117.2548 0.6922 0.7381 0.9217 0.5777 177.3425 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 3, 2025. ; https://doi.org/10.1101/2025.03.29.646133doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.29.646133


   

Table 1. Comparison of vision metrics results averaged across test chromosomes (18-22) 175 
for each enhancement method. The arrows in each column indicate whether a higher (⬆) or 176 
lower (⬇) value is better, and the best score for each metric is bolded.  177 
 178 
 179 
2.2 Hi-C structural features reconstruction from downsampled low-resolution Hi-C 180 
data 181 
 182 
To assess the effectiveness of TRUHiC in recognizing important 3D chromatin 183 
structures, namely TADs and loops, we employed two widely used tools: Insulation 184 
scores (IS)27 and HiCCUPs28. IS is primarily developed to detect TAD boundaries, with 185 
the regions between the two adjacent significant boundaries defined as TAD regions. 186 
HiCCUPS identifies chromatin loops by detecting enriched pixels, where contact 187 
frequencies within a pixel are compared to surrounding regions to determine significant 188 
looping interactions. We applied these methods to both high-resolution (HR) Hi-C 189 
datasets and enhanced contact maps generated by different models. To quantify the 190 
consistency of TAD predictions, we calculated the Jaccard Index (JI) and F1 score 191 
between the detected TAD boundaries in HR and enhanced datasets. The results for 192 
chromosomes 18-22 in the GM12878 cell line are summarized in Figure 1b - d and 193 
Table 2. The analysis reveals that TRUHiC consistently generates TAD boundaries with 194 
higher similarity to the high-resolution dataset compared to the competing methods. 195 
Unlike HiCNN2 and HiCARN, TRUHiC does not overestimate the number of detected 196 
TAD boundaries, maintaining consistency with the HR dataset and indicating its 197 
effectiveness in preserving the integrity of chromatin structure.  198 
 199 
 200 
 201 
 202 
  a.  203 

 204 
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 b. 205 

                  206 
                                                                 207 
 c.             d.  208 

 209 
Figure 1. The performance comparison of the TRUHiC and its competing methods. a). A 210 
Hi-C contact map visualizing chromatin interactions, with TAD boundaries outlined in yellow and 211 
chromatin loops marked with black circles. The hierarchical organization of chromatin 212 
interactions is depicted, highlighting the structural features that contribute to genome 213 
organization. A zoomed-in region of the Hi-C contact map displays a representative interaction 214 
frequency (IF) matrix, where each value quantifies the frequency of interactions between 215 
genomic loci. Higher IF values indicate stronger chromatin interactions. b). Visualization of the 216 
result in the genomic region Chr 21: 44,560,001-45,550,000, where TRUHiC identified the most 217 
consistent TAD boundary locations to the real high-resolution data, compared to the competing 218 
methods. Yellow rectangles highlight TAD boundary locations detected in both the HR Hi-C 219 
contact map and the enhanced maps, while dashed yellow rectangles indicate TAD boundary 220 
locations present in the HR Hi-C contact map but missing in the enhanced maps.  Black 221 
rectangles indicate erroneously detected TAD boundaries that are absent in the HR Hi-C 222 
contact map but appear in the enhanced maps. c-d). Comparison of the number of TAD 223 
boundaries and sizes of TADs detected using IS on chromosome 21 of the GM12878 cell line 224 
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recovered by different methods for down-sampled low-resolution Hi-C data. The results for other 225 
test chromosomes are presented in Supplementary Figures S1 and S2.  226 
 227 
 228 
We applied HiCCUPs to the original HR Hi-C matrices, downsampled low-resolution 229 
matrices, and enhanced-resolution matrices generated by TRUHiC and other competing 230 
methods to identify chromatin loops. We aimed to recover a higher number of true 231 
positive chromatin loops while maintaining structural integrity across test chromosomes. 232 
The results, presented in Figure 2, illustrate the number of loops identified by HiCCUPs 233 
for each method compared to the original loop calls in the HR matrices, with the 234 
overlapping sections indicating shared loop interactions. Additional results for other 235 
chromosomes can be found in Supplementary Figure S3. As expected, significantly 236 
fewer reliable loops can be detected from the low-resolution Hi-C data. Notably, 237 
TRUHiC outperformed competing methods across all test chromosomes by retaining 238 
the highest ratio of recovered significant chromatin loops over identified spurious loops.  239 
 240 

241 
Figure 2. Comparison of chromatin loops detected on chromosome 20 of the GM12878 242 
cell line. The numbers of chromatin loops are obtained by running HiCCUPs on the Hi-C data 243 
recovered by different enhancement methods from down-sampled low-resolution Hi-C data. 244 
Each blue circle represents the total number of loops detected in the high-resolution (HR) Hi-C 245 
datasets, while the corresponding pink circle represents the loops identified on the HiC data 246 
from the downsampled sample (Figure 2.a) and on the enhanced Hi-C data using each method 247 
(Figures 2b-2f). The overlapping section indicates the intersections of blue and pink circles and 248 
thus represents loops that are true positives resulting from each enhancement method. The 249 
results for other cell lines are shown in Supplementary Figure S4. 250 
 251 
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We calculated the Jaccard Index (JI) and F1 score to assess the consistency of the 252 
TAD boundary and loop calls. Specifically, the JI measures the similarity between two 253 
sets by calculating the intersection ratio counting (at least one bp overlap) and the 254 
union, using the following formula: 255 

𝐽𝐼	 = 	 !"#$%&((#%")*"+%(,#)
!"#$%&(.#(,#)/!"#$%&(0#%")*"+%(,#)

 .                                                                           (1) 256 

 257 
For TAD boundaries, we considered two regions identical if they shared at least a one 258 
base pair (bp) overlap. For loop calls, we defined two loops as matching if their 259 
positions fell within the range of +/- 5 kb. The F1 score was computed as follows29: 260 
𝐹1	𝑠𝑐𝑜𝑟𝑒	 = 12

12	4	!"(52	4	56)
 ,                                                                                         (2) 261 

where we defined true positives (TP) as predicted loops that fall within the spatial range 262 
of +/- 5 kb around the loops identified in the ground truth. False positives (FP) refer to 263 
predicted loops that fall outside this flanking window. False negatives (FN) are ground-264 
truth loops that lack a corresponding predicted match within the same range. True 265 
negatives were not considered in the calculation, as they represent the majority of the 266 
genomic space and provide limited meaningful information.  267 
 268 
We further evaluate the quality of loop calling for each method by calculating the 269 
proportion of CCCTC-binding factor (CTCF) validate loop anchors (see Methods for 270 
details). Prior studies have shown that the majority of loop anchor loci are bound by the 271 
insulator protein CTCF, along with cohesin subunits RAD21 and SMC33. Therefore, we 272 
expect that our model will be able to predict a higher proportion of loop anchors that can 273 
be validated as CTCF-supported loop anchors co-occurring with CTCF, RAD21, and 274 
SMC3 ChIP-seq peaks. We applied this to the LR, TRUHiC, and other competing 275 
methods and reported the validated loop ratio in Table 2. Note that the comparative JI 276 
and F1 scores of the TAD boundary for LR align with the theoretical basis of the IS 277 
algorithm, which was initially designed for detecting TAD features in low-resolution Hi-C 278 
data. While IS demonstrates relative robustness across different data resolutions, our 279 
method achieves discernible improvements across all aspects, further reinforcing its 280 
effectiveness. 281 
 282 

Cell line Method TAD 
boundary 
JI⬆ 

TAD boundary 
F1⬆ 

Loop 
JI⬆ 

Loop 
F1⬆ 

Validated loop 
anchor ratio 
(%)⬆ 

 
 
 
 

LR 0.2771 0.4262 0.1564 0.2740 70.8700 

HiCNN2 0.2796 0.4304 0.2538 0.4415 68.5920 
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GM12878 HiCARN1 0.2870 0.4388 0.2654 0.4515 68.2800 

HiCARN2 0.3015 0.4568 0.2617 0.4446 72.8980 

DFHiC 0.3324 0.4944 0.2775 0.4655 77.1280 

TRUHiC 0.3479 0.5122 0.2992 0.4920 77.3360 

Table 2. Comparison of TAD boundaries and chromatin loops detected by different 283 
models on test chromosomes (18-22) in GM12878 cell line. The number shows the average 284 
value among the five test chromosomes. The arrows in each column indicate whether a higher 285 
(⬆) or lower value (⬇) is better, and the best-performing score in each category is highlighted in 286 
bold. Additionally, the higher validated loop anchor ratio in LR is attributed to the small number 287 
of loops detected in the LR data, where the majority of the identified loops successfully passed 288 
validation. The results for each test chromosome are summarized in Supplementary Tables S2- 289 
S5. 290 
 291 
 292 
During the experiments, we questioned the extent to which vision metrics correlate with 293 
biologically meaningful feature metrics. While prior studies have reported visual metrics, 294 
we did not find compelling discussions on why such metrics are specifically important 295 
for the Hi-C enhancement task. Commonly used vision metrics such as SPC, PCC, 296 
SNR, SSIM, and PSNR are widely employed for image quality assessment; however, 297 
their direct relevance to biological features, such as chromatin loops and TADs, remains 298 
unexplored. To investigate this, we computed 𝑅7 scores between various visual metrics 299 
and biological feature metrics we obtained from the above experiments to determine 300 
which visual assessments best reflect biologically significant structures in Hi-C data 301 
(Figure 3). 302 

Our analysis revealed that PSNR, SNR, SPC, PCC, GDS,  and SSIM exhibit strong 303 
correlations with TAD boundary feature metrics (𝑅7 scores 0.85-0.88), suggesting that 304 
these visual measures effectively benefit hierarchical chromatin organization 305 
identification. Likewise, SSIM and GDS correlated well with loop-based metrics (𝑅7 306 
scores 0.73-0.81), indicating their utility in evaluating fine-scale structural features. In 307 
contrast, PSNR, SNR, SPC, and PCC showed only moderate correlations with loop-308 
based metrics (𝑅7 scores 0.53-0.71), whereas MSE showed no association with any 309 
biological metrics (𝑅7 scores = 0.01), underscoring its limitations in assessing structural 310 
fidelity. These findings underscore the importance of selecting biologically relevant 311 
evaluation metrics when developing and benchmarking Hi-C data enhancement models. 312 

 313 
 314 
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 315 
Figure 3. Correlations between vision quality metrics and biological feature metrics. The 316 
plots display 𝑅7 scores quantifying the relationships between selected vision metrics on the 317 
X-axis (PSNR, GDS, SSIM, and MSE) and biological feature matrices on the Y-axis (F1 score) 318 
for chromatin loops. The full results are shown in Supplementary Figure S5. 319 
 320 
 321 
2.3 Performance assessment at different levels of data sparsity.  322 
 323 
To evaluate the robustness of our method under varying levels of data sparsity, we 324 
extended our analysis beyond the 1/16 downsampled dataset by randomly down-325 
sampling the high-resolution (10 kb) GM12878 cell line Hi-C data. We used 1/50 and 326 
1/100 downsampling ratios, resulting in progressively lower resolution datasets (500 kb 327 
and 1 Mb, respectively), allowing us to assess TRUHiC’s performance relative to 328 
competing methods under different sparsity conditions. All models were retrained 329 
separately for each downsampled dataset and subsequently tested on chromosomes 330 
18-22 using the same evaluation metrics: PSNR, SNR, SPC, PCC, GDS, SSIM, MSE, 331 
and biologically relevant metrics for TAD boundary and loop detection. The results, 332 
summarized in Supplementary Tables S6 and S7, demonstrate that TRUHiC 333 
predominantly outperforms other models at down-sampling rates of 1/50 and 1/100. As 334 
expected, increasing the down-sampling rate led to a decline in enhancement 335 
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performance across all models due to the greater loss of structural information at higher 336 
sparsity levels.  337 
 338 
 339 
2.4 Generalization across different cell types and species 340 
 341 
We aimed to assess TRUHiC’s capability in enhancing low-resolution Hi-C data across 342 
multiple human cell lines (K562, IMR90, and NHEK), as well as a mouse cell line 343 
(CH12-LX), to benchmark model generalization across different cell types and species. 344 
These datasets were originally processed at the same resolution as GM12878 (10 kb) 345 
and were subsequently downsampled by 1/16 to a 160 kb resolution. In this experiment, 346 
the pre-trained GM12878 models from Subsection 2.1 were directly applied to enhance 347 
different down-sampled Hi-C data from the three additional human cell lines and the 348 
mouse line. The test chromosomes for the human cell lines remained the same as 349 
GM12878 (18-22), while chromosomes 16-19 were selected as the test set for the 350 
mouse cell line. To evaluate the models’ effectiveness, we used the previously 351 
established evaluation metrics, which are outlined in Supplementary Table S8. We 352 
observed that TRUHiC achieved higher performance scores compared to the competing 353 
methods in three of these cell lines (K562, IMR90, and CH12-LX) while maintaining 354 
competitiveness in the remaining human cell line (NHEK).  355 

To further investigate the capability of TRUHiC to identify TADs and loops, we 356 
employed the same TAD and loop callers, IS and HiCCUPs, to detect these two 357 
features on the test chromosomes across different cell lines. As shown in 358 
Supplementary Table S9, TRUHiC achieved higher JI values, indicating a greater 359 
number of true positive TAD boundaries and loops while maintaining consistently lower 360 
false positive rates across all cell lines and species compared to other methods. These 361 
results demonstrate TRUHiC’s comparative generalization power across different cell 362 
lines and species. 363 
 364 
2.5 Enhancing resolution in experimentally sparse Hi-C data 365 
 366 
We applied our primary pre-trained TRUHiC model, trained on GM12878 with 1/16 367 
downsampled rate, to an actual low-resolution Hi-C data GM12329, obtained from 368 
HGSVC2, with a contact map resolution of approximately 18 kb. This sample had been 369 
excluded from the previous research studies30 due to its low sequencing quality, which 370 
resulted in the detection of only 158 chromatin loops at 10 kb resolution. To 371 
comprehensively evaluate its performance, we assessed all 3D genome structure 372 
features and all the reproducibility scores of GM12329 at a genome-wide scale. After 373 
enhancement with TRUHiC, we identified 4,177 chromatin loops across all autosomes, 374 
with all 158 loops originally detected in the data also present. We further compared it 375 
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with the recently released integrative TAD catalog in lymphoblastoid cell lines30. The 376 
results of this experiment, presented in Supplementary Table S10, showcase that 377 
TRUHiC outperforms the competing methods in accurately identifying loops and TAD 378 
boundaries in real-world Hi-C data as well. 379 
 380 
However, we observed a decline in performance across all evaluation metrics for 381 
GM12329 compared to our primary results on the downsampled GM12878 dataset. This 382 
finding is consistent with a recent study assessing the generalizability of deep learning-383 
based Hi-C resolution improvement methods, which reported that existing deep learning 384 
approaches struggle to generalize to experimentally derived sparse Hi-C datasets, with 385 
performance reductions of up to 57%25. These results highlight a critical limitation in 386 
current deep learning frameworks and underscore the need for improved strategies to 387 
enhance model generalizability. While our proposed TRUHiC framework outperforms 388 
existing methods, addressing its robustness on real sparse data remains an important 389 
direction in which we investigate further in Subsection 2.6 (CLS model). 390 
 391 
2.6 Towards robust Hi-C data enhancement using a cell line-specific (CLS) model 392 
 393 
Beyond our primary experiment using a 1/16 downsampled ratio, we generated four 394 
additional replicates of data with the same 1/16 downsampling ratio using different 395 
random seeds, constituting a total of five low-resolution datasets (Supplementary Figure 396 
S6) to try to mimic more diverse data distribution observed in real-world Hi-C 397 
experiments. We trained TRUHiC and other competing models on each of these five 398 
datasets separately (the primary dataset plus four replicates) and observed inconsistent 399 
prediction performance across different replicates and methods (Supplementary Tables 400 
S11 and S12). We argue that these fluctuations in model performance arise from 401 
inherent variations in the input Hi-C data distributions. Statistical analysis supports this 402 
hypothesis, as indicated by a significant Kruskal-Wallis Test p-value (< 0.05) followed by 403 
a Kolmogorov-Smirnov Test p-value for pairwise comparisons (Supplementary Table 404 
S13). To address this issue, we propose a distinctive model training strategy that 405 
integrates a diverse set of real Hi-C data rather than relying solely on a single 406 
downsampled sample. This approach is inspired by recent advancements in 407 
foundational models, which have demonstrated the effectiveness of large-scale data 408 
aggregation in various domains, such as natural language processing31–35 and 409 
computational biology36–42.  410 

Lymphoblastoid cell lines (LCLs) are widely studied in large-scale genomic research 411 
and are of particular importance for functional genomic and pharmacogenetics studies 412 
in humans43–46. As a model system, LCLs enable scientists to study gene regulation, 413 
genetic variation, and disease mechanisms at the population level using a consistent 414 
cell type that can be easily expanded from small blood samples. Given their 415 
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significance, a cell line-specific (CLS) model tailored for enhancing Hi-C data in LCLs is 416 
of great importance to the research community. Despite the merits a foundational model 417 
trained on diverse species and cell lines presents, a CLS model is better suited to 418 
capture the unified chromatin interaction patterns specific to the same cell line47,48. That 419 
is, a CLS model is inherently biased toward the distinct structural patterns unique to a 420 
specific cell line, which could be otherwise lost in favor of more common patterns across 421 
species and cell lines in a foundational model. 422 

Instead of pooling Hi-C data at the matrix level, as done in Li et al.’s study30, our 423 
proposed CLS modeling paradigm learns hierarchical chromatin interaction patterns 424 
from multiple independent biological samples during training, enabling it to generalize 425 
across diverse Hi-C datasets. Our CLS model framework is built upon the TRUHiC 426 
architecture and is trained on a large-scale dataset of HGSVC Hi-C data from Li et al.’s 427 
study30 (Figure 4a). To systematically assess model scalability, we designed two 428 
hierarchical training sets: a small dataset consisting of 10 unique HGSVC biological 429 
samples (training set S) and another large dataset including an expanded set of 43 430 
HGSVC biological samples, with GM12878 excluded (training set L). Both models were 431 
evaluated using a test set comprising three biological sample data (GM11168, 432 
GM13977, and GM18951) from Harris et al. 's study49, ensuring that none of these 433 
samples were included in any of the training sets.  434 

Due to computational constraints, the initial model training was conducted on 435 
chromosome 22. As shown in Supplementary Tables S14, S15 and Figure 4b, the 436 
model trained on training set L yielded significantly improved performance across all 437 
vision and biological feature evaluation metrics compared to the model trained on 438 
smaller training set S. These findings support our hypothesis regarding the 439 
effectiveness of our CLS-model framework, TRUHiC-LCL, demonstrating that a CLS-440 
model trained on the whole genome Hi-C data could even more effectively capture 441 
complex chromatin interaction patterns present in real Hi-C datasets, surpassing the 442 
limitations of single-sample training approaches. In this study, we release the pre-443 
trained chromosome 22 TRUHiC-LCL model trained on the training set L with 43 Hi-C 444 
samples, providing an open-access resource for future applications in Hi-C data 445 
enhancement and chromatin structure characterization.  446 
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 450 

Figure 4. The training strategy of building an LCL cell line-specific (CLS) model and 451 
performance comparison of TRUHiC-LCL and DFHiC-LCL on chromosome 22. a). This 452 
schematic illustrates our proposed approach for developing a Hi-C CLS model (TRUHiC-LCL) 453 
by aggregating diverse real Hi-C datasets from HGSVC (Li et al., 2024, n=43). We train an LCL-454 
model with two hierarchical training sets: Training Set S (small, n=10) and Training Set L (large, 455 
n=43, GM12878 is excluded). The left panel represents training using chromosome 22, while 456 
the right panel shows the potential to extend this framework to whole-genome training 457 
(chromosomes 1-22), demonstrating the scalability of TRUHiC-LCL for constructing a Hi-C 458 
foundation model that enhances data consistency and generalizability across multiple biological 459 
samples. b). The figure presents F1 scores for TAD boundary and loop identification using a 460 
small training set S (10 samples) and a large training set L (43 samples) across three real Hi-C 461 
samples (GM11168, GM13977, and GM18951). Performance is compared between the state-462 
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of-the-art DFHiC model and our TRUHiC framework. TRUHiC consistently outperformed DFHiC 463 
across both training sample sizes and demonstrated further improvements as the training set 464 
increased.  465 

 466 
 467 

3 Discussion 468 

Recent advances in chromosome conformation capture technologies like Hi-C have 469 
provided critical insights into chromatin folding and genome organization. However, the 470 
resolution of Hi-C data is often constrained by the sequencing depth and experimental 471 
limitations, making it challenging to accurately detect TADs and chromatin loops. To 472 
address this, we proposed TRUHiC, a computational framework designed to 473 
significantly enhance low-resolution Hi-C data with high fidelity. Expanding on this, we 474 
introduced TRUHiC-LCL, a lymphoblastoid cell line (LCL) specific model trained on 475 
enriched Hi-C datasets aimed at improving generalizability and robustness across 476 
different sequencing depths and experimental conditions for LCL Hi-C data. We provide 477 
a pre-trained TRUHiC-LCL model based on HGSVC data, specifically for chromosome 478 
22 of LCLs, developed within our constraints of computational limitations. We anticipate 479 
that these models will be further enhanced with regard to their robustness and 480 
performance in the future by incorporating additional LCL Hi-C data from consortia such 481 
as HGSVC50, HPRC51, and the 4D nucleome project52, as well as studies like Harris et 482 
al.49. Moreover, our open-access framework is adaptable and enables researchers to 483 
train and finetune their own CLS models and extend the approach to whole-genome Hi-484 
C data in various cell lines, tissues, and species, facilitating broader applications in 485 
chromatin structure analysis. 486 

Our experimental results support the idea and demonstrate the feasibility of building a 487 
foundational model for Hi-C data using our approach. By leveraging existing Hi-C 488 
datasets, this method enables the enhancement of low-resolution data, providing a 489 
scalable framework for understanding chromatin architecture in species with limited 490 
genomic resources. We anticipate the approaches demonstrated in this study will be 491 
transferable to future extensions to build foundation models with massive Hi-C data 492 
when available, with abundant opportunities to be applied to various applications across 493 
diverse organisms other than human cell lines, such as plants and agriculturally 494 
important species like soybeans. However, significant challenges remain in the 495 
development of such generalized models that await future explorations. 496 

One key limitation is the availability of high-quality, diverse Hi-C datasets for training. 497 
Currently, TRUHiC has been primarily trained on GM12878, a well-characterized human 498 
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cell line. Though TRUHiC-LCL has been trained on a large scale of LCL Hi-C data, the 499 
reliance introduces a potential bias in performance, as the model may become overly 500 
tailored to the specific chromatin features of the dataset of that single cell line, limiting 501 
its generalizability. To improve model robustness, the inclusion of Hi-C data from 502 
additional cell types and species is critical. A more diverse training set would reduce 503 
bias and enhance the model’s ability to generalize across different chromatin 504 
architectures, such as those found in plant genomes or organisms with unique genomic 505 
configurations. 506 

The performance discrepancy observed when applying the model to different datasets 507 
further underscores this limitation. A biased training data may result in reduced 508 
accuracy when used on species or conditions with chromatin features that deviate 509 
significantly from those of GM12878. Overcoming this challenge requires efforts to 510 
collect more Hi-C data, particularly high-resolution datasets from diverse backgrounds, 511 
to create a more comprehensive training set across different biological contexts. Future 512 
work should thus focus on expanding training datasets in both diversity and volume to 513 
reduce bias and enhance the model’s generalizability. Additionally, it is essential to 514 
explore how the model performs across datasets with varying resolutions and 515 
experimental protocols to help identify and address potential discrepancies. Coupling 516 
Hi-C data with complementary multi-omics datasets, such as ATAC-seq, ChIP-seq, and 517 
RNA-seq, could also enhance the model’s ability to link chromatin structure with gene 518 
regulation and functional outcomes, providing deeper insights into genome organization 519 
and transcriptional regulation. With a continued expansion of training datasets and 520 
continued model refinement, this method has the potential to advance our 521 
understanding of chromatin architecture across a wide range of organisms and 522 
biological contexts. Ultimately, it could contribute to accurate reconstructions of three-523 
dimensional genome organization, facilitating new insights into gene regulation, 524 
epigenetics, and genome function. 525 

 526 

4 Materials and methods 527 

4.1 Materials 528 

We utilized a published high-resolution Hi-C dataset of human cell type GM12878, three 529 
additional different human cell types, K562, NHEK, and IMR90, and one mouse cell 530 
type CH12-LX from the GEO database (accession number GSE63525)3 and a recent 531 
study that integrated human cell type from 44 individuals30. To generate low-resolution 532 
Hi-C data, we applied a random down-sampling approach to the raw sequencing reads 533 
of each cell line using down-sampling rates ranging from 1/16 to 1/100, with the primary 534 
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sampling rate set as 1/16. We trained our model using both high-resolution and low-535 
resolution Hi-C data. These diverse sampling rates enable us to assess the model’s 536 
performance across different levels of raw reads sequencing depth. Both high-resolution 537 
and the corresponding low-resolution Hi-C matrices were partitioned into 40 × 40 non-538 
overlapping blocks of 10 kb resolution with no normalization method applied 539 
(normalization set to NONE). We followed established practices in Hi-C super-resolution 540 
methodologies to preserve only small fragments where the genomic distance between 541 
two loci is < 2Mb, considering the typical average genomic distance of TADs to be < 1 542 
Mb5,6,12,13,15. Chromosomes 1-17 comprised our training set, and chromosomes 19-22 543 
constituted our test set. We split the training set into training and validation data 544 
following a 9.5:0.5 ratio during the training process of our model and all competing 545 
methods to have an identical and fair training regiment. 546 

 547 
4.2 TRUHiC architecture 548 

TRUHiC is a computational framework designed to enhance the resolution of Hi-C 549 
matrices through supervised training. The overall architecture of TRUHiC is portrayed in 550 
Figure 5. The backbone of the TRUHiC is a U-2 Net architecture, the successor of U-551 
Net architecture. A U-Net53 is an auto-encoder based model that has skip connections 552 
from the encoder layers to the respective decoder layers. A U-2 Net54 is a U-Net in 553 
which layers are replaced by U-Nets-like blocks, termed ReSidual U-blocks (RSU). 554 
More specifically, a U-2 Net uses RSU-L and RSU-4F blocks. RSU-L blocks use a 555 
CNN-based symmetric U-Net architecture with L-1 encoder/decoder convolutional 556 
layers in addition to the pooling and upsampling operations. RSU-4F blocks are used as 557 
the bridge of the U-2 Net, as well as pre and post-bridge blocks, using dilated 558 
convolutions. In the originally proposed U-2 Net framework, the encoder/decoder has 559 
four RSU-L blocks and one RSU-F block, and another RSU-F block is used as the 560 
bridging block between the encoder and the decoder. Another characteristic of the U-2 561 
Net architecture is the presence of auxiliary outputs from the bridging block and each 562 
decoder block.  563 

We customized the U-2 Net architecture for the Hi-C enhancement task by refining 564 
several key components to optimize performance and computational efficiency. At a 565 
high level, we reduced the number of encoder/decoder RSU-L blocks to two, which 566 
simplifies the network while retaining sufficient capacity to extract essential features. In 567 
our design, the encoder/decoder blocks play a critical role in capturing multi-scale 568 
information and reducing their number, which lowers computational complexity without 569 
significantly compromising performance. Additionally, we introduced a direct skip 570 
connection from the input to the outputs, inspired by the DFHiC model12. This 571 
connection helps preserve pixel-level details. To further improve feature representation, 572 
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we replaced the traditional RSU-4F bridging block with a customized multi-head 573 
self-attention gating mechanism55 embedded within a transformer block (Supplementary 574 
Figure S7). This self-attention module mainly regulates channel-wise information 575 
through fully connected layers, thereby enhancing the quality of the generated feature 576 
maps. We also applied weighting to each auxiliary output. Specifically, the loss from 577 
each auxiliary output is multiplied by 1/ex, where x is the index of the auxiliary output, 578 
starting at one for the final RSU-L block and ending at four for the transformer block. For 579 
example, the auxiliary output from the RSU-4F block is weighted by 1/e3. This approach 580 
prevents earlier layers from being forced to generate a fully refined prediction and 581 
instead allows them to reinforce the final output effectively. Finally, to preserve spatial 582 
resolution, a critical aspect for accurate Hi-C data enhancement, we removed the 583 
maximum pooling and upsampling operations from the RSU-L blocks (Supplementary 584 
Figure S7). Furthermore, we applied both L1 and L2 regularizations to the convolution 585 
layers to mitigate overfitting and improve the model's generalization capabilities. 586 

Additionally, we altered the loss function to include two terms as follows: 587 

𝐿(𝑦, 𝑦)3 = 	𝑀𝐴𝐸(𝑦, 𝑦)3 	+	 8
96:(;,;)=	4	>

	,                                                                       (3) 588 

where MAE denotes the mean absolute error, and SNR is the signal-to-noise ratio, 589 
defined in Equation (6). We use the LAMB optimizer56 and early stopping. Also, we 590 
implement a learning rate reduction strategy upon loss plateau to enhance convergence 591 
stability. 592 
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 593 
Figure 5. Overview of the TRUHiC architecture.  We customized the U-2 Net architecture in 594 
several ways. A skip connection was added from the input to the output of the model. We 595 
replaced the U-Net bridge block in the model with (customized) multi-head self-attention gating 596 
wrapped up in a transformer block. We also removed MaxPooling and UpSampling layers to 597 
prevent the loss of information due to data compression. Additionally, auxiliary outputs have a 598 
weighted loss contribution. TRUHiC takes the low resolution of the Hi-C contact map as the 599 
input and generates the super-resolution Hi-C contact map as the output. A detailed illustration 600 
of RSU_L, RSU_4F, and Transformer blocks can be found in Supplementary Figure S6. 601 
 602 
 603 
4.3 Identification of TAD boundaries and loops 604 

We used the Insulation Score (IS) method to identify TAD boundaries in this study, 605 
which was originally designed to detect TAD boundaries and quantify the boundary 606 
strength of Hi-C data with limited resolution. For all the experiments with GM12878 607 
data, the Hi-C data were mapped to the hg19 human reference genome, and the KR 608 
normalized contact matrix at 10 kb resolution was used to compute the insulation scores 609 
and boundary scores (BS). TAD boundaries were identified using the FAN-C toolkit 610 
(version 0.9.26b2) with a minimum boundary score cut-off value of 0.20, specifying a 611 
100 kb window size, as referenced in the 4DN domain calling protocol52,57. For the 612 
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experiments of sample GM12329, we used the hg38 human reference genome and 613 
applied SCALE normalization to the predicted contact map at 10 kb resolution. For the 614 
TRUHiC-LCL model, we selected the 5 kb resolution to be consistent with the protocol 615 
of the integrative TAD catalog described in Li et al.’s study30.  616 

The IS method operates by defining a sliding window along the diagonal of the Hi-C 617 
matrix and summing contacts within this window. Regions with low insulation scores 618 
(corresponding to high boundary scores) act as insulating boundaries and are identified 619 
as TAD boundaries. In contrast, regions with high insulation scores (low boundary 620 
scores) typically fall within TAD domains and are referred to as TAD regions, which 621 
represent the genomic intervals between the adjacent TAD boundaries in this study. 622 
TADs with a size larger than 2 Mb were excluded from the analysis, and sex 623 
chromosomes X and Y were removed from all analyses due to sex-based variability in 624 
the samples. Juicebox software and the FAN-C toolkit in Python 3.7 were used to 625 
visualize insulation scores, TAD boundaries, and respective boundary scores.  626 

Chromatin loops (and loop anchors) of the experiments of samples GM12878 and 627 
GM12329 were identified by HiCCUPS (GPU) at 10 kb resolution, and the loops of three 628 
real samples enhanced by the TRUHiC-LCL model were detected at 5 kb resolution. 629 
The data alignment and matrix normalization procedures for the experiments with the 630 
GM12878 sample, actual samples, and TRUHiC-LCL followed the same approach as 631 
described in TAD boundary identification. The Jaccard Index was computed using the 632 
bedtools jaccard command, and the F1 score was calculated based on the equation 633 
provided in the previous section and implemented using our custom Python script.  634 
 635 
4.4 CTCF loop anchor validation with ChIP-seq datasets 636 
 637 
ChIP-Seq experimental datasets for CTCF, RAD21, and SMC3 for each cell line were 638 
obtained from Rao et al.’s study3. For each loop anchor, we expanded its region by ± 5 639 
kb flanking windows and merged overlapping or adjacent intervals into a single larger 640 
interval. A loop anchor was classified as CTCF-supported if its expanded regions fully 641 
contained CTCF ChIP-Seq peak, RAD21 ChIP-Seq peak, and SMC3 ChIP-Seq peak 642 
simultaneously. In cases where RAD21 or SMC3 ChIP-Seq data were unavailable for a 643 
given cell type, a loop anchor was considered CTCF-supported if the expanded anchor 644 
overlapped with CTCF and either SMC3 or RAD21 peaks. If only CTCF ChIP-Seq data 645 
were available, the loop anchor was required to show a direct overlap with a CTCF 646 
ChIP-Seq peak to be classified as CTCF-supported. The validated loop anchor ratio 647 
was calculated as the percentage of CTCF-supported loop anchors among the total 648 
unique loop anchors. We reported this value as a matrix to evaluate the accuracy of 649 
loop calling across different methods. The validation experiment was not performed for 650 
the CH12-LX cell line due to the absence of corresponding ChIP-Seq datasets provided 651 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 3, 2025. ; https://doi.org/10.1101/2025.03.29.646133doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.29.646133


   

in Rao et al.’s study. A detailed list of CTCF ChIP-Seq datasets used in this analysis is 652 
provided in Supplementary Table S16. 653 
 654 
4.5 Baseline Models 655 
 656 
We selected HiCNN2, HiCARN1, HiCARN2, and DFHiC methods for benchmarking our 657 
proposed method. While pre-trained model weights for a number of the mentioned 658 
methods are publicly available, we opted to train them all from scratch to ensure fair and 659 
consistent evaluations. Each model was implemented using its official source code to 660 
maintain fidelity to the original methods. In the case of DFHiC, we re-implemented the 661 
code in Tensorflow 2.14 and added improvements to it for scheduling the learning rate 662 
to prevent premature loss convergence. For the HiCNN2 and HiCARN (HiCARN1 and 663 
HiCARN2) methods, we used the source Pytorch implementations without any major 664 
changes other than cleaning up the code and adding command line arguments for ease 665 
of training and inference. We are providing the implementations of these models on our 666 
repository at https://github.com/shilab/TRUHiC for better reproducibility of the results. 667 
 668 
4.6 Evaluation metrics 669 

To assess the performance of our model and the quality of the generated enhanced Hi-670 
C samples, we considered the output as an image and employed various evaluation 671 
metrics, which include Mean Squared Error (MSE), Structural Similarity Index (SSIM), 672 
Peak Signal-to-Noise Ratio (PSNR), Signal-to-Noise Ratio (SNR), Spearman 673 
Correlation Coefficient (SPC), Pearson Correlation Coefficient (PCC) and 674 
GenomeDISCO Scores (GDS).  675 

Firstly, MSE is used to calculate the average squared difference between the model-676 
predicted Hi-C matrix and the real high-resolution Hi-C matrix, which can effectively 677 
capture the average discrepancy at the pixel level. SSIM score evaluates the structural 678 
similarity between the enhanced output and the ground truth Hi-C matrix, with higher 679 
scores indicating greater preservation of structural integrity. Furthermore, we used both 680 
PSNR and SNR to measure the quality of the reconstructed Hi-C contact maps. 681 
Specifically, SNR quantifies the ratio of signals relative to background noise, whereas 682 
PSNR measures the ratio of the maximum possible signal power to the power of 683 
corrupting noise in the enhanced contact matrix and the target real high-resolution 684 
matrix. The higher both values are, the more unwanted noise is removed. PSNR and 685 
SNR are formulated in Equations (5 and 6), respectively. We employ SPC and PCC to 686 
evaluate the correlation between the predicted Hi-C matrix and the actual Hi-C matrix 687 
along the matrix diagonal. Additionally, we used a concordance measure named 688 
GenomeDISCO, which was developed to assess the similarity between a pair of contact 689 
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maps received from 3C experiments. We provide the equations for these metrics as 690 
follows15: 691 

 𝑀𝑆𝐸	 = 8
#"
	𝛴(,?(𝐻(? − 𝐸(?)7                                                                                     692 

(4) 693 

 𝑃𝑆𝑁𝑅	 = 	10𝑙𝑜𝑔8@(
ABC"

A9D
)                                                                                     (5) 694 

													𝑆𝑁𝑅	 = E#,%	D#,%

FE#,%	(G#,%/D#,%)"	
                                                                                            (6) 695 

 𝑆𝑆𝐼𝑀	 = (7H'	H(	4	I!")		4	(7J'(	4I"") 		
(H'"	4	H("	4	I!") 4	(J'"	4	J("	4	I"")

, 	𝐶8	= 0.01 and 	𝐶7	= 0.03                            696 

(7) 697 

 𝑆𝑃𝐶	 = 	 E#)!	()G#	/	)G)()D#	/	D)
KE#)!	()G#/)G)"	KE#)!	()D#/)D)"	

                                                                      (8) 698 

𝑃𝐶𝐶	 = E#)!	(G#	/	H')(D#	/	H()
KE#)!	(G#/H')"	KE#)!	(D#/H()"	

                                                                          699 

(9) 700 

where 𝐻(? is the pixel in the real HR Hi-C matrix and  𝐸(? is the pixel in the enhanced Hi-701 
C matrix. MAX denotes the maximum possible value in samples, while μ and 702 
𝜎 correspond to the mean and variance, respectively. 𝜎GD  is the covariance of 𝐻 and 703 
𝐸, and 𝑟 is rank. Mean, variance, and covariance in the SSIM formula are calculated 704 
using a Gaussian filter, and C1 and C2 are constants used to stabilize the calculations. 705 
We used the SSIM implementation provided in DeepHiC. 706 
 707 
 708 
4.7 Data and Code Availability 709 

The GM12878, K562, IMR90, NHEK, and CH12-LX datasets supporting this study are 710 
publicly accessible in the GEO database under accession number GSE63525, available 711 
at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525. The raw 712 
sequencing Hi-C data generated by HGSVC2 discussed in this study can be 713 
downloaded directly at the following link: 714 
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20230515715 
_Shi_hic_files/. Our TRUHiC method, along with the competing methods, the pre-716 
trained TRUHiC-LCL model for chromosome 22, and all original code for the statistical 717 
analysis and pipeline implementation, have been deposited on GitHub 718 
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https://github.com/shilab/TRUHiC and are publicly available as of the date of 719 
publication.  720 
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