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Abstract

Motivation: Despite recent advances in sequencing technologies, genome-scale datasets continue to
have missing bases and genomic segments. Such incomplete datasets can undermine downstream anal-
yses, such as disease risk prediction and association studies. Consequently, the imputation of missing
information is a common pre-processing step for which many methodologies have been developed. How-
ever, the imputation of genotypes of certain genomic regions and variants, including large structural
variants, remains a challenging problem.
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Results: Here, we present a transformer-based deep learning framework, called a split-transformer
impute (STI) model, for accurate genome-scale genotype imputation. Empowered by the attention-
based transformer model, STI can be trained for any collection of genomes automatically using
self-supervision. STI handles multi-allelic genotypes naturally, unlike other models that need special
treatments. STI models automatically learned genome-wide patterns of linkage disequilibrium (LD),
evidenced by much higher imputation accuracy in high LD regions. Also, STI models trained through
sporadic masking for self-supervision performed well in imputing systematically missing information.
Our imputation results on the human 1000 Genomes Project show that STI can achieve high imputa-
tion accuracy, comparable to the state-of-the-art genotype imputation methods, with the additional
capability to impute multi-allelic structural variants and other types of genetic variants. Moreover,
STI showed excellent performance without needing any special presuppositions about the patterns in
the underlying data when applied to a collection of yeast genomes, pointing to easy adaptability and
application of STI to impute missing genotypes in any species.

Keywords: Genotype, Structural variation, Imputation, Deep learning, Transformer

1 Introduction

Genetic and genomic studies, such as linkage analysis, genome-wide association study (GWAS), and
polygenic risk score (PRS) estimation, enable us to dissect the genetic architecture of complex traits and
diseases [1]. In recent years, whole-genome sequencing (WGS) platforms and techniques have substantially
improved and become increasingly cost-effective, resulting in the accumulation of large collections of
genotypes and deeper insights into the genetic architecture of various traits and diseases.

Although the resolution of genotyping has steadily improved over time, genotype data still contain
many missing values and untyped loci [2]. The missing data may decrease statistical power in disease
association studies and causal variant discovery [3–5]. Causes of missing genotypes include the difficulty
in sequencing rare alleles [6–8], failure of experimental assays, genotype calling errors, and differences
in densities and properties of genotyping platforms [3]. As such, genotype missingness, as depicted in
Figure 1, can be classified into two distinct categories: sporadic missingness, where for each site/segment,
some values could be absent, and systematic missingness, in which some genomic loci or segments are
not genotyped. These challenges in handling missing data are further compounded when considering
different types of genetic variation in addition to Single Nucleotide Variants (SNVs). Compared with
SNVs, Structural Variations (SVs) pose greater challenges in genotype calling and imputation due to
their increased complexity, limitations of current sequencing technologies, extensive allelic diversity, and
their variable frequencies within populations [9, 10]. Moreover, SVs can have a more significant impact on
genetic diseases than SNVs, so their accurate imputation can lead to enhancements in disease association
studies [11].
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Fig. 1 Missing genotype classification. a. Sporadic missingness: This category is commonly associated with methods
in genotype calling and assay failures. b. Systematic missingness: Differences in sequencing resolution are common causes
of this type of missingness.
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Consequently, there is a common need for reliable imputation of genotypes using computational meth-
ods. Imputation is the process of inferring missing values in the data based on the information already
present in the dataset, such as the density and distribution of bases and structural variants within and
among sequences in the dataset. Imputation of missing data in genomics needs specialized methods
because genomic information is inherently different from data in many other domains, such as vision or
natural language processing. Curse-of-dimensionality, linear and non-linear correlations among the vari-
ants [12], and shared segments of sequences due to common descent are among the unique characteristics
of genotype data. Furthermore, given the multifaceted nature of genotype imputation, it is well-recognized
that no single method can serve as a universal solution. Consequently, it is a common practice in the field
to utilize multiple imputation tools for a particular study.

Widely-used imputation methods often require a reference panel of genome sequences to impute
missing information in sequences, assuming that the missing information comes from the same ancestry
patterns as those in the reference panel [13]. These methods utilize Hidden Markov Models (HMMs),
graphical models, and haplotype-cluster algorithms to impute missing values [14]. For example, Minimac4
[15], the most recent version of MACH [16], uses an HMM. For each individual, Minimac4 updates the
phase iteratively in both directions based on haplotypes in the reference panel and neighboring loci in
the individual. It splits sequences into overlapping chunks in order to reduce memory consumption and
make the model scalable. Similarly, Shapeit5 [17], IMPUTE2 [18] and BEAGLE [19] also employ HMMs
to perform imputation. The Haplotype-clustering algorithm is utilized in the fastPHASE [20] in order to
cluster haplotypes in an SNV-wise manner and impute missing values per locus. GLIMPSE2 [21] uses a
HMM in order to genotype low-coverage whole-genome sequencing (WGS) data.

Deep Learning (DL) methods have been recently introduced for genomic imputations. Sparse Convo-
lutional Denoising autoencoder (SCDA) is used in [14] to impute missing data in the Human Leukocyte
Antigen (HLA) region on chromosome 6 and yeast [22] genotypes. In [3] an improvement in SCDA training
is proposed to improve the performance. Similarly, [23] used autoencoders on identified linkage disequi-
librium (LD) blocks as well as focal loss to improve the performance. RNN-IMP [24] utilizes recurrent
neural networks (RNNs) and augments the samples using recombination and mutation in order to impute
systematic missingness in genotype data. GRUD [25] utilizes RNNs in an adversarial training schema.
DEEP*HLA [26] uses a convolutional neural network to perform imputation on pre-phased genotypes at
the gene level. Inspired by DEEP*HLA, HLARIMNT [27] uses transformers for the same task.

Though the overall performance of existing imputation methods for genomic data is generally good,
most of them cannot directly handle multi-allelic variants. Also, their performances have not been eval-
uated for imputing SVs to the best of our knowledge. Also, the training of DL models [3, 14, 23, 26] is
generally slow, and they need many more samples to perform as well as methods based on HMMs, such
as Minimac4 [15] and Beagle5.4 [19]. Although RNN-IMP and GRUD [24, 25] addressed this performance
disparity, these methods require retraining when the variant sets in the target are different from those
in the training set. They are also not designed to handle sporadic missingness (Figure 1.a). Finally, the
rest of the existing DL methods rely on convolutional neural networks (CNNs), which excel at exploiting
local patterns but do not exhibit a robust mechanism to effectively capture pairwise correlations among
local and distant markers simultaneously, such as the presence of LD blocks in genotypes.

An effective solution to this is the attention mechanism in the transformer architecture, capable of
capturing local and distal interactions in genomes[28]. The attention mechanism in DL mimics visual
attention to focus on specific parts of pictures [29, 30] by calculating importance scores among genomic
loci. Therefore, attention can capture global interactions amongst markers. Transformers utilize multi-
head attention to capture intricate and multi-level interactions among the variants. AlphaFold2 [31] and
ESMFold [32] are successful examples of transformers in biological sequence analysis.

In this article, we present a novel genotype imputation model, STI, based on the attention mechanisms
in a transformer framework. Our model utilizes attention to capture patterns among SNVs and SVs
in the genome collections analyzed. We found STI to achieve high imputation accuracy at a modest
memory consumption cost, achieved by dividing the data into chunks (following [15]) that enables efficient
application of STI to long sequences. Furthermore, STI needs to be trained only once, unlike other DL
models, following that the imputation times in STI are faster than classical methods (Table 11 in the
Supplement). In brief, our study makes the following key contributions.
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• We propose a DL transformer framework termed STI, designed to specifically address the genotype
imputation problem.

• STI imputation does not need a standard reference panel, which makes it more generally applicable to
various data formats.

• STI excels at SV imputation, where the variants harbor a higher degree of complexity while achieving
comparable performance to competing imputation models for SNV imputation.

• We analyze the effect of different masking rates on building better imputation models and explain the
reasons for the STI improvements.

2 Results

2.1 Overview of the study

In this section, first, we present the results of our empirical study to find the optimal masking percentage
(masking rate, MaskR) for STI training in order to eliminate the need for building imputation models
for specific missing rate (MissR) in the target dataset, which is often required by some other machine
learning approaches [3, 14]. After that, we present results for sporadic missingness imputation on the yeast
dataset, SVs in human chromosome 22, and extensive SVs dataset (see Subsection 4.1 in Methods for the
dataset details). We benchmarked STI’s performance against classical imputation methods (Beagle5.4
and Minimac 4.1.4), deep learning models (SCDA, AE, DEEP*HLA), and a variant of STI that uses
no embedding (STI-NE). The details of STI architecture and aforementioned methods are discussed in
Subsections 4.3 and 4.4, respectively.

2.2 Optimal masking rate analysis

For this analysis, we used the HLA region on chromosome 6 from the human 1000 Genomes Project and
performed a 3-fold cross-validation on the data. The aim was to examine the relationship of MaskR for
the training set with varying MissR in target sets. The results are presented in Figure 2 in which the
results on the left/right column belong to the validation/test set, respectively.

Figures 2 a & b show that the performances of STI models trained using MaskR of 0.5 and 0.7 were
high for imputations in which MissRs were up to 0.5. Therefore, a single STI model, trained with a MaskR
of 0.5, could be used for a variety of research datasets as long as the MissR is less than 0.5. However, STI
models trained with MaskR > 0.5 is needed for reliable imputations when the target datasets have more
than 50 percent missing variants. Therefore, we recommend STI models trained with a MaskR of 0.5
for imputing sporadically missing variants and a higher MaskR (up to 0.8, as indicated by our empirical
studies data) for other datasets.

Figures 2 a & b also show that when the target MissR is sufficiently low, the performance gap of the
imputation models is not discernible. The performance gap becomes evident with a MissR of 0.2 or higher.
The underlying cause of this observation is that when the MissR is extremely low, a sufficient number of
variants in LD with the target variant are readily available, making predictions less challenging for all the
models. Conversely, a large MissRs means that the amount of information from LD blocks diminishes,
presenting a greater challenge to the imputation model.

Figures 2 c & d show that, generally, STI models trained with lower MaskR will produce poor perfor-
mance for imputing missing SNVs located in regions with high LD. For instance, variants in regions with
LD = 0.01 have the lowest accuracy for all the masking percentages. Additionally, these results indicate
that it is easier to predict missing data in high LD regions compared to low LD regions, which aligns
well with biological expectations that low LD regions do not benefit from additional information (LD)
available for better imputation of high LD regions. These trends suggest that the use of a low MaskR pre-
vents the model from learning LD patterns, resulting in a worse performance. In other words, the model
training needs to effectively disturb the LD blocks (and other latent patterns among variants) to capture
direct and indirect correlations and haplotypes. Consequently, MaskR of 0.5 and higher provides robust
results across a large range of target MissR values.
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a. Validation accuracy over training MaskR.
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b. Test accuracy over training MaskR.
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c. Validation accuracy over LD bins.
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d. Test accuracy over LD bins.
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Fig. 2 Average accuracy over 3-fold cross-validation for validation and test sets in the HLA dataset using
different MaskR values during training. a. and b.A breakdown of average accuracy for various MissRs of validation/test
set when the model is trained using different MaskR values. The patterns show that a model trained using a higher MaskR
is more robust across different target MissRs. c. and d. Average accuracy for validation/test sets over 3 folds and MissRs
of 0.01, 0.05, 0.1, 0.2, 0.3, and 0.5 calculated for various LD bins. The trend suggests that a higher MaskR increases the
performance across LD bins, which could be attributed to the impact of MaskR on STI to learn LD patterns comprehensively.
When MaskR is low, STI imputations do not benefit from the LD patterns present and, thus, STI does not learn the majority
of pairwise correlations (LD) among the variants. Consequently, STI is not able to infer the missing value using all possible
information in the respective LD block of the target variant.

2.3 The relative performance of STI for sporadic missingness

For each dataset in this experiment, we performed a 3-fold cross-validation where missing values were
introduced using fixed random seeds to ensure reproducibility of results across experiments and methods.
The missing values were distributed randomly according to one of three strategies: uniformly, based on
Minor Allele Frequency (MAF), or based on LD. These methods were chosen to ensure that missing
values are representative of the data distribution in different biological aspects. Further details on these
procedures can be found in the methods section. In all of the experiments, missing positions in the test
sets were the same for all the methods.

The overall results for the yeast and chromosome 22 datasets are presented in Table 1. The numerical
values in this table indicate the average of the metric values on the test sets in a 3-fold cross-validation.
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We used maximum LD bins and/or MAF bins (Figure 4 b, and c) to distribute missing positions in the
datasets extracted from the human 1000 Genomes Project. If bins had too few positions (e.g., at a 0.01
MissR on chromosome 22 datasets), we excluded this MissR for the experiments related to these datasets.
We used a consistent approach to introduce missing values in chromosomes 6, 10, 16, and 22 based on
LD distributions and a single test MissR of 0.2. In this experiment, we focused on comparing Minimac,
Beagle, and STI, because they were identified as the top performers from classical and DL methods,
respectively, in prior experiments. We employed 3-fold cross-validation for both methods, training and
imputing each chromosome separately. R2 was calculated for each variant, and the results were averaged
over fold, chromosome, and SV type. Figure 3 presents the experimental results for the extensive structural
variation datasets where the top plot shows the improvement that STI provides compared to the best of
other methods for each SV type, and is calculated as follows:

Improvement(%) =
R2

STI −R2
Best

R2
Best

∗ 100

Yeast dataset: Missing positions in samples were selected randomly, as the LD analysis showed
that the maximum LD for all the SNVs was high in the [0.8, 1.0] range. As mentioned, Minimac4.1.4
and Beagle5.4 cannot be used to impute variants of the yeast dataset due to the lack of a reference
panel. However, STI could be applied and outperformed other methods, achieving a minimum average
imputation accuracy of 99.86%. Overall, all the applicable models performed well on the yeast dataset,
which we attribute to the presence of high LD among SNVs in this dataset.

Deletions in chromosome 22: For this dataset, we introduced missing positions proportional to
the maximum-LD/MAF distribution Figure 4.b. Overall, STI emerged as the best or the second-best
model for imputation across all the metrics. STI was more accurate than others for LD/MAF missingness
distribution schema. Furthermore, SCDA+ demonstrates a substantial performance advantage over AE
in terms of IQS and R2 in the majority of the cases. Table 8 in the Supplement shows the accuracy
trends for different maximum LD values for this dataset when missing values are distributed proportional
to variant density in maximum LD bins. Minimac4.1.4 and Beagle5.4 were less accurate for SNVs with
lower maximum LD compared to AE, SCDA+, STI-NE, and STI. Since HMMs and graphical models rely
on conditional probabilities, we suggest that they would perform relatively weak due to a low correlation
between the events (states).

All SVs in chromosome 22: Similar to the previous dataset, missing positions were distributed
among SVs based on maximum-LD/MAF (Figure 4.c). Despite having a reference panel, Minimac4.1.4
cannot be used for some missing variants for this dataset because it can only handle bi-allelic events.
Furthermore, IQS is not well-defined for multi-allelic events.

Table 1 shows that STI outperforms all other methods on average accuracy and F1-score. STI per-
formance in terms of R2 is much better than the competing methods at high MissRs. R2 considers
the correlation among genotypes encoded as categorical values. As such, depending on the difference in
encoded values for the predicted and the ground truth genotypes, the penalty can be severe. For example,
if 0|0, 0|1, and 1|1 are encoded as 0, 1, and 2 in genotypes and the ground truth for a given genotype is 0|0,
the model is punished moderately(severely) for predicting 0|1(1|1). Additionally, SCDA+ outperforms
AE in most comparisons, indicating the effectiveness of our proposed training procedure.

Extensive structural variation datasets: In this experiment, we focus on R2 between the predicted
and ground truth genotypes as R2 was the most discriminating metric for comparing the performance
in imputing SVs. For estimating R2, predictions are converted into categorical values, e.g., 0|0, 0|1, and
1|1 are encoded as 0, 1, and 2. Any discrepancy between the model’s prediction and the ground truth
leads to a substantial penalty on the correlation, enabling us to see differences more clearly. We found
STI consistently outperforms Beagle5.4 and Minimac4 across various SV types, often by a noticeable
margin. The underlying cause of this observation is the lack of high LD in this dataset (Figure 4) and
fundamental differences between HMMs and the Transformer model. In HMMs, information propagation
between two distant variants occurs sequentially through intermediate sites. However, this mechanism
falters when the LD block is sparse, leading to reduced performance. In contrast, STI employs a direct
variant-to-variant attention mechanism within each chunk without needing to model an intermediate site,
which effectively mitigates the limitations posed by a weak LD. Furthermore, the multi-head attention
mechanism equips STI to discern higher-order and complex patterns among variants, which appear to be
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Table 1 Experimental results for imputing sporadic missingness averaged over 3-fold cross-validation using different
MissRs. The numerical values in parentheses show the standard deviation. N/A values indicate that the model could not
impute that specific dataset. For all the metrics, the higher the value, the better the models are performing in imputation.
In these experiments, accuracy and f1-score calculations distinguish heterozygous alternative alleles by encoding them to
distinct categorical values; however, for IQS and R2 the encoding values remain identical. Bold values indicate the top
result in each row. Beagle5.4 generally performs the best in terms of R2 and IQS for bi-allelic variants, but STI outshines
other methods in imputing all SVs (and multi-allelic variants). Note: H- in the first column indicates that the dataset is a
human genome dataset.

Method

Dataset Metric MissR AE SCDA+ DEEP*HLA Beagle Minimac STI-NE STI

Yeast

Accuracy

0.01 99.8(3.9e-03) 99.8(7.2e-03) 99.8(6.1e-03) N/A N/A 99.8(6.9e-02) 99.9(7.9e-03)
0.05 99.8(2.4e-03) 99.8(6.3e-04) 99.8(3.7e-03) N/A N/A 99.8(3.0e-02) 99.9(5.6e-03)
0.10 99.8(4.8e-03) 99.8(3.2e-03) 99.8(2.9e-03) N/A N/A 99.8(2.4e-02) 99.9(7.7e-03)
0.20 99.8(1.6e-03) 99.8(1.7e-03) 99.8(3.1e-03) N/A N/A 99.8(3.0e-02) 99.9(4.9e-03)

F1-score

0.01 0.998(3.61e-05) 0.998(6.93e-05) 0.998(6.24e-05) N/A N/A 0.998(6.93e-04) 0.999(8.08e-05)
0.05 0.998(2.52e-05) 0.998(5.77e-06) 0.998(3.51e-05) N/A N/A 0.998(3.02e-04) 0.999(5.29e-05)
0.10 0.998(5.03e-05) 0.998(3.21e-05) 0.998(3.06e-05) N/A N/A 0.998(2.43e-04) 0.999(7.94e-05)
0.20 0.998(1.53e-05) 0.998(1.73e-05) 0.998(3.21e-05) N/A N/A 0.998(3.04e-04) 0.999(5.03e-05)

IQS

0.01 1.000(1.09e-05) 1.000(1.80e-05) 1.000(6.52e-06) N/A N/A 0.999(1.81e-03) 1.000(4.27e-05)
0.05 1.000(9.82e-06) 1.000(1.56e-05) 1.000(1.19e-05) N/A N/A 0.999(8.91e-04) 1.000(3.76e-05)
0.10 1.000(1.87e-05) 1.000(2.00e-05) 1.000(1.95e-05) N/A N/A 0.999(6.94e-04) 1.000(3.60e-05)
0.20 0.999(1.73e-05) 0.999(2.01e-05) 0.999(2.67e-05) N/A N/A 0.999(7.64e-04) 0.999(3.11e-05)

R2

0.01 1.000(2.18e-05) 1.000(3.61e-05) 1.000(1.31e-05) N/A N/A 0.999(3.49e-03) 1.000(8.53e-05)
0.05 1.000(1.97e-05) 1.000(3.12e-05) 1.000(2.37e-05) N/A N/A 1.000(1.72e-03) 1.000(7.50e-05)
0.10 1.000(3.74e-05) 1.000(3.98e-05) 1.000(3.85e-05) N/A N/A 0.999(1.33e-03) 1.000(7.19e-05)
0.20 1.000(3.34e-05) 1.000(3.90e-05) 1.000(5.21e-05) N/A N/A 0.999(1.47e-03) 1.000(6.23e-05)

H-Chr22 Del(LD)

Accuracy
0.05 96.9(1.0e+00) 97.0(1.1e+00) 92.5(5.8e+00) 96.1(8.9e-02) 96.2(6.1e-02) 97.8(9.7e-02) 97.9(1.2e-01)
0.10 96.7(8.8e-01) 97.3(3.3e-01) 93.7(3.5e+00) 96.0(7.4e-02) 96.2(8.4e-02) 97.5(4.8e-02) 97.6(5.2e-02)
0.20 96.2(6.8e-01) 97.1(6.7e-02) 94.3(2.6e+00) 96.1(4.5e-02) 96.3(5.5e-02) 97.2(3.2e-02) 97.3(4.1e-02)

F1-score
0.05 0.960(2.03e-02) 0.968(1.00e-02) 0.922(2.46e-02) 0.952(8.30e-04) 0.955(1.09e-03) 0.976(1.45e-03) 0.977(2.09e-03)
0.10 0.959(1.83e-02) 0.970(3.87e-03) 0.930(1.20e-02) 0.952(7.34e-04) 0.955(8.38e-04) 0.972(1.07e-03) 0.973(1.62e-03)
0.20 0.947(1.61e-02) 0.966(1.28e-03) 0.934(7.46e-03) 0.952(7.28e-04) 0.955(4.53e-04) 0.967(5.21e-04) 0.968(1.18e-03)

IQS
0.05 0.621(2.13e-01) 0.758(8.92e-02) 0.364(2.61e-02) 0.975(6.57e-03) 0.794(1.43e-02) 0.942(1.21e-02) 0.971(8.85e-03)
0.10 0.671(2.52e-01) 0.782(5.67e-02) 0.354(4.44e-02) 0.947(7.82e-03) 0.776(1.41e-02) 0.919(8.20e-03) 0.946(7.80e-03)
0.20 0.477(2.01e-01) 0.787(2.33e-02) 0.338(7.16e-02) 0.891(2.21e-02) 0.739(2.24e-02) 0.874(1.08e-02) 0.895(1.54e-02)

R2
0.05 0.254(2.21e-01) 0.415(5.02e-02) 0.079(1.37e-01) 0.601(1.88e-02) 0.418(1.19e-02) 0.567(2.73e-02) 0.596(1.85e-02)
0.10 0.294(2.55e-01) 0.417(4.21e-02) 0.068(1.18e-01) 0.564(1.29e-02) 0.392(5.63e-03) 0.539(2.42e-02) 0.563(1.82e-02)
0.20 0.100(1.74e-01) 0.391(1.66e-02) 0.049(8.45e-02) 0.495(1.77e-02) 0.347(1.65e-02) 0.486(1.91e-02) 0.501(1.66e-02)

H-Chr22 Del(MAF)

Accuracy
0.05 96.4(4.3e-02) 96.2(7.8e-01) 83.0(8.4e+00) 96.5(1.1e-01) 96.1(1.0e-01) 96.8(7.1e-02) 96.9(1.1e-01)
0.10 96.6(8.4e-02) 96.7(3.0e-01) 90.0(3.2e+00) 96.5(1.1e-01) 96.1(1.5e-01) 96.8(1.4e-01) 96.9(1.4e-01)
0.20 96.0(1.2e-01) 96.3(1.3e-01) 92.8(1.3e+00) 96.0(4.4e-02) 95.6(1.0e-01) 96.3(9.4e-02) 96.4(9.9e-02)

F1-score
0.05 0.959(1.81e-03) 0.956(4.07e-03) 0.879(4.60e-02) 0.961(2.00e-03) 0.959(2.24e-03) 0.961(5.88e-04) 0.961(1.37e-03)
0.10 0.959(3.41e-03) 0.958(2.06e-03) 0.918(1.53e-02) 0.960(1.01e-03) 0.960(1.70e-03) 0.960(1.55e-03) 0.961(1.63e-03)
0.20 0.947(6.69e-03) 0.953(1.30e-03) 0.926(5.39e-03) 0.954(8.44e-04) 0.955(1.39e-03) 0.954(6.46e-04) 0.955(1.61e-03)

IQS
0.05 0.865(1.62e-02) 0.736(1.28e-01) 0.476(1.78e-01) 0.977(5.70e-03) 0.603(2.36e-02) 0.960(2.30e-02) 0.961(5.66e-03)
0.10 0.742(9.40e-02) 0.778(9.54e-02) 0.424(1.15e-01) 0.952(9.15e-03) 0.589(1.86e-02) 0.939(1.87e-02) 0.946(1.08e-02)
0.20 0.501(2.26e-01) 0.789(2.07e-02) 0.374(4.93e-02) 0.903(1.03e-02) 0.563(1.80e-02) 0.887(1.51e-02) 0.901(1.26e-02)

R2
0.05 0.492(3.47e-02) 0.408(5.34e-02) 0.327(1.12e-01) 0.602(2.41e-02) 0.213(4.61e-03) 0.584(3.51e-02) 0.594(2.03e-02)
0.10 0.363(7.72e-02) 0.421(3.01e-02) 0.291(7.68e-02) 0.570(2.46e-02) 0.199(4.32e-03) 0.557(2.82e-02) 0.568(2.28e-02)
0.20 0.127(2.05e-01) 0.398(7.29e-03) 0.226(3.59e-02) 0.508(2.11e-02) 0.174(4.69e-03) 0.495(2.04e-02) 0.508(2.04e-02)

H-Chr22(LD)

Accuracy
0.05 95.1(8.7e-02) 94.2(2.2e+00) 95.3(1.5e-01) 95.3(9.8e-02) N/A 95.6(1.2e-01) 95.6(2.3e-01)
0.10 95.2(8.4e-02) 95.1(6.8e-01) 95.3(9.9e-02) 95.4(4.3e-02) N/A 95.6(5.6e-02) 95.6(1.1e-01)
0.20 95.2(2.1e-01) 95.5(1.6e-01) 95.3(7.4e-02) 95.4(7.2e-02) N/A 95.6(2.5e-02) 95.7(8.3e-02)

F1-score
0.05 0.935(6.57e-03) 0.936(1.36e-02) 0.937(3.33e-03) 0.943(3.18e-03) N/A 0.944(1.86e-03) 0.947(3.04e-03)
0.10 0.942(3.53e-04) 0.942(6.06e-03) 0.936(1.69e-03) 0.944(1.37e-04) N/A 0.945(6.47e-04) 0.947(8.47e-04)
0.20 0.935(8.38e-03) 0.943(2.66e-03) 0.935(1.16e-03) 0.943(8.28e-04) N/A 0.945(9.05e-04) 0.947(6.35e-05)

R2
0.05 0.335(2.93e-01) 0.394(2.24e-01) 0.518(3.10e-02) 0.443(2.25e-02) N/A 0.623(2.04e-02) 0.627(1.84e-02)
0.10 0.455(1.73e-02) 0.415(1.80e-01) 0.496(2.87e-02) 0.418(2.11e-02) N/A 0.585(1.95e-02) 0.588(1.82e-02)
0.20 0.219(1.90e-01) 0.430(4.60e-02) 0.442(2.57e-02) 0.374(2.28e-02) N/A 0.518(2.07e-02) 0.523(2.06e-02)

H-Chr22(MAF)

Accuracy
0.05 95.5(1.4e-01) 95.7(8.4e-02) 66.9(3.1e+01) 95.5(1.0e-01) N/A 95.8(1.2e-02) 96.0(9.4e-02)
0.10 94.8(2.7e-02) 95.1(3.2e-02) 82.8(1.5e+01) 94.9(1.3e-02) N/A 95.1(5.6e-02) 95.3(2.2e-02)
0.20 95.2(8.3e-02) 95.5(3.5e-02) 94.3(4.9e-01) 95.2(1.9e-02) N/A 95.4(2.4e-02) 95.6(1.6e-02)

F1-score
0.05 0.943(1.85e-03) 0.948(9.52e-04) 0.749(2.22e-01) 0.947(8.21e-04) N/A 0.946(6.31e-04) 0.950(7.80e-04)
0.10 0.937(4.41e-04) 0.942(6.32e-04) 0.864(8.25e-02) 0.940(7.34e-04) N/A 0.939(7.37e-04) 0.943(3.44e-04)
0.20 0.940(2.93e-03) 0.946(2.88e-04) 0.931(7.38e-03) 0.943(2.23e-04) N/A 0.943(4.38e-04) 0.947(7.96e-04)

R2
0.05 0.460(8.40e-02) 0.510(1.17e-01) 0.068(6.14e-02) 0.446(2.22e-02) N/A 0.612(3.58e-02) 0.630(2.24e-02)
0.10 0.458(2.65e-02) 0.537(1.77e-02) 0.129(1.36e-01) 0.429(1.82e-02) N/A 0.586(3.08e-02) 0.600(2.13e-02)
0.20 0.287(9.88e-02) 0.483(1.42e-02) 0.211(1.80e-01) 0.383(2.73e-02) N/A 0.521(2.81e-02) 0.532(2.70e-02)

crucial for better imputations in the absence of strong LD patterns. These capabilities highlight STI’s
superiority in managing SV imputation challenges where traditional HMM-based approaches may be
suboptimal. This is particularly the case for duplications (DUP) and insertions (INS) where STI is able
to attain a very high R2 value. This observation matches our expectations since these two types of SVs
are relatively challenging in genotype calling as well [33].
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Comparison of STI and Competing Methods Across SV Types

Fig. 3 Comparison of Beagle and STI across SV types. Average R2 of ground-truth genotypes in the test sets
and respective predictions over 3-fold cross-validations on chromosomes 6, 10, 16, and 20. The experiments are performed
on each chromosome separately, and the results are averaged over chromosomes and folds. Vertical lines indicate standard
deviations. The improvement plot shows R2 score difference between STI and the best of other methods, normalized by the
best R2 scores for each SV type.

3 Discussion

More accurate genotype imputations will improve the performance of downstream functional and biomed-
ical genomic studies. Scientists frequently need to employ multiple tools, adapted based on the degree of
missingness and types of variants missing, within individual pipelines to carry out imputations. To address
this problem, we have presented STI, a masked DL framework, which appears to be one of the first uses of
transformer architecture. While STI is currently limited in few ways, we believe that it is a step towards
developing a unified approach for successfully imputing missing values for a range of datasets, from small
to large amount of missingness, as well as SNVs and SVs. We explored STI’s performance for a range of
masking rates (training) and missing rates (application), which revealed that a single STI model, trained
with a masking rate of 0.5, could be applied for imputing SNVs and SVs. STI’s performance in imputing
SNVs and SVs was comparable to many other methods and approaches for SNVs and SVs found in low
and high LD regions. That is, STI is capable of effectively capturing short and long-range correlations
among SNVs/SVs.

STI also performed well in imputing values that were missing systematically (Figure 1.b and Sup-
plementary Information; Ablation and Experimental Results sections). Furthermore, STI offers two
additional advantages. First, it can be applied directly to resequencing datasets from any species because,
unlike HMMs based on Li and Stephens model [34], a transformer model does not need hard-coded or
parametric assumptions about underlying characteristics of the genomic data, such as mutation rate and
density of LD blocks, and captures inherent patterns automatically. Secondly, an STI model needs to
be trained once to impute sporadic and systematic missingness rapidly and accurately. Therefore, we
expect the STI framework to spur the next generation of approaches to advance generalized and efficient
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imputing, which could served by online imputation servers because of the low computational burden of
imputation after training.

Also, STI can be extended by integrating secure and privacy-preserving mechanisms through homo-
morphic encryption and Tensorflow-compatible libraries such as tf-encrypted [35]) to provide secure and
privacy-preserving genotype imputation [36, 37], which is imperative yet under-explored in current tools.

Currently, training an STI model is resource- and time-demanding. One of our development plans
for STI is to address these issues. Moreover, STI is a transformer model, and transformers are known to
require a large number of samples to achieve optimal performance. Therefore, we expect STI’s performance
to greatly improve even for SNVs and SVs in low LD regions as the number of samples is increased due
to the release of resources such as those from TopMed and Gnomad4.0.

4 Methods

In this section, we first introduce the datasets we used in this study and discuss their characteristics. This
is followed by the architectural design of STI and the procedure for model training.

4.1 Data

We used five datasets from two sequencing projects [10, 22] to fine-tune and benchmark STI against
the baselines. The 1000 Genomes project datasets are pre-phased using Shapeit2. Thus, the phasing
information of the test sets is propagated to the training sets, but the process is identical for all the
methods so it will not bias the results in favor of any imputation method. Scikit-allel package [38] is
employed to compute LD and MAF for the datasets. In the sporadic missingness experiment, we use 3-
fold cross-validation to assess the performance of the methods. In a 3-fold cross-validation, each dataset is
separated into three distinct partitions where there is no sample overlap. Each time, one of the partitions
is used as the test set while the remaining two partitions are used for the training process. For the DL
models, a validation set is selected from the training samples for early stopping. To ensure that the same
training/validation/test set is used across different methods, we used fixed random seeds for splitting the
data into folds and introducing missingness into the test sets.

We used three schemes to introduce sporadic missingness: random selection, MAF-distributed selec-
tion, and LD-distributed selection. For the latter two, we computed MAF and LD on the whole data, as
depicted in Figure 4, and selected the missing SNVs/SVs for the test set evaluation proportional to those.
That is, if 10% of the variants have an MAF in the range of [0.2, 0.3), we selected 10% of the missing
values from these specific variants. This approach ensures that the missing data are imputed based on
the distribution of MAF or LD in the data, providing a representative imputation strategy. Regardless
of the scheme, we used fixed random seeds per sample to decide the missing genotypes. Therefore, the
missing genotypes across the test samples are not identical. However, the coordinates of missing values
are identical across the competing methods. The characteristics of the datasets we use in our experiments
are as follows:

4.1.1 HLA dataset

This dataset contains human leukocyte antigen genotypes, covering a 3 Mbp region at chromosome
6p21.31 and sitting at a major histocompatibility complex (MHC) region. HLA region regulates the
immune system in humans [39]. It is highly polymorphic and heterogeneous among individuals; i.e., it
harbors various alleles, enabling the adaptive immune system to be fine-tuned [40]. In this study, we used
the genotypes of this region, obtained from phase 3 of the 1000 Genomes Project [10], which contained
7161 unique genetic variants for 2504 individuals from five super-populations across the world: American
(AMR), East Asian (EAS), European (EUR), South Asian (SAS), and African (AFR). The majority of
SNVs in this dataset exhibit maximum LD values in the range of [0.9, 1.0]. We used this dataset for our
masking study and fine-tuning the hyper-parameters of DEEP*HLA, SCDA, AE, and STI.

4.1.2 Yeast dataset

The second dataset is the comprehensively assayed yeast dataset [22], representing a simple genetic
background and high correlation among genotypes. This dataset contains 4390 genotyped profiles for
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28,220 genetic variants. The samples were obtained by sequencing crosses between two strains of yeast,
namely an isolate from a vineyard (RM) and a popular laboratory strain (BY). In the original dataset,
the data is encoded as -1/1 for BY/RM, which are mapped to 0/1 in our code, respectively, before one-hot
encoding.

4.1.3 Chromosome 22 datasets

We used structural variation data from the 1000 Genomes Project in two settings. In the first, we only
selected deletions (DEL), excluding ALU/SVA/LINE1 deletions, among all SVs. This resulted in 573
positions harboring bi-allelic events in the dataset. In the second, a total of 848 SVs including, but not
limited to deletions, insertions, duplications, inversions (INV), and copy number variations (CNV) in
chromosome 22 are selected. As shown in Figure 4 b & c, the majority of SVs in chromosome 22 exhibit a
low LD, rendering these datasets challenging for imputation compared to SNVs. According to Figure 4.d,
deletions cover a wide range of LD among them and other SVs, making them a good target for a separate
bi-allelic dataset.

4.1.4 Extensive structural variation datasets

In the concluding experiment, we undertook a thorough investigation of SV imputation using the human
1000 Genomes Project, selecting 4187, 3126, 2062, and 1569 SVs located in chromosomes 6, 10, 16, and
20, respectively. This selection strategy was informed by the aim to encompass chromosomes of different
lengths, providing a representative cross-section of the genome. This diverse chromosome selection allows
for a broader understanding of the genomic distribution and characteristics of SVs, facilitating a more
nuanced analysis of their presence and impact across different regions of the human genome. These SVs
include deletions, duplications, insertions, inversions, and copy number variations. Among these SVs, 469
of them are multi-allelic (CNVs). For each model, we train on and impute each chromosome separately,
and take the average of the results over folds, chromosomes, and SV type. The distributions of SVs in
these chromosomes in terms of MAF and LD are presented in Figures 4 e, f, g, and h, indicating low LD
and diverse MAF in general for the mentioned SV datasets.

4.2 Training procedure

In previous studies, the training data is masked using different rates to match the test set, e.g., [3, 14]. In
our experiments, we observed improved performance of the model with 50% dynamic and random masking
of the variants in the training data. So we trained the DL model once and reused it multiple times. Notably,
this masking is similar to the masking performed in modern large language models. The benefit of such a
technique in genomic data imputation is the notable reduction in the inference (imputation) times when
compared to the fastest traditional methods. Consequently, a DL model trained in this manner becomes
particularly advantageous for deployment on imputation servers, where re-training needs to be avoided
for quick and efficient processing.

Another improvement we achieved was by representing phased diploids into haploids, followed by one-
hot encoding. That is, instead of feeding (one-hot encoded) phased diploids to the models, we fed them
haploids. This idea is proposed in [26], but there is no discussion about the merits of this procedure.
We surmised that predicting haploids would be easier because mutations in paternal and maternal hap-
loids are independent of each other. In the output, diploid genotypes were reconstructed by combining
corresponding haploids together.

4.3 Split-Transformer Impute architecture

Split-Transformer Impute is an extended transformer model [28] specifically tailored for genotype impu-
tation. STI models do not require any additional information provided by a reference panel, except for
the genotypes and their relative positions. This makes STI adaptable to any genotype data and allows
it to be applied to a wider range of datasets with less effort and fewer preparations. Moreover, although
here we focus on sporadic missingness, once STI is trained on a dataset, it can predict both sporadic
missingness and systematic missingness in genotype data as long as the target variants are a subset of
the training variants. An overview of STI is presented in Figure 5. We implemented STI and the rest of
the DL models using Tensorflow framework [41] in Python. In order to train the models, we used tensor
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Fig. 4 MAF and LD distributions of benchmark datasets from 1000 Genomes Project. MAF and maximum
LD distributions are presented using kernel density estimation plots for SNVs/SVs in a. HLA region on chromosome 6,
b. deletions in chromosome 22, c. SVs in chromosome 22, e. SVs in chromosome 6, f. SVs in chromosome 10, g. SVs
in chromosome 16, and h. SVs in chromosome 20. Overall, SVs exhibit a low LD value, posing a significant challenge to
imputation methods. Plot d. LD among different SV types in chromosome 22 shows that structural events are commonly
correlated with deletions. Furthermore, deletion, copy number variation, and duplication events appear in different ranges
of LD, while the rest of the events are limited to LD ≤ 0.1. Lastly, the majority of correlated SVs to deletions are of the
same event, making deletions a good separate dataset for our experiment.

processing units (TPU) provided by the Google Colaboratory platform, but a GPU implementation of
STI is available as well. A learning rate scheduler and early stopping are employed in order to reduce the
loss and training duration.

4.3.1 Cat-Embedding

One important part of STI is categorical embedding (Figure 5.b), termed as Cat-Embedding, which
enables it to learn embedding representation per allele in each position. For the imputation task, we
consider missing values as another allele that is equivalent to special tokens in natural language processing.
The corresponding vector for each allele is added to the respective positional variant embedding vector
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Fig. 5 Split-Transformer Impute architecture. a. Overall pipeline of the proposed framework: the data is separated
into paternal and maternal haplotypes in the case of diplotypes, and it remains the same for haplotypes. While the figure
shows phased genotypes, STI can handle unphased data as well (though the performance degrades). Next, the data is one-
hot encoded and fed into our Cat-Embedding layer, followed by splitting the data vertically into k chunks. The chunks have
overlap in order to capture information for the SNVs residing around the chunks’ edges. Each branch passes through a unique
set of attention, convolution, and fully connected layers. In the self-attention block, the flanking variants that come from
the neighboring chunks are removed after applying multi-head attention. Finally, the results of all branches are assembled
to generate the final sequence. b. Workflow of proposed Cat-Embedding: we consider a unique vector space for each unique
categorical value in each SNV/feature. To save computational resources, instead of pre-allocating these vectors, we use the
addition of positional embedding and categorical value embeddings in order to generate unique embedding vectors for each
categorical value in each SNV/feature. We consider a missing (or masked) value as another categorical value (allele) in our
model. Here, 2 (highlighted in red) represents the missing value. c. Convolution blocks: two parallel convolutional branches
with varying kernel sizes are used in our convolution blocks. These multi-scale convolutional blocks allow STI to capture
information at multiple spatial scales in the input data, similar to the pattern-matching idea used in classical computer
vision methods using convolution. Given the variable sizes of LD blocks, multi-scaled convolution is expected to excel at
capturing LD patterns compared to single-scaled convolutions.

to generate the final embedding. The idea is similar to a natural language processing embedding layer
that accepts word indices, except that Cat-Embedding accepts one-hot encoded data.

4.3.2 Splitting

While the multi-headed attention in a transformer offers significant advantages, a major drawback is
quadratic memory cost for computations that becomes important in genomic analysis, since the number of
variants in a sample is normally in the thousands. In genotypes, the majority of interactions are local [42].
Therefore, it is of great importance to limit the scope of attention to save computational resources. To do
so, we split the variants into chunks (vertical partitioning). The chunk size and overlap size are employed
in a comparable manner in Minimac4.1.4 and analogous software applications. In order to prevent loss of
imputation accuracy at chunk borders, we include flanking variants from neighboring chunks and discard
them after applying self-attention to get the original variants in the chunk. Though the average LD block
size in the dataset can be used to decide the size of overlap, we do not use LD blocks directly to decide
the chunk size in the current version.

Each chunk passes through a dedicated branch inside the model, leading to increased imputation
quality. Ideally, having a vast number of samples allows training a single model with attention across the
whole genome. However, when the number of samples is not enough, the model is left with untrained
parameters, resulting in poor performance. Hence, chunking regulates the number of parameters. In a
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vanilla transformer, the cost of computing global attention is quadratic with respect to the number of
SNVs (m2); however, the amount is lowered to (m/w) × (w + o)2 = mw in STI, considering that the
overlaps of chunks are negligible compared to the chunk size. For instance, for m = 104 and a chunk size
of 103, STI uses 10 times less memory for attention computations compared to a vanilla transformer.

4.3.3 Attention

The attention blocks are implemented similarly to those of other transformers, such as self-attention
blocks in Vision Transformer (ViT) [43]. There is a difference between the first and second attention blocks
in the branches. The first block is a self-attention block, meaning that the query, key, and value of the
attention layer are the same. The output of multi-head attention in Tensorflow has the same dimensions
as the query. By excluding the neighboring variants of a chunk from the query and only including them in
the key and value, we involve them in the attention mechanism and, at the same time, shrink the output
of a chunk to the target size (chunk size without counting flanking/overlap variants) after applying multi-
headed attention. In the second block, the query is the output of the previous layer, while the key and
value are the outputs of the first self-attention block. This skip connection considerably affects the overall
performance of the model.

4.3.4 Convolutional block

Convolutional blocks, as illustrated in Figure 5.c, are also crucial components of STI. Through empirical
studies, we found that using two parallel convolutional branches with varying kernel sizes, similar to the
Inception module [44], is the best trade-off between accuracy gain and increase in a number of model
parameters, compared to using a single branch or more than two branches. Furthermore, a Depth-wise
convolutional layer at the end of the block helps STI extract local information without mixing channel
information and substantially improves imputation accuracy.

4.3.5 Output formation

Finally, the outputs of all branches are concatenated to form the output, that is, either maternal or
paternal haplotype in the case of 1000 Genomes Project datasets or the genotypes in the case of yeast.
For the former, by assembling maternal and paternal haplotypes, we obtain imputed genotypes, and
the latter needs no further post-processing. Since genetic variations in parents are independent, directly
encoding and imputing the genotypes in diploid life forms results in lower imputation accuracy compared
to imputing their haplotypes. Hence we undergo extra steps to separate diplotypes into haplotypes in
pre-processing, and combining respective predicted haplotypes into diplotypes in post-processing for the
human 1000 Genomes Project dataset.

4.3.6 Loss function

For the loss function, we used a combination of Kullback–Leibler divergence (DKL) and categorical
cross-entropy (CCE), similar to the loss function of variational autoencoder [45], as follows:

Loss(y, ŷ) = (θ)CCE(y, ŷ) + (1 − θ)D(y∥ŷ), (1)

where θ is the weight parameter. The first term, representing categorical cross-entropy, and the second
term, representing Kullback–Leibler divergence loss, are calculated as follows:

CCE(y, ŷ) = − 1

N

N∑
i=1

C∑
j=1

yij log
(
p(yij)

)
(2)

DKL(y∥ŷ) =

N∑
i=1

p(yi)
p(yi)

p(ŷi)
(3)

We set θ to 0.5, meaning that STI minimizes Equations 2, 3 equally. CCE captures reconstruction error
between the input and the output, while DKL measures asymmetric distance, with y as the base, between
their probability distributions. In our experiments, omitting any of these losses resulted in reduced model
performance. Theoretically, KL-divergence and cross-entropy are related and using both might not seem
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to contribute to the performance of the model. However, adding KL-divergence to the loss term helps
the model to retain the probability/dosage distribution of alleles per variant. In other words, while cross-
entropy focuses on predicting the correct genotype, KL-divergence acts as a regularization factor and
penalizes the model whenever the shape of the predicted probability distribution (allele probability/-
dosage) shows divergence from the ground truth. Moreover, the mathematical relation of DKL and CCE
can be summarized as follows:

DKL(y∥ŷ) = CCE(y, ŷ) − CCE(y) (4)

where CCE(y) is the entropy of the ground truth. According to Equation 4 minimizing DKL(y∥ŷ) is
equivalent to minimizing CCE(y, ŷ) under the condition that the entropy of the ground truth remains
constant. However, in deep learning models, data is typically processed in mini-batches. This means that
the entropy of each mini-batch may not accurately represent the entropy of the entire ground truth. As
a result, Equation 4 does not hold for the DL models in general.

4.4 Baseline models

In order to benchmark our model, we compare STI to state-of-the-art imputation models capable of
imputing sporadic missingness: SCDA [14], AE [3], DEEP*HLA [26], Beagle5.4 [19], and Minimac4.1.4
[15]. In [14], experimental results indicate that SCDA outperforms classical ML models for genotype
imputation. Hence, we do not include classical ML models in our benchmarking analyses. It is worth
noting that DEEP*HLA is not originally designed for genotype imputation in general, but we modified
and fine-tuned it to work for this problem. Additionally, in order to assess the contribution of Cat-
Embedding, we replaced it with a convolution layer in STI, named the resulting model STI-NE, fine-tuned
it, and applied it to the benchmark datasets. Lastly, we trained SCDA, in addition to DEEP*HLA and
STI, using our proposed pre-processing and training procedure, and compared it to AE. Since AE and
original SCDA are the same and only differ in the training process (which results in AE outperforming
SCDA), we believe that this comparison can demonstrate the effectiveness of our proposed pre-processing
and training procedure.

For SCDA and AE, hyper-parameter tuning information on the yeast dataset is present in the original
papers. For SCDA, AE, DEEP*HLA, and STI, we conducted a grid search for optimal hyper-parameters
on the HLA dataset using validation sets in a 3-fold cross-validation. We assessed the impact of these
hyper-parameters on the performance of the models within the HLA dataset and applied these findings
to select suitable hyper-parameters for the yeast dataset in the case of DEEP*HLA and STI, and for the
SV dataset across all four mentioned methods. The upper limit for the hyper-parameters was the resource
limit of Google Colaboratory using Nvidia Titan IV GPU with 16 GB of RAM size for AE, and roughly
the same limitation for TPU RAM size. Minimac4.1.4 and Beagle5.4 do not require fine tuning for the
experiments we run.

4.5 Experimental settings

The input to all DL models is one-hot encoded. While STI can handle diploids, we found that the best
performance was achieved when the inputs of the DL models were haplotypes, an analysis inspired by
[26]. Therefore, for the HLA dataset and chromosome 22 datasets, we separated each diplotype into
maternal and paternal haplotypes, fed them into the model, and reconstituted the resulting predictions
for DEEP*HLA [26], SCDA [14], and STI. We continue using diplotypes as inputs for AE [3] since it is an
improved version of SCDA in which the training process was modified, and we wanted to keep it intact.
By doing so, we also compare the improvement in AE to our implementation of SCDA, called SCDA+,
in which we use proposed pre-processing in conjunction with the changes to the training process as a
contribution. The yeast dataset contains haplotypes, so there is no need for the aforementioned extra
steps.

In this study, to evaluate the imputation power of the models, multiple evaluation metrics are used
including imputation accuracy, imputation quality score (IQS) [46], weighted F1-score, and correlation
between imputed and real genotypes in terms of R2 [47]. Accuracy and weighted F1-score are calculated
only for positions with missing genotypes and for these metrics, heterozygous genotypes are encoded
differently; i.e., 0|1 and 1|0 are encoded to two different categorical values. IQS adjusts the chance
concordance between predicted and the ground truth SNVs and is defined for bi-allelic events. Therefore,
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IQS cannot be calculated for any SV in chromosome 22. R2 is the squared Pearson correlation coefficient
between the imputed genotypes and the true genotypes at a specific locus. The definition of these metrics
is provided in the Metrics section of the Supplement.

Data availability

All data used in this study are publicly available. The yeast dataset can be found as the Supplementary
Data 5 at https://www.nature.com/articles/ncomms9712, the rest of datasets are extracted from the
1000 Genomes Project phase 3 dataset available at http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20130502/. Instructions on how to prepare the data for Missing variants experiment can be found in
https://github.com/kanamekojima/rnnimp.

Code availability

The source code of STI is publicly available on GitHub (https://github.com/shilab/STI).
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