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STICI: Split-Transformer with integrated
convolutions for genotype imputation

Mohammad Erfan Mowlaei1, Chong Li 1, Oveis Jamialahmadi 2, Raquel Dias3,
Junjie Chen4, Benyamin Jamialahmadi5, Timothy Richard Rebbeck 6,7,
Vincenzo Carnevale 8,9, Sudhir Kumar 1,8,10 & Xinghua Shi 1,8

Despite advances in sequencing technologies, genome-scale datasets often
contain missing bases and genomic segments, hindering downstream ana-
lyses. Genotype imputation addresses this issue and has been a cornerstone
pre-processing step in genetic and genomic studies. Although various meth-
ods have beenwidely adopted for genotype imputation, it remains challenging
to impute certain genomic regions and large structural variants. Here, we
present a transformer-based framework, named STICI, for accurate genotype
imputation. STICImodels automatically learn genome-widepatterns of linkage
disequilibrium, evidencedbymuchhigher imputation accuracy in regionswith
highly linked variants. Our imputation results on the human 1000 Genomes
Project and non-human genomes show that STICI can achieve high imputation
accuracy comparable to the state-of-the-art genotype imputation methods,
with the additional capability to imputemulti-allelic variants and various types
of genetic variants. STICI can be trained for any collection of genomes auto-
matically using self-supervision.Moreover, STICI showsexcellent performance
without needing any special presuppositions about the underlying patterns in
collections of non-human genomes, pointing to adaptability and applications
of STICI to impute missing genotypes in any species.

Genetic and genomic studies, such as linkage analysis, genome-wide
association study (GWAS), and polygenic risk score (PRS) estimation,
enable us to dissect the genetic architecture of complex traits and
diseases1. In recent years, whole genome sequencing (WGS) platforms
and genotyping techniques have become increasingly cost-effective,
resulting in the accumulation of large collections of genotypes and
deeper insights into the genetic architecture of individual traits and
diseases.

The resolutionof genotypinghasbeen improvingdue to advances
in genotyping and sequencing technologies, accompanied by algo-
rithmic improvement in analyzing such data. However, genotype data
still containsmissing values anduntyped loci2. Suchmissing genotypes
may decrease the statistical power in disease association studies and
causal variant discovery3–5. Causes of missing genotypes include the
difficulty in sequencing rare alleles6–8, failure of experimental assays,
genotype calling errors, and differences in densities and properties of
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genotyping platforms3. As such, genotype missingness, as depicted in
Fig. 1, can be classified into two distinct categories: sporadic missing-
ness, where for each site/segment, some values could be absent; and
systematic missingness, in which some genomic loci or segments are
not genotyped. Challenges in handling missing data are further com-
pounded when considering different types of genetic variation in
addition to Single Nucleotide Variants (SNVs). Compared with SNVs,
Structural Variations (SVs) pose a greater challenge in genotype calling
and imputation due to their increased complexity, limitations of cur-
rent sequencing technologies, extensive allelic diversity, and their
variable frequencies among populations9,10. Moreover, SVs can have a
more significant impact on genetic diseases than SNVs, so their accu-
rate imputation can lead to enhancements in disease association
studies11.

Consequently, there is a common need for reliable imputation of
genotypes using computationalmethods. Imputation is the process of
inferring missing values in the data based on the information already
present in the dataset, such as the density and distribution of variants
of various complexities within and among sequences in the dataset.
Imputation of missing data in genomics needs specialized methods
becausegenomic information is inherentlydifferent fromdata inmany
other domains, such as vision or natural language processing. For
example, genotype data have some unique characteristics, including
high data dimensionality when the number of variants is usually larger
than the sample size, linear and non-linear correlations among the
variants12, and shared segments of sequences due to common ances-
tries. Furthermore, given the multifaceted nature of genotype impu-
tation, it is well-recognized that no single method can serve as a
universal solution. Consequently, it is a commonpractice in thefield to
utilize multiple imputation tools for a particular study.

Widely used imputation methods often require a reference panel
of genomes to impute missing genotypes in other genomes, which
assumes that the missing information comes from the same ancestry
patterns as those in the reference panel13. These methods utilize Hid-
den Markov Models (HMMs), graphical models, and haplotype-cluster
algorithms to impute missing values14. For example, Minimac415, the
most recent version of MACH16, uses an HMM. For each individual,
Minimac4 updates the phase iteratively in both directions based on
haplotypes in the reference panel and neighboring loci in the indivi-
dual. It splits sequences into overlapping chunks in order to reduce
memory consumption and make the model scalable. Similarly,
SHAPEIT517, Impute518, and Beagle19 also employ HMMs to perform
imputation. The Haplotype-clustering algorithm is utilized in the
fastPHASE20 in order to cluster haplotypes in an SNV-wise manner and
imputemissing valuesper locus. GLIMPSE221 uses anHMMtogenotype
low-coverage whole-genome sequencing (WGS) data.

Deep Learning (DL) methods have lately been applied for geno-
type imputation. Sparse ConvolutionalDenoising autoencoder (SCDA)
is used in ref. 14 to impute missing data in the Human Leukocyte
Antigen (HLA) regionon chromosome6 andyeast22 genotypes. In ref. 3
an improvement in SCDA training is proposed to improve the model’s
performance. Similarly23, used autoencoders on identified linkage
disequilibrium (LD) blocks as well as focal loss to improve the per-
formance. RNN-IMP24 utilizes recurrent neural networks (RNNs) and
augments the samples using recombination and mutation in order to
impute systematic missingness in genotype data. In a follow-up
study25, this model was updated with a complementary denoising
autoencoder to perform pre-phasing in addition to systematic impu-
tation. GRUD26 utilizes RNN-IMP in an adversarial training schema
which substantially reduces the model training time. DEEP*HLA27 uses
a convolutional neural network to perform imputation on pre-phased
genotypes at the gene level. Inspired by DEEP*HLA, HLARIMNT28 uses
transformers for the same task.

While the overall performance of existing imputationmethods for
genomic data is generally good for common variants and alleles with
high-frequency alleles, it is still challenging to impute rare variants,
especially in scenarios where reference panels are limited. Also, many
current solutions cannot directly handle multi-allelic variants. More-
over, existing methods have not been systematically benchmarked for
imputing SVs, particularly complex variants with multiple alleles, to
the best of our knowledge. Also, the training of DL models3,14,23,27 is
generally slow, and they usually need many more samples to perform
as well as classical methods based on HMMs, such as Minimac415 and
Beagle5.419. Although RNN-IMP and GRUD24,26 addressed this perfor-
mance disparity, these methods require retraining when the variant
sets in the target are different from those in the training set. Although
GRUD has the benefit of faster model training, it is not designed to
handle sporadicmissingness (Fig. 1a). Finally, the restof the existingDL
methods rely on convolutional neural networks (CNNs), which excel at
exploiting local patterns but do not exhibit a robust mechanism to
effectively capture pairwise correlations among local and distant
markers simultaneously, such as the presence of LD blocks in
genotypes.

Compared with CNNs, the emerging attention mechanism in
Transformers offers an effective solution to capturing local and distal
interactions29 in genomes. The attention mechanism in DL mimics
visual attention to focus on specific parts of pictures30,31 by calculating
importance scores among genomic loci. Therefore, attention can
capture global interactions amongst markers. Transformers utilize
multi-head attention to capture intricate and multi-level interactions
among the variants. AlphaFold232 and ESM-233 are successful examples
of transformers in biological sequence analysis.

0 0 1 0 . 1 0

0 1 0 0 . 1 1

. 1 . 1 1 0 1

. 0 . 0 1 1 1

1 1 1 0 . . 1

1 0 1 1 . . 0

sample i

sample j

sample k

genotyped variants

a) Sporadic missingness

0 0 1 0 1 1 0

0 1 0 0 0 1 1

1 1 1 1 1 0 1

0 0 0 0 1 1 1

1 1 1 0 0 1

1 0 1 1 1 . 0

b) Systematic missingness

sample i'

sample j'

sample k'

genotyped variants

U
ngenotyped

U
ngenotyped

Fig. 1 | Twocategoriesofgenotypesmissingness. aSporadicmissingness: It arises
due to genotype calling errors and assay failures. Prediction of sporadic missing-
ness is typically done during the pre-phasing step of imputation pipelines.
b Systematic missingness: Differences in sequencing resolution are common

causes of systematic missingness because a subset of genomic positions are
assayed. The inference of missing variants in untyped regions is a major focus of
imputation pipelines.
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In this article, we present a novel genotype imputation model,
STICI, based on the attention mechanisms in a transformer frame-
work and convolutional blocks. Our model utilizes attention to
capture patterns among SNVs and SVs in the genome collections
analyzed. We found STICI to achieve high imputation accuracy at a
modest memory consumption cost, achieved by dividing the data
into chunks (following15) that enable efficient application of STICI to
long sequences. Furthermore, STICI needs to be trained only once,
unlike other DL models. After this training, the imputation time in
STICI is comparable to or faster than using classical methods (Sup-
plementary Tables 10 and 11). In brief, our studymakes the following
key contributions.

• We propose a DL transformer framework termed STICI, designed
to specifically address the genotype imputation problem.

• STICI imputation does not need a standard reference panel, which
makes it more generally applicable to any data set.

• STICI excels at SV imputation, where the variants harbor a higher
degree of complexitywhile achieving performance comparable to
competing models for SNV imputation.

• Weanalyze the effect of differentmasking rates on building better
imputation models and explain the reasons for STICI’s
performance.

Results
Overview of the study
In this section, first, we present the results of our empirical study to
find the optimal masking percentage (masking rate, MaskR) for
STICI training in order to investigate the need for building impu-
tationmodels for specificmissing rate (MissR) in the target dataset.
After that, we present results for sporadic missingness imputation
on the yeast dataset, SVs in human chromosome 22, and extensive
SVs dataset (see Data in Methods for the dataset details). This is
followed by systematic missingness imputation for selected
regions in human chromosome 22, simulated human chromosome
19, rat, and chicken datasets. We benchmarked STICI’s perfor-
mance against classical pre-phasing methods (SHAPEIT5 and
Eagle234), classical imputation methods (Impute5, Beagle4, Bea-
gle5.4, Minimac3, and Minimac4.1.4), deep learning models (SCDA
and AE), and two variants of STICI, one that uses no embedding
(STICI-NE) and another that uses an additional MaCH-Rsq loss term
(STICI-Rsq). The details of STICI architecture and aforementioned
methods are discussed in STICI architecture and Baseline models,
respectively.

Optimal masking rate analysis
For this analysis, we used the HLA region on chromosome 6 from the
human 1000Genomes Project and performed a 3-fold cross-validation
on the data. The aim was to examine the relationship of MaskR for the
training set with varyingMissR in target sets. The results are presented
in Fig. 2 in which the results on the left/right column belong to the
validation and test set, respectively.

Figure 2a, b shows that the performances of STICI models trained
using MaskR of 0.5 and 0.7 were high for imputations in which MissRs
were up to0.5. Therefore, a single STICImodel, trainedwith aMaskRof
0.5, could be used for a variety of research datasets as long as the
MissR is less than 0.5. However, STICI models trained withMaskR >0.5
are needed for reliable imputations when the target datasets have
more than 50 percent missing variants. Therefore, we recommend
STICI models trained with a MaskR of 0.5 for imputing sporadically
missing variants and a higherMaskR (preferablymatching theMissR in
the target dataset indicated by our empirical studies data) for other
datasets.

Figure 2a, b also shows that when the target MissR is sufficiently
low, the performance gap of the imputation models is not discernible.
The performance gap becomes evident with a MissR of 0.2 or higher.

The underlying cause of this observation is that when the MissR is
significantly low, a sufficient number of variants in LD with the target
variant are readily available, making predictions less challenging for all
the models. Conversely, a large MissRs means that the amount of
information fromLDblocks diminishes, presenting a greater challenge
to the imputation model.

Figure 2c, d shows that, generally, STICImodels trainedwith lower
MaskR will produce poor performance for imputing missing SNVs
located in regions with high LD. For instance, variants in regions with
LD =0.01 have the lowest accuracy for all the masking percentages. In
addition, these results indicate that it is easier to predict missing data
in high LD regions compared to low LD regions, which aligns well with
biological expectations that low LD regions do not benefit from
additional information (LD) available for better imputation of high LD
regions. These trends suggest that the use of a lowMaskR prevents the
model from learning LD patterns, resulting in a worse performance. In
other words, the model training needs to effectively disturb the LD
blocks (and other latent patterns among variants) to capture direct
and indirect correlations and haplotypes. Consequently, MaskR of 0.5
and higher provides robust results across a large range of targetMissR
values.

The relative performance of STICI for sporadic missingness
For each dataset in this experiment, we performed a 3-fold cross-
validationwheremissing values in the testwere introduced using fixed
random seeds to ensure reproducibility of results across experiments
and methods, i.e., every method imputed the same test set. To ensure
that all the methods have access to the same set of information for
imputation, in each split of the cross-validation, the training set is used
to train deep learning models including STICI, while the same training
set is also used as a reference panel for Minimac4, Beagle5.4, SHA-
PEIT5, and Eagle2.4.1. We verified that no two samples are identical in a
training set and the corresponding test set for a given split. However,
there are potentially shared haplotypes among the training and the
test sets, specially in strong LD blocks, which provide information for
making correct imputations. Shared haplotypes may introduce
potential information leakage in the imputationprocess for secure and
privacy-preserving genotype imputation, which will be a future direc-
tion to explore regarding secure and privacy-preserving genotype
imputation.

Themissing valuesweredistributed randomly according tooneof
three strategies: uniformly, based onMinor Allele Frequency (MAF), or
based on LD. These methods were chosen to ensure that missing
values are representative of the data distribution in different biological
aspects. In all of the experiments, missing positions in the test sets
were the same for all themethods. Further details on these procedures
can be found in the methods section.

The overall results for the yeast and chromosome 22 datasets are
presented in Supplementary Table 7. The numerical values in this table
indicate the average of the metric values on the test sets in a 3-fold
cross-validation. We used maximum LD bins and/or MAF bins (Fig. 3b,
c) to distribute missing positions in the datasets extracted from the
human 1000GenomesProject. If thebins had too fewpositions (e.g., at
a 0.01 MissR on chromosome 22 datasets), we excluded this MissR for
the experiments related to these datasets. We used a consistent
approach to introduce missing values in chromosomes 6, 10, 16, and
20 based on LD distributions and a single test MissR of 0.2. In this
experiment, we focused on comparing Minimac4.1.4, Beagle5.4, SHA-
PEIT5, and STICI, because they were identified as the top performers
from classical and DL methods in prior experiments. We also added
Eagle234 to the competing methods in this experiment. We employed
3-fold cross-validation for both methods, training and imputing each
chromosome separately. R2 was calculated for each variant, and
the results were averaged over each fold, chromosome, and SV type.
Figure 4 presents the experimental results for the extensive structural
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variation datasets where the top plot shows the improvement that
STICI provides compared to the best of other methods for each SV
type, and is calculated as follows:

Improvementð%Þ= R2
STICI � R2

Best

R2
Best

� 100 ð1Þ

Yeast dataset. Missing positions in samples were selected randomly,
as the LD analysis showed that the maximum LD for all the SNVs was
high in the [0.8, 1.0] range. As mentioned, Minimac4.1.4, SHAPEIT5,
and Beagle5.4 cannot be used to impute variants of the yeast dataset
due to the lack of a reference panel. However, STICI could be applied
and outperformed other methods, achieving a minimum average
imputation accuracy of 99.86%. Overall, all the applicable models

Fig. 2 | Average accuracy over 3-fold cross-validation for validation and test
sets in the HLA dataset using different masking rate (MaskR) values during
STICI training. Bars indicate a 95% confidence interval per experiment. a, b A
breakdown of average accuracy for various missing rate (MissR) values of valida-
tion/test set when the model is trained using different MaskR values. The patterns
show that a model trained using a higher MaskR is more robust across different
target MissRs. c, d Average accuracy for validation/test sets over 3 folds and dif-
ferentMissR values calculated for various LD bins. The trend suggests that a higher

MaskR increases the performance across LD bins, which could be attributed to the
impact of MaskR on STICI to learn LD patterns comprehensively. When MaskR is
low, STICI imputations do not benefit from the LD patterns present and thus, STICI
does not learn the majority of pairwise correlations (LD) among the variants.
Consequently, STICI is not able to infer the missing value using all possible infor-
mation in the respective LD block of the target variant. Source data are provided as
a Source Data file.
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performed well on the yeast dataset, which we attribute to the pre-
sence of high LD among SNVs in this dataset.

Deletions in chromosome 22. For this dataset, we introducedmissing
positions proportional to the maximum LD/MAF distribution Fig. 3b.
Overall, STICI emerged as the best or the second-best model for
imputation across all themetrics. STICI wasmore accurate than others
for LD/MAF missingness distribution schema. Furthermore, SCDA +
demonstrates a substantial performance advantage over AE in termsof
IQS and R2 in the majority of the cases. Supplementary Table 8 shows
the accuracy trends for different maximum LD values for this dataset
when missing values are distributed proportional to variant density in
maximumLDbins. The results in this table indicate the performanceof
the competing approaches in the presence of shared haplotypes

among the reference panel (training set) and the test set, as the
occurrence of similar haplotypes across the samples is expected to be
higher in stronger LD blocks. Minimac4.1.4 and Beagle5.4 were less
accurate for SNVs with lower maximum LD compared to AE, SCDA+,
STICI-NE, and STICI. Since HMMs and graphical models rely on con-
ditional probabilities, we suggest that they would perform relatively
weak due to a low correlation between the events (states).

All SVs in chromosome 22. Similar to the previous dataset, missing
positions were distributed among SVs based on maximum LD/MAF
(Fig. 3c). Despite having a referencepanel,Minimac4.1.4 and SHAPEIT5
cannot be directly used for some missing variants for this dataset
because they can only handle bi-allelic events. Furthermore, IQS is not
well-defined for multi-allelic events.

Fig. 3 | MAF and LD distributions of benchmark datasets from the 1000 Gen-
omes Project.MAF and maximum LD distributions are presented using kernel
density estimation plots for SNVs and SVs in (a). HLA region on chromosome 6, (b)
deletions in chromosome 22, (c) SVs in chromosome 22, (e) SVs in chromosome 6,
(f) SVs in chromosome 10, (g) SVs in chromosome 16, and (h) SVs in chromosome
20. Overall, SVs exhibit a low LD value, posing a significant challenge to imputation

methods. Plot (d) LD among different SV types in chromosome 22 shows that
structural events are commonly correlated with deletions. Furthermore, deletion,
copy number variation, and duplication events appear in different ranges of LD,
while the rest of the events are limited to LD≤0.1. Lastly, themajority of correlated
SVs to deletions are of the same event, making deletions a good separate dataset
for our experiment. Source data are provided as a Source Data file.
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Supplementary Table 7 shows that STICI outperforms all other
methods on average accuracy and F1-score. STICI performance in
termsof R2 ismuchbetter than the competingmethods at highMissRs.
R2 considers the correlation among genotypes encoded as categorical
values. As such, depending on the difference in encoded values for the
predicted and the ground truth genotypes, the penalty can be severe.
For example, if 0∣0, 0∣1, and 1∣1 are encoded as 0, 1, and 2 in genotypes
and the ground truth for a given genotype is 0∣0, the model is pun-
ished moderately(severely) for predicting 0∣1(1∣1). In addition, SCDA +
outperforms AE in most comparisons, indicating the effectiveness of
our proposed training procedure.

Extensive structural variation datasets. In this experiment, we focus
on R2 between the predicted and ground truth genotypes as R2 was the
most discriminating metric for comparing the performance in imput-
ing SVs. For estimating R2, predictions are converted into categorical
values, e.g., 0∣0, 0∣1, and 1∣1 are encoded as 0, 1, and 2. Any discrepancy
between the model’s prediction and the ground truth leads to a sub-
stantial penalty on the correlation, enabling us to see differencesmore
clearly. STICI consistently outperformed Beagle5.4 and Minimac4
across various SV types, often by a noticeable margin. The underlying
cause of this observation is the lack of high LD in this dataset (Fig. 3)
and fundamental differences between HMMs and the Transformer
model. In HMMs, information propagation between two distant var-
iants occurs sequentially through intermediate sites. However, this
mechanism falters when the LD block is sparse, leading to reduced
performance. In contrast, STICI employs a direct variant-to-variant
attention mechanism within each chunk without needing to model an

intermediate site, which effectively mitigates the limitations posed by
a weak LD. Furthermore, the multi-head attention mechanism equips
STICI to discern higher-order and complex patterns among variants,
which appear to be crucial for better imputations in the absence of
strong LD patterns. These capabilities highlight STICI’s superiority in
managing SV imputation challenges where traditional HMM-based
approaches may be suboptimal. This is particularly the case for
duplications (DUP) and insertions (INS) where STICI is able to attain a
very high R2 value. This observation matches our expectations since
these two types of SVs are relatively challenging in genotype calling as
well35.

The relative performance of STICI for systematic missingness
In order to evaluate STICI against the competing methods for sys-
tematic missingness imputation, we curated four datasets that are
missing ~ 90% of the variants in the test set. The first dataset contains
the Infinium Omni 2.5 BeadChip microarray dataset on human chro-
mosome 22 (12,725 variants) as the test set and WGS genotypes from
1000 genomes project of the same region (99,314 variants) as the
reference panel. We used the same individuals as ref. 24 (100 samples
from various populations) for the test set and the rest (2404) for the
reference panel. The second dataset was generated using stdpopsim36

using msprime simulation engine37. There were 45,000 samples with
30,720 variants on human chromosome 19 in the reference panel and
5000 samples with 3044 variants for the same region in the test set.
The third dataset contains 5147 samples on a selected region on rat38,39

chromosome 20 with 61,440 variants as the reference panel and
1000 samples with 6140 variants scattered thorough the reference

Fig. 4 | Comparison sporadic imputation results of competingmethods across
SV types. Average R2 of ground-truth genotypes in the test sets and respective
predictions over 3-fold cross-validations on chromosomes 6, 10, 16, and 20. The
experiments are performed on each chromosome separately, and the results are
averaged over chromosomes and folds. Vertical lines indicate standard deviations.

The improvement plot shows the R2 score difference between STICI and the best of
other methods, normalized by the best R2 scores for each SV type. We only report
biallelic imputation results for SHAPEIT5 because we faced issues with imputing
normalized multi-allelic variants using this software. Source data are provided as a
Source Data file.
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panel variants. The fourth dataset consists of 2258 reference samples
and 55,255 variants on Sasso chicken40 chromosome 20 and 100 test
samples with 5488 variants selected among the reference variants.
More details about these datasets are provided in Data.

We used accuracy, Impute info score (INFO score)41, MaCH-Rsq15,
and Pearson correlation coefficient R2 as evaluation metrics. The rea-
son we included additional metrics for these experiments was that we
would like to utilize multiple metrics so that the evaluation of model
performance is more comprehensive and less biased. For example,
accuracy is not considered a good metric for highly imbalanced data.
In this case, accuracy for the variants with rare alleles is misleading
because a method that always predicts the majority allele can retain a
high accuracy. INFO score indicates the certainty of a model for
alternative allele dosage prediction. In an imputation pipeline, the
INFO score is used to discard unreliable predictions. The MaCH-Rsq
(Equation (6)) metric is designed based on the idea that poorly
imputed genotypes will shrink towards their expectations based on
population allele frequencies at a given site. In imputation pipelines,
MaCH-Rsq is used as a quality control measure in an imputation
pipeline and variants with a MaCH-Rsq of less than 0.3 or 0.4 are
dropped42,42,43. In addition, we calculated the Pearson correlation
coefficient R2 (Supplementary Equation 6) of the alternative allele
dosages. The results for this metric are available in the Supplemen-
tary Fig. 2.

During these experiments we noticed that the original imple-
mentationof STICI is not as accurate as classicalmodels for rare alleles.
To alleviate this problem, we developed a variant of STICI, namely
STICI-Rsq, that used MaCH-Rsq as a new loss term to be used to
improve imputation (more details in Loss function). We trained STICI
and STICI-Rsq, respectively, using a randomMaskR (per sample seen in
each training iteration) between 0.85 and 0.95. In other words, in each
epoch, the model would see various MaskRs in the aforementioned
range for different samples. We find this masking strategymore useful
because in real human data, different segments had different MissRs,
but the average was around 0.9 MissR.

The experimental results are presented in Fig. 5, where each row is
dedicated to the results of one dataset (experiment), and columns
show accuracy, INFO score, and MaCH-Rsq from left to right, respec-
tively.While STICI-Rsq achievedhigh accuracy ( > 0.95), high info score
( > 0.93), and highMaCH-Rsq ( > 0.99), some othermethods produced
almost perfect results for the simulated human data unlike that seen
for the real data. We also investigate the performance of all the
methods on non-human genotype data, including a data set from
another mammal (rat) and a bird (Sasso chicken). For the mentioned
non-human genomes, STICI-Rsq performed comparable to the other
methods. We also recorded the time taken to impute for the com-
peting methods. These timings can be found in Supplementary Tables
10 and 11.

Discussion
More accurate genotype imputation will improve the performance
of downstream functional and biomedical genomic studies. Scien-
tists frequently need to employmultiple tools, adapted based on the
degree of missingness and types of variants missing, within indivi-
dual pipelines to carry out genotype imputation. To address this
problem, we have presented STICI, a masked DL framework, which
appears to be one of the first uses of transformer architecture in
imputing genomic data. While STICI is currently limited in a few
ways, we believe that it represents a step toward developing a uni-
fied approach for successfully imputingmissing values for a range of
datasets, from small to large amounts ofmissingness, as well as SNVs
and SVs. We explored STICI’s performance for various masking rates
(training) and missing rates (application). Our experiments revealed
that a single STICImodel, trainedwith amasking rate of 0.5, could be
applied for imputing sporadic missingness of SNVs and SVs, while

for systematic missingness which generally constitutes higher
missing rates (above 80%), we can employ previously trainedmodels
using amasking rate similar to themissing rate in the test set. STICI’s
performance in imputing SNVs and SVs was comparable to many
other methods and approaches for SNVs and SVs found in low and
high LD regions. That is, STICI is capable of effectively capturing
short and long-range correlations among different genetic variants
for genotype imputation.

Currently, training an STICI model is still resource- and time-
demanding as transformers are computationally intensive. Hence, the
performance evaluation of STICI on large biobank datasets remains
unexplored due to constraints of computing and data access. In the
case of imputation of synthetic data STICI cannot impute synthetic
data as well as the HMMs based on Li and Stephens model, although
the performance gap is very small. More extensive synthetic datasets
will be further explored in future work, along with the improvement of
STICI training on larger and real datasets. To make STICI more
applicable in real-world applications and scenarios, in the future, we
plan to scale up STICI so that it can be trained on all of the available
human reference panels stratified by populations or other features,
just as used for classical settings of genotype imputation. This trained
STICI model can then be readily used to impute missing genotypes on
the samples in real-world datasets. Moreover, the transformer blocks
utilized in STICI are known to require a large number of samples to
achieve optimal performance. Therefore, we expect STICI’s perfor-
mance to greatly improve even for variants in low LD regions as the
number of samples is increased due to the release of new cohorts and
data sources. For example, we plan to explore the potential of
improving STICI utilizing current and emerging genotypes for an
increasing number of individuals in projects like UK Biobank44, Trans-
Omics for Precision Medicine (TOPMed)45, and All of Us46. In addition,
we expect the STICI framework to spur the next generation of
approaches to advance generalized and efficient imputing, which
could serve as online imputation servers because of the low compu-
tational burden of imputation after intensive training.

Methods
In this section, we first introduce the datasets we used in this study and
discuss their characteristics. This is followed by the architectural
design of STICI and the procedure for model training.

Data
We used eight datasets from four sequencing projects10,22,38–40 and
simulated a human genotype dataset using stdpopsim36 with msprime
simulation engine37 to fine-tune and benchmark STICI against the
baselines. The 1000 Genomes project datasets are pre-phased using
SHAPEIT2. Thus, the phasing information of the test sets is propagated
to the training sets, but the process is identical for all themethods so it
will not bias the results in favor of any imputation method. Scikit-allel
package47 is employed to compute LD andMAF for the datasets. In the
sporadic missingness experiments, we use 3-fold cross-validation to
assess the performance of the methods. In a 3-fold cross-validation,
each dataset is separated into three distinct partitions where there is
no sample overlap. Each time, one of the partitions is used as the test
set while the remaining two partitions are used for the training pro-
cess. For the DL models, a validation set is selected from the training
samples for early stopping. To ensure that the same training/valida-
tion/test set is used across different methods, we used fixed random
seeds for splitting the data into folds and introducingmissingness into
the test sets. For systematic missingness experiments, we selected a
fixed number of individuals as the test set. We used Python scripts to
ensure that no parental strands (haploids) are shared among the
training and test sets in both sporadic and systematic experiments.

For sporadic missingness imputation, we used three schemes to
introduce sporadic missingness: random selection, MAF-distributed
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selection, and LD-distributed selection. For the latter two, we com-
putedMAFandLDon thewholedata, as depicted inFig. 3, and selected
themissing SNVs/SVs for the test set evaluation proportional to those.
That is, if 10% of the variants have anMAF in the range of [0.2, 0.3), we

selected 10% of the missing values from these specific variants. This
approach ensures that the missing data are imputed based on the
distribution of MAF or LD in the data, providing a representative
imputation strategy. Regardless of the scheme, we used fixed random

Fig. 5 | Systematic missingness imputation results across different datasets.
The results for each dataset is arranged in one row (human Chr22 in (a–c), simulated
human Chr19 in (d–f), rat Chr20 in (g–i), Sasso chicken Chr20 in (j–l)). The columns

from left to right respectively contain accuracy, INFO score, and MaCH-Rsq results.
The lines show the average of the metrics, while the bars around each line indicate a
95% confidence interval. Source data are provided as a Source Data file.
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seeds per sample to decide the missing genotypes. Therefore, the
missing genotypes across the test samples are not identical. However,
the coordinates of missing values are identical across the competing
methods.

For systematic missingness imputation datasets, excluding Omni
2.5 BeadChipmicroarray imputation, we decided on amissing rate and
randomly selected and removed the variants in the following pre-
defined MAF bins:

½0:01, 0:05, 0:1, 0:2, 0:3, 0:4, 0:5�

The characteristics of the datasets we used in our experiments are as
follows:

HLA dataset. This dataset contains human leukocyte antigen geno-
types, covering a 3Mbp region at chromosome 6p21.31 and sitting at a
major histocompatibility complex (MHC) region. HLA region regulates
the immune system in humans48. It is highly polymorphic and het-
erogeneous among individuals; i.e., it harbors various alleles, enabling
the adaptive immune system to be fine-tuned49. In this study, we used
the genotypes of this region, obtained from phase 3 of the 1000
Genomes Project10, which contained 7161 unique genetic variants for
2504 individuals from five super-populations across the world: Amer-
ican (AMR), East Asian (EAS), European (EUR), South Asian (SAS), and
African (AFR). The majority of SNVs in this dataset exhibit maximum
LD values in the range of [0.9, 1.0]. We used this dataset for our
masking study and fine-tuning the hyper-parameters of SCDA+, AE,
and STICI.

Yeast dataset. The second dataset is the comprehensively assayed
yeast dataset22, representing a simple genetic background and high
correlation among genotypes. This dataset contains 4390 genotyped
profiles for 28,220 genetic variants. The samples were obtained by
sequencing crosses between two strains of yeast, namely an isolate
from a vineyard (RM) and a popular laboratory strain (BY). In the ori-
ginal dataset, the data is encoded as -1/1 for BY/RM, which aremapped
to 0/1 in our code, respectively, before one-hot encoding.

Chromosome22 datasets. We used structural variation data from the
1000 Genomes Project in two settings. In the first, we only selected
deletions (DEL), excluding ALU/SVA/LINE1 deletions, among all SVs.
This resulted in 573 positions harboring bi-allelic events in the dataset.
In the second, a total of 848 SVs including, but not limited to deletions,
insertions, duplications, inversions (INV), and copy number variations
(CNV) in chromosome 22 are selected. As shown in Fig. 3b, c the
majority of SVs in chromosome 22 exhibit a low LD, rendering these
datasets challenging for imputation compared to SNVs. According to
Fig. 3d, deletions cover a wide range of LD among them and other SVs,
making them a good target for a separate bi-allelic dataset.

Extensive structural variation datasets. In the concluding experi-
ment, we undertook a thorough investigation of SV imputation using
the human 1000 Genomes Project, selecting 4187, 3126, 2062, and
1569 SVs located in chromosomes 6, 10, 16, and 20, respectively. This
selection strategy was informed by the aim to encompass chromo-
somes of different lengths, providing a representative cross-section of
the genome. This diverse chromosome selection allows for a broader
understanding of the genomic distribution and characteristics of SVs,
facilitating a more nuanced analysis of their presence and impact
across different regions of the human genome. These SVs include
deletions, duplications, insertions, inversions, and copy number var-
iations. Among these SVs, 469 of them are multi-allelic (CNVs). For
eachmodel, we train on and impute each chromosome separately, and
take the average of the results over folds, chromosomes, and SV type.
Thedistributions of SVs in these chromosomes in termsofMAF and LD

are presented in Fig. 3e–h, indicating low LD and diverse MAF in
general for the mentioned SV datasets.

Systematic missingness imputation. For the first dataset (Fig. 5a–c),
we used the SNVs (MAF > 0.01) in the chromosome 22 dataset from the
human 1000 genomes project, used PLINK250 and bcftools51 to pre-
process the data and converted multi-allelic events, and selected the
first 99,314 variants in this chromosome. Following the instructions for
data collection in ref. 24 and a script provided by the authors, we
created a microarray dataset using Infinium Omni 2.5 BeadChip man-
ifest for chromosome 22 containing 12,725 variants in the same region.
We followed24 for selecting the exact individuals for the microarray
data (test set), and the rest for the reference panel.

The second dataset (Fig. 5d–f) was generated using stdpopsim36

and msprime simulation engine37 using a reference panel and demo-
graphic model (four population out-of-Africa history) integrated into
stdpopsim package52–56. This dataset contained simulated CEU popu-
lation samples with a minimum MAF of 0.01 on chromosome 19. We
selected 45,000 samples as the reference panel and 5000 samples
with unique parental strands (haploids) for the test set and shortlisted
the first 30,720 variants for the reference panel. Out of 30,720 variants
present in the reference panel, 90% of them in each MAF bin (descri-
bed atData)were removed, leaving 3044 variants in the test samples. It
is worthmentioning that therewere shared parental strands (haploids)
in the reference panel but the parental strands in the test set were all
unique within the test set and among the test set and the
reference panel.

The rat dataset38,39 (Fig. 5g–i) contains 5147 outbred samples from
more than 10 projects on a selected region at rat chromosome 20with
61,440 variants as the reference panel and 1000 samples with 6140
variants scattered thorough the reference panel variants. To preserve
parental strand uniqueness, we used variants with a minimum
MAF of 0.01.

The Sasso chicken dataset40 (Fig. 5j–l) was already pre-processed
by the curators, and non-biallelic SNVs and SNVs with MAF lower than
0.02 were removed. This dataset constitutes of 2258 pre-processed
samples and 55,255 variants on chicken chromosome 20 and 100 test
samples with 5488 variants selected among the reference variants. The
test variants were obtained by randomly removing 90% of the refer-
ence panel variants in each MAF bin described earlier.

We used python scripts, PLINK250 and bcftools51 to pre-process
the data and we used SHAPEIT517 to impute the sporadic missing data
(pre-phasing) for the rat and chicken datasets.

In previous studies, the training data is masked using different
rates to match the test set, e.g., refs. 3,14. In our experiments, we
observed improved performance of the model with 50% dynamic and
randommasking of the variants in the training data. So we trained the
DL model once and reused it multiple times for sporadic missingness
(MissR <0.5). For higher MissRs, we can train multiple models for
differentMissRbins (e.g., 0.8 <MissR <0.9 and0.9 <MissR< 0.99) and
use the proper saved model based on the missing rate in the target
data. Notably, this masking is similar to the masking performed in
modern large language models. The benefit of such a technique in
genomic data imputation is the notable reduction in the inference
(imputation) times when compared to the fastest traditional methods.
Consequently, a DLmodel trained in thismanner becomes particularly
advantageous for deployment on imputation servers, where re-
training needs to be avoided for quick and efficient processing.

Another improvement we achieved was by representing phased
diploids into haploids, followed by one-hot encoding. That is, instead
of feeding (one-hot encoded) phased diploids to the models, we fed
them haploids. This idea is proposed in ref. 27, but there is no dis-
cussion about the merits of this procedure. We surmised that pre-
dicting haploids would be easier because mutations in paternal and
maternal haploids are independent of each other. In the output,
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diploid genotypes were reconstructed by combining corresponding
haploids together.

STICI architecture
Split-Transformer Impute is an extended transformer model29 speci-
fically tailored for genotype imputation. STICI models do not require
any additional information provided by a reference panel, except for
the genotypes and their relative positions. This makes STICI adaptable
to any genotype data and allows it to be applied to a wider range of
datasets with less effort and fewer preparations. Moreover, although
here we focus on sporadic missingness, once STICI is trained on a
dataset, it can predict both sporadic missingness and systematic
missingness in genotype data as long as the target variants are a subset
of the training variants. An overview of STICI is presented in Fig. 6. We
implemented STICI and the rest of theDLmodels using the Tensorflow
framework57 in Python. In order to train the models, we used tensor
processing units (TPU) provided by the Google Colaboratory plat-
formandGPU resources in TempleUniversity’sHPC servers. A learning
rate scheduler and early stopping are employed in order to reduce the
loss and training duration.

Cat-Embedding. One important part of STICI is categorical embed-
ding (Fig. 6b), termed Cat-Embedding, which enables it to learn
embedding representation per allele in each position. For the impu-
tation task, we consider missing values as another allele that is
equivalent to special tokens in natural language processing. The

corresponding vector for each allele is added to the respective posi-
tional variant embedding vector to generate the final embedding. The
idea is similar to a natural language processing embedding layer that
accepts word indices, except that Cat-Embedding accepts one-hot
encoded data.

Splitting. While the multi-headed attention in a transformer offers
significant advantages, amajor drawback is quadraticmemory cost for
computations,which becomes important in genomic analysis since the
number of variants in a sample is normally in the thousands. In geno-
types, the majority of interactions are local58. Therefore, it is of great
importance to limit the scope of attention to save computational
resources. To do so, we split the variants into chunks (vertical parti-
tioning). The chunk size and overlap size are employed in a compar-
able manner in Minimac4.1.4 and analogous software applications. In
order to prevent loss of imputation accuracy at chunk borders, we
include flanking variants from neighboring chunks and discard them
after applying self-attention to get the original variants in the chunk.
Though the average LD block size in the dataset can be used to decide
the size of overlap, we do not use LD blocks directly to decide the
chunk size in the current version.

Each chunk passes through a dedicated branch inside the model,
leading to increased imputation quality. Ideally, having a vast number
of samples allows training a single model with attention across the
whole genome. However, when the number of samples is not enough,
the model is left with untrained parameters, resulting in poor
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Fig. 6 | The architecture of STICI. a Overall pipeline of the proposed framework:
the data is separated into paternal and maternal haplotypes in the case of diplo-
types, and it remains the same for haplotypes. While the figure shows phased
genotypes, STICI can handle unphased data as well (though the performance
degrades).Next, the data is one-hot encoded and fed intoourCat-Embedding layer,
followed by splitting the data vertically into k chunks. The chunks overlap in order
to capture information for the SNVs residing around the chunks' edges. Each
branch passes through a unique set of attention, convolution, and fully connected
layers. In the self-attention block, the flanking variants that come from the neigh-
boring chunks are removed after applying multi-head attention. Finally, the results
of all branches are assembled to generate the final sequence. b The workflow of
proposed Categorical Embedding: we consider a unique vector space for each

unique categorical value in each SNV/feature. To save computational resources,
instead of pre-allocating these vectors, we use the addition of positional embed-
ding and categorical value embeddings in order to generate unique embedding
vectors for each categorical value in each SNV/feature. We consider a missing (or
masked) value as another categorical value (allele) in our model. Here, 2 (high-
lighted in red) represents the missing value. c Convolution blocks: two parallel
convolutional branches with varying kernel sizes are used in our convolution
blocks. These multi-scale convolutional blocks allow STICI to capture information
atmultiple spatial scales in the input data, similar to thepattern-matching idea used
in classical computer visionmethods using convolution. Given the variable sizes of
LD blocks, multi-scaled convolution is expected to excel at capturing LD patterns
compared to single-scaled convolutions.
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performance. Hence, chunking regulates the number of parameters. In
a vanilla transformer, the cost of computing global attention is quad-
ratic with respect to the number of SNVs (m2); however, the amount is
lowered to (m/w) × (w + o)2 =mw in STICI, considering that the over-
laps of chunks are negligible compared to the chunk size. For instance,
form = 104 and a chunk size of 103, STICI uses 10 times lessmemory for
attention computations compared to a vanilla transformer.

Attention. The attention blocks are implemented similarly to those of
other transformers, such as self-attention blocks in Vision Transformer
(ViT)59. There is a difference between the first and second attention
blocks in the branches. The first block is a self-attention block,
meaning that the query, key, and value of the attention layer are the
same. The output of multi-head attention in Tensorflow has the same
dimensions as the query. By excluding the neighboring variants of a
chunk from the query and only including them in the key and value, we
involve them in the attentionmechanism and, at the same time, shrink
the output of a chunk to the target size (chunk size without counting
flanking/overlap variants) after applyingmulti-headed attention. In the
second block, the query is the output of the previous layer, while the
key and value are the outputs of the first self-attention block. This skip
connection considerably affects the overall performance of themodel.

Convolutional block. Convolutional blocks, as illustrated in Fig. 6c,
are also crucial components of STICI. Through empirical studies, we
found that using two parallel convolutional branches with varying
kernel sizes, similar to the Inception module60, is the best trade-off
between accuracy gain and increase in a number ofmodel parameters,
compared to using a single branch or more than two branches. Fur-
thermore, a Depth-wise convolutional layer at the end of the block
helps STICI extract local information without mixing channel infor-
mation and substantially improves imputation accuracy.

Output formation. Finally, the outputs of all branches are con-
catenated to form the output, that is, either maternal or paternal
haplotype in the case of 1000 Genomes Project datasets or the geno-
types in the case of yeast. For the former, by assembling maternal and
paternal haplotypes, we obtain imputed genotypes, and the latter
needs no further post-processing. Since genetic variations in parents
are independent, directly encoding and imputing the genotypes in
diploid life forms results in lower imputation accuracy compared to
imputing their haplotypes. Hence we undergo extra steps to separate
diplotypes into haplotypes in pre-processing and combining respec-
tive predicted haplotypes into diplotypes in post-processing for the
human, chicken, and rat datasets.

Loss function. For the loss function, we used a combination of
Kullback-Leibler divergence (DKL) and categorical cross-entropy (CCE),
similar to the loss function of variational autoencoder61, as follows:

Lossðy, ŷÞ= ðθÞCCEðy, ŷÞ+ ð1� θÞDðykŷÞ ð2Þ

where θ is the weight parameter. The first term, representing catego-
rical cross-entropy, and the second term, representing Kullback-
Leibler divergence loss, are calculated as follows:

CCEðy, ŷÞ= � 1
N

XN

i= 1

XC

j = 1

yij log pðyijÞ
� �

ð3Þ

DKLðykŷÞ=
XN

i = 1

pðyiÞ
pðyiÞ
pðŷiÞ

ð4Þ

We set θ to 0.5, meaning that STICI minimizes Equations (3), (4)
equally. CCE captures reconstruction error between the input and the

output, while DKL measures asymmetric distance, with y as the base,
between their probability distributions. In our experiments, omitting
any of these losses resulted in reduced model performance. Theore-
tically, KL-divergence and cross-entropy are related and using both
might not seem to contribute to the performance of the model.
However, adding KL-divergence to the loss term helps the model to
retain the probability/dosage distribution of alleles per variant. In
other words, while cross-entropy focuses on predicting the correct
genotype, KL-divergence acts as a regularization factor and penalizes
the model whenever the shape of the predicted probability distribu-
tion (allele probability/dosage) shows divergence from the ground
truth. Moreover, the mathematical relation of DKL and CCE can be
summarized as follows:

DKLðykŷÞ=CCEðy, ŷÞ � CCEðyÞ ð5Þ

where CCE(y) is the entropy of the ground truth. According to Equa-
tion (5) minimizing DKLðy k ŷÞ is equivalent to minimizing CCEðy, ŷÞ
under the condition that the entropy of the ground truth remains
constant. However, in deep learning models, data is typically pro-
cessed inmini-batches. Thismeans that the entropy of eachmini-batch
may not accurately represent the entropy of the entire ground truth.
As a result, Equation (5) does not hold for the DL models in general.

We also usedMaCH-Rsq62 as an additional loss term for STICI-Rsq.
MaCH-Rsq metric is calculated for each variant/site in each sample as
follows:

MaCH� Rsq lossi =
1
n

Pna
j = 2 ðDj

i � p̂Þ2

p̂ð1� p̂Þ
ð6Þ

where p̂ is the alternate allele frequency for the ground truth at variant
i in the current batch, Na is the number of alleles, Dj

i is the imputed
allele probability at the ith haplotype, and

Pna
j = 2 D

j
i is the sum of pre-

dicted probabilities of alternative alleles for the ith site. In the original
MaCH-Rsq formula p̂ is calculated using the imputed genotypes.
Notably, adding this loss causes the model to put more weight on the
loss generated by rare alleles. This loss is sensitive to batch size and
with an increase in batch size, this loss term chips away at other loss
terms. We found out that using a batch size of 4 for training STICI-Rsq
presents us with the best trade-off among accuracy and other metrics.

Baseline models
In order to benchmark our model, we compare STICI to state-of-the-art
imputation models capable of imputing sporadic missingness: SCDA14,
AE3, Impute518, SHAPEIT517, Eagle234 Beagle5.419, and Minimac4.1.415. In
ref. 14, experimental results indicate that SCDA outperforms shallowML
models for genotype imputation. Hence, we do not include shallow ML
models in our benchmarking analyses. In addition, in order to assess the
contribution of Cat-Embedding, we replaced it with a convolution layer
in STICI, named the resulting model STICI-NE, fine-tuned it, and applied
it to the benchmark datasets. Lastly, we trained SCDA, in addition to
STICI, using our proposed pre-processing and training procedure, and
compared it to AE. Since AE and original SCDA are the same and only
differ in the pre-processing step (which results in AE outperforming
SCDA), we believe that this comparison can demonstrate the effective-
ness of our proposed pre-processing and training procedure.

For SCDA and AE, hyper-parameter tuning information on the
yeast dataset is present in the original papers. For SCDA, AE, and STICI,
we conducted a grid search for optimal hyper-parameters on the HLA
dataset using validation sets in a 3-fold cross-validation. We assessed
the impact of these hyper-parameters on the performance of the
models within the HLA dataset and applied these findings to select
suitable hyper-parameters for the yeast dataset in the caseof STICI and
for the SV dataset across all four mentioned methods. The upper limit
for the hyper-parameters was the resource limit of Google
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Colaboratory using Nvidia Titan IV GPU with 16 GB of RAM size for AE,
and roughly the same limitation forTPURAMsize. Classical imputation
tools, such as Minimac, do not require fine-tuning for the experi-
ments we run.

Experimental settings
The input to all DLmodels is one-hot encoded. While STICI can handle
diploids, we found that the best performance was achieved when the
inputs of the DL models were haplotypes, an analysis inspired by
ref. 27. Therefore, for the HLA dataset and chromosome 22 datasets,
we separated each diplotype into maternal and paternal haplotypes,
fed them into the model, and reconstituted the resulting predictions
for SCDA14 and STICI. We continue using diplotypes as inputs for AE3

since it is an improved version of SCDA in which the training process
was modified, and we wanted to keep it intact. By doing so, we also
compare the improvement in AE to our implementation of SCDA,
called SCDA+, in which we use proposed pre-processing in conjunc-
tion with the changes to the training process as a contribution. The
yeast dataset contains haplotypes, so there is no need for the afore-
mentioned extra steps.

In this study, to evaluate the imputation power of the models,
multiple evaluation metrics are used including imputation accuracy,
imputation quality score (IQS)63, weighted F1-score, Pearson correla-
tion coefficient between imputed and real genotypes in terms of R264,
INFO score41, and MaCH-Rsq15. Accuracy and weighted F1-score are
calculated only for positions with missing genotypes and for these
metrics, heterozygous genotypes are encoded differently; i.e., 0∣1 and
1∣0 are encoded to two different categorical values. IQS adjusts the
chance of concordance between predicted and ground truth geno-
types and is defined for bi-allelic events only (thus not applicable to
multi-allelic SVs on chromosome 22). R2 is the squared Pearson cor-
relation coefficient between the imputed genotypes and the true
genotypes at a specific locus. INFO score is primarily used for quality
control and indicates the quality of imputation. The definition of these
metrics is provided in the Evaluation Metrics section of the Supple-
ment. Lastly, MaCH-Rsq evaluates the quality of alternative allele
imputation. For our experiments, we used a Python implementation of
the INFO score provided in the GitHub repository of ref. 24.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available. The yeast dataset can
be found as the Supplementary Data 5 at https://www.nature.com/
articles/ncomms9712, the rest of datasets for sporadic missingness
imputation are extracted from the 1000 Genomes Project phase 3
dataset available athttp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20130502/. Instructions on how to prepare the data for human chro-
mosome 22 systematic missingness can be found in https://github.
com/kanamekojima/rnnimp. The Rat dataset can be accessed at
https://library.ucsd.edu/dc/using accession code bb15123938, and the
chicken genotype data can be found in https://datashare.ed.ac.uk/
handle/10283/8761. The scripts used to simulate the human chromo-
some 19 dataset is stored in our GitHub repository. Source data are
provided with this paper in Zenodo65.

Code availability
The source code of STICI is publicly available on GitHub (https://
github.com/shilab/STICI) and Zenodo66.
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