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A B S T R A C T   

The study of tumor evolution is being revolutionalized by single-cell sequencing technologies that survey the 
somatic variation of cancer cells. In these endeavors, reliable inference of the evolutionary relationship of single 
cells is a key step. However, single-cell sequences contain many errors and missing bases, which necessitate 
advancing standard molecular phylogenetics approaches for applications in analyzing these datasets. We have 
developed a computational approach that integratively applies standard phylogenetic optimality principles and 
patterns of co-occurrence of sequence variations to produce more expansive and accurate cellular phylogenies 
from single-cell sequence datasets. We found the new approach to also perform well for CRISPR/Cas9 genome 
editing datasets, suggesting that it can be useful for various applications. We apply the new approach to some 
empirical datasets to showcase its use for reconstructing recurrent mutations and mutational reversals as well as 
for phylodynamics analysis to infer metastatic cell migrations between tumors.   

1. Introduction 

In cancer, somatic mutations occur continuously and are subjected to 
natural selection, resulting in the ongoing evolution of tumor cell pop
ulations within a patient [1–4]. Genomic surveys of tumor cell pop
ulations have enhanced our understanding of the patterns of adaptive 
mutations, dynamics of mutational processes, metastatic cell migra
tions, and patterns of gene expression changes [4–10,25]. Such studies 
will become more commonplace with rapid advances in single-cell 
sequencing technologies that readily reveal genetic variation among 
individual tumor cells for studying tumor evolution at a cellular reso
lution [11–13]. 

However, the analysis of single-cell sequence datasets can be chal
lenging owing to the presence of missing data as well as false-positive 
and false-negative detection of mutations [12–14]. Doublet sequences, 
where more than one cell is accidentally sequenced together, also 
contribute to sequencing errors and complicate analyses [12,14]. 
Consequently, computational methods have been developed to improve 
the quality of single-cell sequences and impute missing bases, e.g., 
BEAM [13]. Also, methods that allow for the presence of sequencing 
errors have been developed, affording a more accurate inference of 

cellular phylogenies and tumor dynamics [13–18]. 
Although many available computational methods model sequencing 

errors to infer mutation order and phylogeny of cells or clones [13–18], 
there is still a need for methods to further improve inference. We 
motivate this need by applying available methods to infer a cellular 
phylogeny using a synthetic dataset for which the true phylogeny is 
known (Fig. 1A). For this dataset, a sophisticated mutation ordering 
method, SCITE [16], produced a clone phylogeny with many spurious 
clones, which resulted in a much larger phylogeny than that simulated 
(Fig. 1B). CellPhy, which uses a phylogenetic optimality principle of 
Maximum Likelihood [18], incorrectly predicted that almost all the cell 
sequences were distinct (Fig. 1C). In contrast, an approach to cluster 
cells by the similarity of observed cell sequences (RobustClone [17]) 
greatly underestimated the number of distinct clones (Fig. 1D). There
fore, the presence of sequencing errors adversely impacted different 
methods in different ways, despite the fact that some of these methods 
specifically model sequencing errors during clone and phylogeny 
inference. 

Previously, we developed a method to distinguish phylogenetic sig
nals from sequencing errors by restricting the analysis to haplotypes 
containing high-frequency variants [19]. This method (called TopHap) 
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performed better than others (Fig. 1E), but still produced a phylogeny 
with a few spurious clones (false positives). Also, it contained one 
missing clone (false negative), which occurred with a low frequency 
(<50 cells per clone). Based on these examples, it is clear that some 
current methods do not perform well on some datasets, and there is a 
room to improve these methods. In this study, we explore one such 
possibility in which we sought to advance the TopHap method by 
integrating it with mutation ordering analysis to detect spurious clones 
and identify additional clones (rare clones containing lower frequency 
variants) as well as their placement in the cell phylogeny. We refer to the 
new approach as TopHap+ , whose reliability and usefulness were 
evaluated in this article. In the following, we describe TopHap+ and 
then investigate its performance using simulated and empirical datasets. 

2. Materials and methods 

2.1. TopHap+ approach 

The TopHap+ uses an alignment of cell sequences (Fig. 2A). The first 
step is to refine cell sequences using an available method, such as BEAM 
[13], in order to obviate the need for a model to deal with false positive 
and false negative mutation calls, such as those required by SCITE. 
Following the TopHap approach [19], we first select high-frequency 
SNVs, at a desired variant allele frequency (VAF) threshold (default: 
>5 cells), to construct an alignment of haplotypes. High-frequency 
haplotypes, which correspond to major tumor clones, are then selected 
at a desired haplotype frequency (HF) threshold (default: >5 cells), and 
a phylogeny of major clones is inferred (Fig. 2B). 

Next, we perform mutation ordering analysis to assess the phylogeny 
inferred above. To do so, the phylogeny is converted into a mutation tree 
by reconstructing ancestral sequences at internal nodes of the phylogeny 
using the Maximum Parsimony (MP) method (Fig. 2C) [20]. The most 

likely ancestral state is assigned to every internal node of the tree at each 
site. A mutation is said to have occurred when there is a difference in 
bases between the ancestral and descendant nodes. If the placement of a 
given mutation (say d) in the mutation tree is reliable (i.e., the phy
logeny is correct), cells that carry d should also carry the mutation (say 
a) that occurred in the immediately ancestral branch (Fig. 2D). 
TopHap+ calculates the ratio of the proportions of cells with both mu
tations (Cad) and with the descendant mutation (C*d), which is referred 
to as the co-occurrence index (COI [21]) (Fig. 2E),  

COI = Cad/C*d⋅                                                                               (1) 

COI is calculated for all inferred pairs of descendant (d) and ancestor 
(a) mutations. COI is calculated using the originally observed cell se
quences before BEAM refinement, which avoids any bias in the imputed 
bases and error corrections. When multiple mutations are mapped to the 
same branch, the average COI for all the mutations is used. TopHap+
prunes tips and subtrees if the COI is too low (we used a cut-off of 0.3) 
(Fig. 2F). Note that tips and mutations removed in this way are recon
sidered for attachment in the clone phylogeny, as outlined below. 

Next, TopHap+ inspects the alignment and finds all the mutations 
that are missing from the current mutation tree, including those with 
frequencies lower than the previous cut-off (Fig. 2G). 
TopHap+ calculates the COI of a candidate variant with each of the 
other mutations, and the candidate mutation is attached to the mutation 
tree if its COI is greater than the desired threshold (we used a cut-off of 
0.4). Search for the best place to attach the candidate variant starts from 
the tip of the mutation tree, and the deepest attachment position is 
selected. TopHap+ begins with candidate mutations with the highest 
VAF, and the mutation tree is expanded continuously. 

At the end, TopHap+ derives candidate clone sequences by accu
mulating mutations from the root to each node of the mutation tree. All 
the candidate sequences are compared with the cell sequences in the 

Fig. 1. Simulated (A) and inferred clone phylogeny using SCITE (B), CellPhy (C), RobustClone (D), and TopHap (E). (A) A simulated phylogeny of 10 clones 
with 100 single nucleotide variants (SNVs). The number of cells sampled for each clone is shown in parentheses. Cell sequences were generated by computer 
simulations along the clone phylogeny, with sequencing errors and missing bases introduced in the resulting alignment. The doublet sequencing rate, false positive 
rate, false negative rate, and rate of missing data were set to 10%, 1%, 20%, and 20%, respectively. (B-E) Clones and phylogenies inferred by using (B) SCITE, (C) 
CellPhy, (D) RobustClone, and (E) TopHap methods. BEAM was applied prior to TopHap in order to deal with missing data and sequencing errors, whereas other 
methods intrinsically model these errors. Phylogenies were rooted using the normal cell sequence. For SCITE and CellPhy, inferred clones are colored based on the 
simulated clones, as a large number of clones were produced. Tips without color are clones involved in doublet sequencing in the simulated datasets. 
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original alignment to assign cells to clones, based on the highest 
sequence similarity. TopHap+ estimates the false-positive detection rate 
of mutations (FPR) and false-negative rate (FNR) by comparing observed 
cell sequences with their matched clone sequences. The FNR is the 
proportion of germline (wild-type) bases that are observed at the posi
tions of predicted mutant bases, while FPR is the proportion of mutant 
bases that are observed at the positions of predicted wild-type bases. 

Then, we re-test the relationship of mutations on adjacent branches 
by using the FNR to detect if any intermediate clone is spuriously 
inferred in mutation ordering analysis due to sequencing errors resulting 

in incorrectly observing germline (wild-type) bases (e.g., Fig. 1B). When 
mutations occur sequentially, the data should contain real intermediate 
cells that carry only the early (ancestor) mutation without the later 
(descendant) mutation (Fig. 2H). Thus, TopHap+ tests if the number of 
predicted intermediate cells with only early mutation and lacking the 
later mutation (Ca-) is significantly larger than the expected number of 
spurious intermediate cell sequences due to false-negatives of the 
descendant mutation (Ea-). Given the FNR and the total number of cells 
with the early mutation (Ca- + Cad), Ea- is calculated by,  

Fig. 2. An overview of TopHapþ . (A) Genomic sites with mutation frequencies lower than the variant allele frequency (VAF) threshold are removed from the full 
alignment. Then, haplotype sequences with lower than haplotype frequencies (HF) are removed. (B) A phylogeny of haplotypes is inferred, and the induced mutation 
tree is produced (C). (D and E) Mutation placement is assessed by using COI, and (F) spuriously placed mutations are pruned. (G) Mutations that are not included in 
the mutation tree are considered for reattachment using COI. (H and I) Inferred mutation order is assessed by counting the number of cells with target mutations, and 
(J) the mutation tree is refined. (H) Doublet cells are identified and pruned, and a final clone phylogeny is produced. 
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Ea- = (Ca- + Cad) × FNR,                                                                (2) 

where Cad is the number of observed cells that carry both earlier and 
later mutations. The expected number of the descendant cells with both 
early and later mutations is then calculated as,  

Ead = (Ca- + Cad) – Ea-⋅                                                                   (3) 

TopHap+ conducts Fisher’s exact test using Ca-, Cad, Ea-, and Ead 
(Fig. 2I), with a significant p-value (< 0.01) supporting the sequential 
occurrence of the two mutations. Since we did not observe elevated false 
positive detection of clones (Fig. 4A), there was no need to make any 
adjustments for multiple-testing. TopHap+ performs this test for each 
pair of ancestor-descendant mutations in a given mutation tree and 
accordingly refines the mutation tree (Fig. 2J) by removing likely 
spurious ancestral clones. 

To convert the mutation tree into a final clone phylogeny, 
TopHap+ again assigns a clone sequence to each cell, i.e., the clone 
annotation (see above). TopHap+ also tests if a cell sequence is that of a 
doublet cell, i.e., more than one cell has been sequenced together. Since 
a doublet cell carries mutations from more than one cell, each observed 
cell sequence is additionally paired with the most similar expected 
sequence that carries the largest number of observed mutations not 
found in the assigned clone sequence. The expected doublet cell 
sequence is then constructed by adding all mutations from the two an
notated expected sequences. Following a previous study [16], 
TopHap+ calculates the likelihood of observing a sequence (D) with n 
SNVs given an expected sequence (T), FNR, and FPR, 

L(D|T, FNR, FPR) = Πn
i=1P(Di|Ti), (4)  

where. 
P(Di = wild-type | Ti = wild-type) = 1 − FPR, 
P(Di = mutant | Ti = wild-type) = FPR, 
P(Di = wild-type | Ti =mutant) = FNR,  

P(Di = mutant | Ti = mutant) = 1 − FNR⋅                                          (5) 

The Di and Ti represent the i-th SNV in observed and expected se
quences, respectively. TopHap+ calculates the log-likelihood (lnL) by 
giving each of the expected singleton and doublet sequences and per
forms the likelihood ratio test, i.e.,  

LR = 2(lnL(D | T = doublet) – lnL(D | T = singleton)) with df = 1⋅       (6) 

If the doublet fits better (p < 0.01), then the cell is annotated as a 
doublet and is removed from the clone annotation (Fig. 2K). A detailed 
description of TopHap+ can be found in the Supplementary Note. 

2.2. Assembly and analysis of simulated datasets 

We obtained 110 simulated datasets with 100 – 2000 cells from a 
previous study [17]. For all simulated datasets, the doublet rate, FPR, 
FNR, and rate of missing data were 10%, 1%, 20%, and 20%, respec
tively. The number of tumor clones was 5 – 50. We randomly selected 
100 SNVs when a simulated dataset contained > 100 variants because 
< 100 mutations are often profiled through targeted single-cell 
sequencing, e.g., [22,23]. These datasets were generated under the 
assumption of the infinite sites model. The topology of each clone 
phylogeny was distinct and was generated randomly [17]. 

TopHap+ analysis was performed with the default VAF and HF 
thresholds (5 cells). We compared the performance of TopHap+ with 
SCITE, CellPhy, and RobustClone, which have been reported to perform 
well in previous studies [13,17,18]. The SCITE [16] analysis was per
formed with 900,000 MCMC chains, and the number of repetitions was 
set to one. The simulated FPR and FNR were provided, and the option to 
attach cells to an inferred mutation tree was selected. Clones were 
defined as groups of cells attached at the same node of the mutation tree. 

Following the default setting, RobustClone [17] was performed by 
the robust principal component analysis (RPCA) to refine observed cell 

genotypes, followed by clustering cells, clone annotation, and clone 
genotype prediction. A clone phylogeny was inferred using the 
maximum likelihood method with the Jukes-Cantor substitution model 
in MEGA-CC [24]. The phylogeny was rooted using the normal cell 
sequence, which had no mutations. 

CellPhy [18] analysis was performed with the GTR substitution 
model for diploid genotypes, where the stationary frequencies were 
obtained from the ML estimate (GTGTR4 +FO+E option). A normal cell, 
which did not contain any mutations, was set to be the outgroup. Mu
tations were then mapped on the inferred phylogeny using the “mut
map” option. The same substitution model was selected, and the branch 
length optimization was disabled. Similarly, a normal cell was assigned 
to be the outgroup. Predicted cell sequences were generated by accu
mulating mutations from the normal cell to a tip of the phylogeny, 
excluding mutations that were mapped at the external branches because 
inferred cell phylogenies had spuriously very long external branches (e. 
g., Fig. 1C). Clones were defined as groups of cells with identical inferred 
sequences. 

2.3. Evaluating the accuracy of inferred clones and phylogenies 

To evaluate the accuracy of inferred clone phylogenies, we computed 
the RF distance using the phangorn R package [26]. RF distance is a 
standard approach to evaluate the similarity of two phylogenies in 
molecular evolution and phylogenetics. We converted simulated cell 
phylogenies to clone phylogenies, where clones were groups of cells 
with no sequence differences. We paired each simulated (true) clone to 
an inferred clone that contained the largest number of cells that 
belonged to the simulated clone. We allowed a single inferred clone to be 
paired with more than one simulated clone. When more than one 
simulated clone was paired, the tip of the inferred phylogeny was 
duplicated because the RF computation required the same number of 
tips in the phylogenies. Also, we pruned inferred and true clones that 
were not paired. For example, a simulated clone did not have an inferred 
clone pair when those simulated cells were excluded in the inferred 
clone annotation, e.g., false-positive detection of doublets. We counted 
the number of total partitions and those not found in the other phy
logeny for each phylogeny. The number of pruned simulated clones for 
the RF computation was counted as the number of partitions not found 
in the inferred phylogeny. Overall, RF is not designed to be used for 
phylogenies with different numbers of tips, and errors of missing and 
additional clones cannot be accurately assessed using RF distances. 
Therefore, to further assess errors in the size of inferred phylogeny (the 
number of tips), we also reported the difference in the number of clones 
inferred and the true clone count. 

2.4. Assembly and analysis of empirical datasets 

We obtained targeted single-cell sequencing data of metastatic 
ovarian cancers (Patient 3 and Patient 9 datasets), where high-frequency 
SNVs were first identified in the bulk-tumor sequencing data, and then 
targeted in the single-cell sequencing [27]. The number of cells was 672 
and 420, and the number of SNVs was 84 and 43, for Patient 3 and 
Patient 9, respectively. In the TopHap+ analysis, we used the 5% VAF 
and 10 cells HF thresholds, because the use of more relaxed default 
thresholds (5 cells) seemed to retain too many spurious haplotypes 
hampering the phylogenetic method, i.e., more than half of inferred 
clones were removed by the mutation ordering analysis due to spurious 
mutation placements (Supplementary Fig. S3). 

We also obtained four datasets with > 1000 cells containing meta
static tumor cells that were generated through lineage tracing technol
ogy using CRISPR/Cas9 genome editing (dataset IDs: 3724, 3508, 3515, 
and 3454) [28]. For each dataset, cells were engineered with recording 
“target sites,” and heritable indels were accumulated over time, which 
were subsequently sequenced. We transformed the indel matrix into an 
alignment of binary variants corresponding to the presence and absence 
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of each indel. Since sequencing errors rarely happen in the lineage 
tracing technology, we did not refine observed cell sequences at the first 
step of TopHap+ . In the TopHap+ analysis, VAF and HF thresholds 
were set to 1%, and mutations that were shared by > 30 (3724 and 
3508), > 20 (3515), and > 15 cells (3454) were subject to the mutation 
ordering analysis to avoid a long computation time. 

2.5. Using PathFinder in conjunction with TopHap+ in empirical data 
analysis 

Inferred TopHap+ phylogeny can be used for downstream analysis. 
As an example, we illustrated the inference of metastasis cell migration 
events from TopHap+ phylogeny using PathFinder [29]. Inferred clone 
sequences and tumor sites that contain clones by TopHap+ were pro
vided. When more than one section of a tumor site was sampled, we 
merged these sections into a single tumor site because our interest was to 
infer migration paths between tumor sites. We assumed a clone was 
present in a tumor site when at least one cell was detected. PathFinder 
analysis was performed by providing the primary tumor site informa
tion. For a polytomy, at most 100 different tumor membership states 
were examined. When no tumor site was predicted with > 0.15 posterior 
probability at a given ancestral node, the site with the highest proba
bility was selected. 

3. Results 

3.1. Accuracy of TopHap+ clone phylogeny 

We first tested the absolute performance of TopHap+ and then 
compared it with the other methods for the example dataset presented in 
Fig. 1A. TopHap+ clone phylogeny agreed well with the simulated 

phylogeny (Fig. 3), which was better than the performance of other 
methods (Fig. 1). For this dataset, the mutation ordering analysis in 
TopHap+ removed many spurious clones produced by TopHap. Also, it 
identified the missing clone that occurred with a low frequency 
(Fig. 1E). Unlike SCITE, TopHap+ did not produce many incorrect in
termediate clones (Fig. 1B). Also, CellPhy predicted all cell sequences to 
be distinct, which was not the case for TopHap+ (Fig. 1C). 
TopHap+ also did not underestimate the clone count, a problem seen for 
RobustClone (Fig. 1D). Therefore, TopHap+ performed well on this 
example dataset, which we had selected for illustrating likely im
provements offered by TopHap+ . 

To obtain a more general assessment of the improvements offered by 
TopHap+ , we next analyzed additional simulated datasets available 
from an independent study [17]. There were a total of 110 datasets, each 
with 100 variants, the number of cells from 100 to 2000, and the number 
of clones from 5 to 50. We used simulated datasets because the ground 
truth about cell phylogeny is known. By the way, the cell phylogenies 
used to simulate these 110 datasets were different from each other. 

The number of clones produced by TopHap+ was the most similar to 
the actual number of clones simulated, as compared to other methods 
(Fig. 4A). When the number of simulated clones was large, i.e., 50, 
BEAM performed better than TopHap+ . However, BEAM produced too 
many clones for many datasets. While the simple filtering of low- 
frequency sequences (TopHap, the first step in TopHap+) resulted in 
distinct sequences similar in the count to the number of simulated clones 
when they were fewer than 20, such filtering generally underestimated 
the number of clones for datasets containing many simulated clones. 

Also, the inferred clone phylogeny by TopHap+ was more accurate 
than TopHap, as the RF distance was smaller (Figs. 4B and 4C). These 
clone phylogenies were more accurate for datasets with fewer clones 
(Fig. 4B) because TopHap+ predicted fewer clones for datasets with 
many clones. Note that the variation of inference accuracies within the 
same number of simulated clones is a function of different simulation 
conditions, e.g., the topology of clone phylogeny. Similarly, TopHap 
inferred phylogenies more accurately when the number of simulated 
clones in a dataset was smaller, but TopHap+ clone phylogenies were 
always better. 

Also, TopHap+ phylogeny was particularly more accurate when the 
number of cells in the dataset was larger (Fig. 4C). On the other hand, 
TopHap’s accuracy was better for datasets with 500 cells than 100 cells, 
while its accuracy did not become better for larger datasets, i.e., 1000 
cells. Since the mutation ordering analysis in TopHap+ uses the pattern 
of co-occurring mutations, datasets with a larger number of cells were 
expected to show a clearer pattern of mutations among cells resulting in 
better accuracies. 

We lastly compared the performance of TopHap+ with other 
methods. As observed in the example data analysis (Fig. 1), SCITE and 
CellPhy generally produced too many clones, while RobustClone pro
duced too few (Fig. 4A). TopHap+ produced more accurate phylogenies 
than RobustClone for datasets with a large number of clones (≥20 
clones) and a large number of cells (Figs. 4B and 4C). Note that since 
RobustClone performed slightly better than TopHap+ for datasets with 
a smaller number of cells (100), RobustClone may be selected for small 
datasets. We could not evaluate the accuracy of inferred clone phylog
eny by CellPhy and SCITE, because they produced too many clones, i.e., 
the inferred phylogenies do not look similar to the simulated phylog
enies. Overall, TopHap+ performed similarly to or better than the other 
methods. 

3.2. Reconstruction of metastatic cell migration events using TopHap+

Next, we present two applications of TopHap+ in empirical data 
analysis and demonstrate the usefulness of TopHap+ in actual empirical 
data analysis. We first show an analysis of metastatic cell migration 
events using two targeted single-cell sequencing data of metastatic 
ovarian cancers, i.e., Patient 9 and Patient 3 datasets [27]. 

Fig. 3. Inferred phylogeny using TopHapþ . Sequence alignment simulated 
using the phylogeny in Fig. 1 (on the left) was used. TopHap+ clones and their 
phylogeny is compared with the true phylogeny. TopHap+ phylogeny contains 
two spurious clones (gray color), and thus, the number of tips is larger than the 
simulated phylogeny. 
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Patient 9′s data consisted of 420 cells and 43 SNVs. The cells were 
obtained from the left ovary (two sections), right ovary (one section), 
and omentum (two sections). Fig. 5A shows the TopHap+ clone phy
logeny. The number of cells annotated for each clone is shown at the tip 
of the phylogeny. As observed in the simulation study, the number of 
TopHap+ clones was larger than TopHap (19 and 6, respectively; Sup
plementary Fig. S5A). 

The inferred phylogeny is ladder-like, suggesting that this tumor 
evolved under the linear cancer progression model [7]. All early clones 
were found within the left ovary, which was, thus, potentially the site 
where the tumor was initiated. Since the original article did not specify 
the location of the primary tumor, we assumed that the left ovary was 
the primary tumor to reconstruct the history of metastatic cell migration 
events. Then we inferred the metastatic cell migration history using 
PathFinder [29], which predicted that the right ovary and omentum 
were seeded by the left ovary through multiple cell migration events, i. 
e., there were multi-clone seeding events (Fig. 5B). In addition, Path
Finder also predicted multi-clone seeding events from the right ovary to 
omentum. These seeding events explain why many clones are shared by 
tumors, which was also suggested by [7]. However, TopHap+ identified 
many more clones than [7], offering a more detailed result. 

We next analyzed the Patient 3 dataset (84 SNVs with 672 cells), 
where cells were sampled from the right ovary (two samples), omentum, 
and adnexa. TopHap+ identified 31 tumor clones (Fig. 5C) compared to 
six clones deduced in the original study. Since the original study iden
tified the clones through a cell clustering approach, the number of clones 
should have been underestimated, as we observed in our simulation 
study (i.e., RobustClone, which is based on a clustering approach). 
Nevertheless, the basic structure of TopHap+ phylogeny was similar to 
that reported in the original study, e.g., the early clones were found in all 
the tumor sites in both inferences from the TopHap+ and the original 
study, validating the TopHap+ inference. Also, as observed in our 
simulation study, the number of TopHap+ clones was larger than 
TopHap (8; Supplementary Fig. S5B). 

In contrast to the Patient 9 dataset, in the TopHap+ inference, early 
clones were found in all the tumor sites. This observed pattern of clone 
sharing between tumors complicated a reliable reconstruction of meta
static migration history, i.e., PathFinder failed to produce a cell migra
tion history. Nevertheless, late-arising clones fell into two major clades, 
one found only in the omentum and adnexa, while the other clade was 
composed of clones from the omentum and ovary. This pattern sug
gested that clones migrated between the omentum and adnexa and 

Fig. 4. The performance of TopHapþ using simulated datasets. (A) Simulated and inferred clone counts. Each dot represents a dataset. The black line is the one- 
to-one line. A plot that contains < 100 inferred clones is shown in Supplementary Fig. S4. (B and C) Accuracy of inferred clone phylogeny for datasets with an 
increasingly larger number of clones simulated (B) and cells (C). In panel B, datasets contained 1000 cells, so the number of cells per clone decreased with the 
increasing number of clones. In panel C, there were 10 clones in each dataset, so the number of cells per clone increased as the increasing number of cells. RF was 
computed between inferred and simulated clone phylogenies for each method. The average RF across the datasets is plotted, and an error bar represents the standard 
deviation. We included only datasets with at least three inferred clones. CellPhy and SCITE were not included because the number of inferred clones was extensively 
overestimated. 
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between the omentum and ovary at a later time. Since many clones were 
shared by more than one tumor, multi-clone seeding events should have 
frequently happened for this patient as well. 

3.3. Detection of recurrent mutations and losses of mutations using 
TopHap+

A previous study analyzed the Patient 3 and 9 datasets using SCITE, 
which assumes that the same mutation does not occur multiple times at 
the same genomic position [15]. It reported that the violation of this 
assumption might result in mutation trees that looked different from 
when recurrent mutations and losses of mutations are allowed, i.e., 
recurrent mutations and losses of mutations were inferred by comparing 
the fit between with and without the additional model of recurrent and 
reversing mutation events in mutation ordering analysis [15]. 

Therefore, we next compare TopHap+ inferences, where an addi
tional model of recurrent and reversing mutation events is not required, 
with those from the previous study [15]. For the Patient 9 dataset, 
TopHap+ ordered 41 mutations and predicted the recurrent mutation 
(chr7: 121,528,399) that was identified in the previous study (Fig. 6A). 
Similarly, for the Patient 3 dataset, TopHap+ identified the loss of a 
mutation (chr5: 50,248,591) that was reported in the previous study 
(Fig. 6B). Also, both of the inferred mutation trees by TopHap+ were 
similar to those from the previous study. 

Interestingly, TopHap+ additionally identified three recurrent mu
tations and two more losses of mutations for Patient 3, which were not 
found in the previous study (Fig. 6B). Since the inferred mutation order 
agreed well with the previous study, these detections were unlikely 
affected by errors in the inference. We also examined these mutations 

and found that observed bases supported these TopHap+ inferences 
(Fig. 6C-6H). For example, most cells that were affected by the inferred 
loss of the mutation, chr5: 50,248,591, did not have this mutation, while 
this mutation was observed among the cells that evolved after the for
ward mutation but that were not affected by the loss of the mutation, 
validating the inference of TopHap+ (Fig. 6C). In the case of inferred 
recurrent mutations, cells that were predicted to be affected by the 
recurrent mutations actually carried the mutant base, while those not 
affected did not, which similarly supported the TopHap+ inferences 
(Fig. 6F-6H). However, we noticed that the number of cells affected by 
the backward mutations was small. Since the false-negative detection 
rate of mutations is very high in single-cell sequencing data, inferred loss 
of mutation can be potentially spurious, i.e., predicted backward mu
tations might be false-negative detections of mutations. In the case of 
inferred recurrent mutations, we found that the base assignments at 
these genomic positions were missing from many cells unaffected by the 
recurrent mutations. An elevated number of missing bases at these 
genomic positions and a high false-negative detection rate, potentially 
lead to the inference of recurrent mutations. Overall, while 
TopHap+ can detect recurrent mutations and losses of mutations and 
can be used for the analysis of mutational history, the inference needs to 
be carefully examined. 

3.4. Analysis of CRISPR/Cas9 lineage tracing data using TopHap+

We lastly show that TopHap+ can also be used for data generated 
through CRISPR/Cas9-based gene editing with massively parallel single- 
cell readouts [28]. In this technology, genomic sites are designed to be 
targeted by Cas9 to induce indels, which are inherited by daughter cells. 

Fig. 5. Inferred clone phylogeny and metastasis migration paths using ovarian cancer data. The Patient 9 and Patient 3 datasets [27] were analyzed using 
TopHap+ . (A) Inferred clone phylogeny (Patient 9). Cells were sampled from the left ovary (LOv1 and LOv2), right ovary (ROv), and omentum (Om1 and Om2). The 
number in a table is the number of cells. A circle at a tip of a phylogeny is a clone, and the color indicates tumor sites that contain a clone. A black circle represents 
that all tumors contain a clone. (B) Inferred metastatic cell migration history using PathFinder. Each arrow indicates a migration path. (C) Inferred clone phylogeny 
(Patient 3). Cells were sampled from the right ovary (ROv), omentum (Om), and adnexa (Ad). PathFinder did not complete the computation within a day, so the 
result was not shown. 
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Thus, this technology is expected to be useful in tracking the movement 
of cells between tumor sites [28,30]. 

First, we describe the results of the 3724 dataset, where cells were 
sampled from the primary tumor (lung) and two metastatic tumors (liver 
and soft tissue) [28]. TopHap+ produced 13 clones, and the inferred 
clone phylogeny agreed well with the cell phylogeny reported in the 
original study [28], validating the performance of TopHap+ on 
CRISPR/Cas9-based lineage tracing data (Fig. 7A). In the TopHap+
phylogeny, all predicted clones were found within the primary tumor, 
and a few clones were found within the metastatic tumors in addition to 
the primary tumor. This observed pattern suggested that all clones likely 
evolved within the primary tumors, and some primary clones seeded the 
metastatic tumors. Indeed, the application of PathFinder predicted that 
both of the metastatic tumors were seeded from the primary tumor 

(Fig. 7B). Also, PathFinder predicted that there were multiple seeding 
events, i.e., four clones seeded for each of the metastatic tumors. 

Next, we analyzed the three other datasets (3508, 3545, and 3515) 
and similarly found that TopHap+ phylogeny agreed well with the 
original study (Supplementary Fig. S6). Similar to the 3724 dataset, the 
primary tumors contained all or almost all clones identified, and Path
Finder predicted that all metastatic tumors were seeded from the pri
mary tumors with multi-seeding events. Overall, these results indicate 
that TopHap+ and PathFinder analysis can be also performed for 
CRISPR/Cas9-based gene editing data to reveal the dynamics of clones. 

4. Discussion 

In this study, we advanced the TopHap approach to analyze single- 

Fig. 6. Inferred recurrent mutations and losses of mutations. (A and B) Inferred mutational histories by TopHap+ for Patient 9 (A) and Patient 3 (B). Inferred 
recurrent mutations and losses of mutations are shown with blue and red letters, respectively. (C-H) The number of bases observed among cells at the genomic 
positions of the predicted recurrent mutations and losses of the mutations by TopHap+ (Patient 3). 
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cell sequencing data. TopHap was originally developed to analyze SARS- 
CoV-2, where the data has only a small number of phylogenetically 
informative sites with > 1,000,000 sequences [19]. In such a data 
structure, phylogenetic signals compete with sequencing errors, which is 
the same as the issues observed in single-cell sequencing data analysis. 
The major advancement in the TopHap+ is the addition of mutation 
ordering analysis [21], to assess the reliability of the inference and 
resolve the evolutionary history of low-frequency mutations. 

Analysis of empirical data using TopHap+ and PathFinder suggested 
that all tumor evolutions inferred in this study were affected by multi- 
clone seeding events. Currently, metastatic cell migration patterns are 
analyzed using tumor bulk sequencing data [7,31,32]. Although 
multi-clone seeding events have been reported previously, the number 
of such events was much smaller in the bulk sequencing data analysis 
[7]. Since bulk sequencing data analysis requires the decomposition of 
clone sequences, similar clones are difficult to be identified, which may 
result in an underestimation of the number of cell migration events. 
Overall, single-cell data can provide clone composition of tumors with 
higher resolution, and analysis of TopHap+ clone phylogeny can iden
tify a more comprehensive cell migration history between tumor sites. 

In the TopHap+ approach, we implemented mutation ordering 
analysis to test the reliability of inferred mutation order. Actually, our 
mutation ordering analysis can be coupled with other methods that infer 
mutation trees, e.g., SCITE. As an example, we coupled it with SCITE. 
We found that our mutation ordering analysis can also distinguish 
spuriously inferred mutation orders and can improve the inferences of 

mutation trees inferred by SCITE (Supplementary Note and Supple
mentary Fig. S7). Specifically, spurious clones were successfully filtered, 
and the clone count estimate became accurate (Supplementary 
Fig. S7A). Also, the accuracy of inferred clone phylogenies became 
comparable to TopHap+ (Supplementary Fig. S7B and S7C). We also 
tried to improve the CellPhy inference using the same mutation ordering 
analysis. However, this technique is based on inferred mutation orders 
unaffected by reversing and recurrent mutations. For the CellPhy trees, 
we were not able to use it because CellPhy incorrectly predicted that 
most of the mutations (>75%) were affected by reversing or recurrent 
mutations. Therefore, our mutation ordering analysis can be coupled 
with methods that are designed to order mutations. Since methods to 
assess the reliability of inferred mutation trees are currently lacking, our 
mutation ordering analysis will also be useful for the other methods to 
place reliability scores. 

Lastly, a limitation of TopHap+ is the requirement of user-specified 
VAF and HF thresholds. While the default VAF and HF thresholds were 
set to 5 cells, more stringent thresholds must be assigned for a given 
dataset. For example, when more than half of inferred clones were 
removed through the mutation ordering analysis due to spurious mu
tation placements, TopHap+ analysis should be performed using higher 
VAF and HF thresholds (e.g., Supplementary Fig. S3). Also, to avoid a 
long computation time, more stringent thresholds may be desired when 
the number of low-frequency variants is very large (e.g., the analysis of 
the CRISPR/Cas9-based gene editing data). In the future, we plan to 
develop a method to determine an optimal VAF and HF for a given 

Fig. 7. Inferred clone phylogeny and metastatic cell migration events using CRISPR/Cas9-based gene editing data. The 3724 dataset was used. (A) The 
TopHap+ clone phylogeny (top) was compared with the cell phylogeny inferred in the original study (left). The tips of the TopHap+ phylogenies indicate the tumor 
sites of the cells annotated to the clones. “T,” “S,” and “L” represent the primary tumor (lung), soft tissue, and lymph node, respectively. (B) PathFinder was used to 
infer metastatic cell migration history. 
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dataset. Also, detecting recurrent and reversing mutations from single- 
cell sequencing data is challenging due to a large number of missing 
bases and false-negative detections of mutations. Although 
TopHap+ can detect recurrent and reversing mutations, caution is 
necessary for these inferences. 

In conclusion, TopHap+ employs the phylogenetic optimality prin
ciple and mutation ordering analysis to infer clone phylogeny, and it 
performs well. Also, our mutation ordering analysis can be employed to 
assess mutation trees inferred by other methods as well. Overall, the 
TopHap+ approach will be useful for revealing the mutational history, 
evolutionary relationship of cancer cell populations, and tumor 
biogeography. 
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