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Abstract 18 

We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein 19 

dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 Spike (S) 20 

protein. With this approach, we first identified Candidate Adaptive Polymorphisms (CAPs) of the SARS-21 

CoV-2 Spike protein and assessed the impact of these CAPs through dynamics analysis.  Not only have we 22 

found that CAPs frequently overlap with well-known functional sites, but also, using several different 23 

dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S 24 

protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 25 

binding site residues in the open conformation of S protein compared to the closed form. In particular, 26 

the CAP sites control the dynamics binding residues in the open state, suggesting an allosteric control of 27 

hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find 28 

dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific 29 

variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic 30 

Omicron strains have mostly compensatory variants. Finally, our dynamics-based analysis suggests that 31 

the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape 32 

antibody binding. 33 

Introduction 34 

Since 2019, the evolution of SARS-CoV-2 in humans has been characterized by the spread of mutations, 35 

many notably found within the Spike (S) glycoprotein. The S protein is directly related to the human 36 

immune response to COVID-19 and, as such, has been one of the most studied and targeted proteins in 37 

the SARS-CoV-2 research (Shang et al. 2020; Harvey, Carabelli, Jackson, Gupta, Thomson, Harrison, 38 

Ludden, Reeve, Rambaut, Consortium, et al. 2021; Jackson et al. 2022; Carabelli et al. 2023; Markov et al. 39 

2023). Subsequently, research into the biophysical properties and mutational patterns associated with S 40 
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protein evolution not only remains critical to understanding the pandemic but also emerges as a useful 41 

system to understand the mechanics of molecular adaptation within viruses. 42 

For successful infection of a human host, the S glycoprotein of SARS-CoV-2 binds to the human ACE2 43 

(hACE2) receptor through its receptor-binding domain (RBD). Evidence indicates that fine-tuning S protein 44 

interactions with hACE2 significantly affects viral reproduction (Rehman et al. 2020; Saputri et al. 2020; 45 

Rochman et al. 2021). Previous evolutionary studies show a complex network of interactions among 46 

mutated residues (Changeux and Edelstein 2005; Doshi et al. 2016; O’Rourke et al. 2016; Mishra and 47 

Jernigan 2018). Therefore, there has been a vast effort to uncover which mutations are important steps 48 

of adaptation for the S protein (Cagliani et al. 2020; Damas et al. 2020; Singh and Yi 2021; Kistler et al. 49 

2022; Maher et al. 2022; Neher 2022). In particular, a significant aspect of many such studies was a focus 50 

on understanding adaptive mutations of SARS-CoV-2 that contributed to the leap to human hosts (Cagliani 51 

et al. 2020; Damas et al. 2020; Singh and Yi 2021; Starr, Zepeda, et al. 2022). This is because SARS-CoV-2 52 

has continuously mutated since its early detection (Kistler et al. 2022), causing the emergence of CDC-53 

designated “variants of concern” (VOCs) that an accelerated substitution rate may drive (Tay et al. 2022). 54 

Predicting how new mutations impact the biophysical properties of the S protein remains a challenge, let 55 

alone explaining their complex interactions with one-another and how they might affect hACE2 binding 56 

because many factors affect hACE2 interactions. Binding affinity with hACE2 can be enhanced directly 57 

through stronger receptor interactions or mediated through changes in RBD opening (Teruel et al. 2021; 58 

Zhang et al. 2021; Díaz-Salinas et al. 2022). The RBD exhibits both ‘closed’ and ‘open’ conformational 59 

states. In the closed state, the RBD is shielded from receptor binding. In the open state, the RBD is 60 

accessible for hACE2 binding (Kirchdoerfer et al. 2016; Gur et al. 2020; Henderson et al. 2020; Hoffmann 61 

et al. 2020). While some mutations may affect the transition between these states (Henderson et al. 2020; 62 

Yurkovetskiy et al. 2020; Gobeil, Janowska, McDowell, Mansouri, Parks, Manne, et al. 2021; Sztain et al. 63 

2021; Zhang et al. 2021; Shoemark et al. 2022), the other mutations may allosterically regulate RBD 64 
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openings through Furin cleavage site (residue ID range: 681-695) interactions to regulate hACE2 binding 65 

(Deng et al. 2021; Gobeil, Janowska, McDowell, Mansouri, Parks, Stalls, et al. 2021; Khan et al. 2021; 66 

Laiton-Donato et al. 2021).  67 

Moreover, as new mutations accumulate, culminating in the emergence of a new VOC, these mutations 68 

must occur on varied sequence backgrounds containing neutral, nearly-neutral, and adaptive mutations. 69 

While many studies have explored the impacts of individual mutations, VOCs result in a substantial 70 

difference in protein function compared to their individual effects (Moulana et al. 2022a; Starr, Greaney, 71 

Hannon, et al. 2022; Moulana et al. 2023; Witte et al. 2023). Here we integrate an evolutionary approach 72 

with protein dynamics analysis to address the fundamental mechanisms of mutations dictating the VOCs 73 

and the impact of their epistatic interaction on the function of the S protein. Many earlier studies have 74 

combined phylogeny and evolutionary theory to identify adaptive mutations as well as to see how the 75 

viral sequence has changed over time (Frost et al. 2018; Boni et al. 2020; Cagliani et al. 2020; Damas et al. 76 

2020; Tang et al. 2020). Similarly, we first use a well-established Evolutionary Probability (EP) approach 77 

(Liu et al. 2016) that utilizes phylogenetic trees in combination with the neutral theory of molecular 78 

evolution to determine Candidate Adaptive Polymorphisms (CAPs) determined using the early Wuhan 79 

sequence as a variant. CAPs are substitutions in SARS-CoV-2 that are rarely observed in other closely 80 

related sequences (Figure 1A), which implies a degree of functional importance and makes them 81 

candidates for adaptation (Liu et al. 2016). In support of this method, we find an overlap between our list 82 

of sites containing CAPs and putative adaptive sites identified by others (Cagliani et al. 2020; Singh and Yi 83 

2021; Starr, Zepeda, et al. 2022). Second, we use a suite of computational tools to analyze how CAPs that 84 

arose in the early and late phases of the COVID-19 pandemic modulate the dynamics of the S protein. We 85 

also explore the complex interactions between these sets of CAPs to gain mechanistic insight into the 86 

behavior of molecular adaptation involving the S protein. In particular, we focused on how mutations 87 

modulate protein dynamics, as we and others have previously found that rather than changing a protein’s 88 
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structure solely, mutations modulate conformational dynamics leading to changes in biophysical 89 

properties such as stability, flexibility, and allosteric dynamic coupling, any of which may affect protein 90 

binding (Swint-Kruse et al. 1998; Keskin et al. 2000; Bhabha et al. 2013; Nussinov, R., Tsai, C.-J 2013; 91 

Campbell, E. et al. 2016; Ma and Nussinov 2016: 201; Saavedra et al. 2018; Kuzmanic et al. 2020). 92 

With this evolutionary-dynamics unified approach, we aim to answer the following questions about VOCs: 93 

Are all the mutations in VOCs adaptive in nature? Are they coupled to one another or provide some 94 

measure of biophysical, dynamical, or mechanical compensation? While many of these mutations are 95 

found within the RBD domain, numerous others are located distal to this region; hence, we aim to 96 

investigate the functional roles of distal mutations, particularly from a protein dynamics perspective.  Our 97 

integrated analysis revealed that protein dynamics play a significant role in the evolution of the S protein. 98 

The flexibility of sites withing the S protein shows a strong, direct correlation with substitution rate, and 99 

newly evolving CAPS are mostly compensatory (i.e., additive) mutations that modulate the dynamics of 100 

the hACE2 binding site. Yet other CAPs, 346R, 486F, and 498Q, show highly epistatic (i.e., non-additive) 101 

modulation of the hACE2 binding site and provide immune escape benefits.  102 

 103 

Results and Discussions 104 

Candidate Adaptive mutations in the Spike protein are recognized via Evolutionary Probabilities. 105 

SARS-CoV-2 is part of a family of coronaviruses, many of which infect mainly animals and are less capable 106 

of infecting humans (Dicken et al. 2021). Therefore, to identify the most likely mutations responsible for 107 

the infection of human hosts (i.e., putative adaptive mutations for humans), we estimated the (neutral) 108 

evolutionary probability (EP) scores of mutations found within the S protein (Liu et al. 2016). EP scores of 109 

the amino acid variants of S protein are obtained by constructing a maximum likelihood phylogenetic tree 110 

(Goldman 1990) containing 19 orthologous coronavirus sequences, which were selected based on the 111 
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amount of divergence over evolutionary history to ensure that each amino acid position had ample time 112 

to experience purifying selection (Patel et al. 2018) (Figure 1A). The likelihood of finding a particular amino 113 

acid in the sequence is then determined using a Bayesian framework, with calculations carried out by 114 

MEGA X software (Kumar et al. 2018). As apparent in the name, EP scores obtained for the amino acids in 115 

the sequence provide information regarding the likelihood of finding them at their position, given the 116 

history of the sequence. Amino acid residues receiving low EP scores (<0.05) at a position are less likely to 117 

be found in a given position within the sequence because they are non-neutral.  Generally, positions with 118 

low EP amino acids are far less common than those containing mutations with high EP, a trend also 119 

realized in the CoV-2 S protein (Figure 1B).  120 

Of particular interest is an observed evolutionary change where an amino acid with high EP is replaced by 121 

an amino acid residue with low EP. While amino acids with low EP should be harmful or deleterious to 122 

viral fitness due to functional disruption or change, fixation of a low EP amino acid at a position suggests 123 

an underlying mechanism for natural selection to operate. These fixed, low EP mutations are called 124 

candidate adaptive polymorphisms (CAPs) as they are predicted to alter protein function, and adaptive 125 

pressures may drive their prevalence (Patel et al. 2018). Indeed, there is an overlap between these CAPs 126 

and the mutations suggested by other methods to be adaptive for the S protein (Cagliani et al. 2020; Singh 127 

and Yi 2021; Starr, Zepeda, et al. 2022). 128 
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 129 

Figure 1. (A) The evolutionary probabilities (EP) of each amino acid in the S protein sequence are 130 

calculated by taking the multiple sequence alignment of the S proteins through their evolutionary tree 131 

and using Bayesian inferences to determine the likelihood of finding a particular residue at a particular 132 

location within a given sequence. Simply, if the residue is found at a location ‘x’ in closely related 133 

sequences, it will have a higher EP at location ‘x’ in the target sequence. Residues with an EP <0.05 in the 134 

target sequence are CAPs (Red). (B) The distribution of EP scores of the wild-type residues in the S protein. 135 

Here, lower EP scores are shown in red, and higher EP scores in blue. While the vast majority of the wild-136 

type (reference) protein consists of high EP residues, a few residues have low EP. (C) The CAPs are also 137 

highlighted as red spheres in the open configuration of the S protein, with the open chain in a darker 138 

shade. We observe that a majority of the CAP  positions reside at the receptor binding domain (RBD) and 139 

the Furin cleavage site (676-689; (Wrobel et al. 2020)) shown as transparent light gray spheres.  140 

Interestingly, most of the CAP residues are in functionally critical sites, including the receptor binding 141 

domain (RBD) and the Furin cleavage site (Figure 1C). As mentioned earlier, the RBD plays a key role in 142 

initiating the infection of a healthy cell by binding it with the host organism’s ACE2 protein. Before ACE2 143 
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binding, one chain of the homotrimer comprising the S protein must open to expose the RBD (Kirchdoerfer 144 

et al. 2016; Henderson et al. 2020; Hoffmann et al. 2020; Sztain et al. 2021). The Furin cleavage site plays 145 

a key role in the opening process as it aids in the cleavage of the S protein into two domains: S1 and S2 146 

(Wrobel et al. 2020: 13). Similar cleavage sites have been found in related coronaviruses, including HKU1 147 

and Middle East respiratory syndrome coronavirus (MERS-CoV), which infect humans (Chan et al. 2008: 148 

1; Millet and Whittaker 2014; Millet and Whittaker 2015), and the acquisition of similar cleavage sites is 149 

associated with increased pathogenicity in other viruses such as the influenza virus (Steinhauer 1999). 150 

Interestingly, however, CAPs do not display such an overwhelming tendency to occur at well-known 151 

critical sites within human proteins studied with similar methods (Ose, Campitelli, et al. 2022), yet 152 

mutations at those sites are associated with disease, indicating their critical role in inducing functional 153 

change. Therefore, the identified CAPs in the S protein, which are signs of recent evolution, can provide 154 

mechanistic insights regarding the molecular adaptation of the virus. In particular, we aimed to analyze 155 

how these CAP positions in the S protein modulate the interaction with hACE2 using our protein dynamics-156 

based analysis (Gerek and Ozkan 2011; Nevin Gerek, Z., Kumar, S., Banu Ozkan, S. 2013;  Larrimore et al. 157 

2017; Kumar, A., Glembo, T.J., Ozkan, S.B. 2015b).  158 

 159 

Asymmetry in communications among the network of interactions in Spike describes how CAPs regulate 160 

the dynamics of the Spike protein. 161 

A mutation at a given amino acid position inevitably not only alters local interactions, but this change 162 

cascades through the residue-residue interaction network, which gives rise to a variation in native 163 

ensemble dynamics to modulate function (Dror et al. 2012; Labbadia and Morimoto 2015; Sekhar and Kay 164 

2019; Campitelli et al.). Thus, we analyze the internal dynamics of the system to understand the functional 165 

role of CAPs in S proteins. This analysis allows us to gain a mechanistic understanding of the relationship 166 
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between CAP mutations and biophysical outcomes (Teruel et al. 2021). First, we implement the Dynamic 167 

Coupling Index (DCI) approach to study long-distance coupling between the CAPs and the hACE2 binding 168 

sites emerging from the 3D network of interactions across the S protein system. The DCI parameter 169 

combines Perturbation Response Scanning and Linear Response Theory to capture the strength of a 170 

displacement response for position i upon perturbation of position j, relative to the average fluctuation 171 

response of position i to all other positions in the protein. It represents the strength of dynamic coupling 172 

between positions i and j upon perturbation to j.  173 

Further, asymmetry can be captured in the DCI values, as dynamic coupling is not necessarily due to an 174 

anisotropic network. That is, each amino acid has a set of positions to which it is highly coupled, and this 175 

anisotropy in connections gives rise to unique differences in coupling between a given i, j pair of amino 176 

acids which do not have direct interactions. By calculating the coupling of the hACE2 binding interface in 177 

the RBD with respect to the CAP residue positions and vice versa, we can generate DCIasym (Figure 2A) as 178 

the difference between the normalized displacement response of position j upon a perturbation to 179 

position i (DCIij) and the normalized displacement response of position i upon a perturbation to position j 180 

(DCIji) (See Methods).  If the DCIasym values significantly differ from zero, it shows asymmetry in coupling 181 

and presents a cause-effect relationship between the i, j pair in terms of force/signal propagation. This 182 

metric has been used previously in a variety of systems to analyze the unique behavior of positions within 183 

a protein and a given position’s propensity to effect biophysical changes upon mutation, particularly at 184 

long distances (Modi and Ozkan 2018; Campitelli and Ozkan 2020; Kolbaba-Kartchner et al. 2021; Ose, 185 

Butler, et al. 2022; Kazan et al. 2023; Campitelli et al. 2020b).  186 
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 187 

Figure 2. (A) Schematic representation of DCI asymmetry. (B) DCI asymmetry of CAP residue positions 188 

with the binding interface of RBD in the open chain. Residues in the closed chains with a low EP amino 189 

acid in the reference sequence dominate the binding site interface of RBD in the open chain. There is a 190 

significant difference between the asymmetry profiles of the closed (M = -0.06, SD = 0.33) and open (M = 191 

-1.68, SD = 0.89) conformations (p < .001). 192 

 193 

Recent work from our group has shown an enhancement in cross-chain communication within the main 194 

protease of SARS COV-2 compared to SARS COV-1 (Campitelli et al. 2022). Furthermore, previous studies 195 

have shown that allosteric inter-chain communication is important to S protein function (Zhou et al. 2020; 196 

Spinello et al. 2021; Tan et al. 2022; Xue et al. 2022). In support of these findings, we observe through 197 

DCIasym that when the S protein is in its pre-fusion conformation with one chain open, the CAPs in the 198 

closed chains have negative coupling asymmetry with respect to the hACE2 binding site interface in the 199 

RBD-open chain. This indicates an allosteric control where the hACE2 binding site is dominated by the 200 

dynamics of the CAPs in closed chains (Figure 2B, yellow bars). As this open-state RBD is critical for the 201 

viral infection of host cells (Kirchdoerfer et al. 2016), our results suggest that this type of closed-to-open 202 

cross-chain interaction is important for viral proliferation. Our prior studies on DCIasym show a similar trend 203 

in Lactose Inhibitor (LacI), a protein with a functional role in gene expression through binding DNA. The 204 

allosteric mutations (i.e., mutations on the sites that are far from the DNA binding sites) that alter DNA 205 
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binding affinity not only exhibited unique asymmetry profiles with the DNA binding sites of LacI, but also 206 

regulated the dynamics of these binding sites (Campitelli et al. 2020b). 207 

Similarly, it is possible that mutations to such residue positions within the S protein can be used to regulate 208 

the dynamics of the hACE2 bindings sites of the open RBD state. We, therefore, propose that the residue 209 

positions with CAP substitutions hold the potential for mutations in the spike sequence which can alter 210 

the opening and closing dynamics of the RBD domain. This hypothesis is further supported by many 211 

mutations already observed at these residue positions which alter the infection rate (Brister et al. 2015). 212 

Interestingly, residues responsible for extremely low asymmetry values (< -4) lie overwhelmingly in the 213 

region 476–486. These same residues were suggested to stabilize S protein dynamics and prime it for host 214 

Furin proteolysis (Raghuvamsi et al. 2021). 215 

Moreover, as a control, we performed the same analysis on the S protein with the RBD domains of all 216 

chains in the closed configuration. In this case, we observed that the DCIasym of the CAPs residue positions 217 

with respect to the hACE2 interface in the other chains yields a largely symmetric distribution about 0 218 

(Figure 2B, green bars). This verifies that the asymmetry in the coupling of CAPs with the exposed binding 219 

site interface in pre-fusion configuration results from one of the RBDs opening up and further suggests 220 

the allosteric role played by CAPs in locking the S protein in the RBD open state.  221 

 222 

Dynamic analysis shows that rigid sites tend to be more highly conserved than flexible sites. 223 

CAPs represent important S protein amino acid changes between related coronaviruses across multiple 224 

species and the Wuhan-Hu-1 reference sequence (MN908947). Since SARS-CoV-2 first spread to humans, 225 

it has continued to mutate and evolve rapidly, particularly regarding the S protein (Amicone et al. 2022; 226 

Liu et al. 2022; Tay et al. 2022). Like the mutations leading to the Wuhan strain caused an increase in 227 

binding affinity to hACE2, continued evolution in human hosts has resulted in further altered binding 228 
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affinities as well as different phenotypic outcomes for those infected (Ali et al. 2021; Barton et al. 2021; 229 

Ozono et al. 2021).  230 

We explore whether protein dynamics has played a role in the selection of mutational sites during the 231 

evolution of the S protein since 2019. Our previous work has indicated that rate of evolution per positional 232 

site exhibits a positive correlation with positional flexibility; generally, positions that exhibit higher 233 

flexibility are also sites that experience a higher number of amino acid substitutions (Liu and Bahar 2012; 234 

Maguid et al. 2008; Maguid et al. 2006; Mikulska-Ruminska et al. 2019; Nevin Gerek, Z., Kumar, S., Banu 235 

Ozkan, S. 2013). To confirm these findings for the evolution of the S protein using the sequenced variants 236 

of infected humans, we analyze the site-specific amino acid flexibility using the Dynamic Flexibility Index 237 

(DFI). Using the same mathematical foundation as DCI, DFI evaluates each position’s displacement 238 

response to random force perturbations at other locations in the protein (Gerek and Ozkan 2011; Nevin 239 

Gerek, Z., Kumar, S., Banu Ozkan, S. 2013), and it can be considered a measure of a given position’s ability 240 

to explore its local conformational space. We found that the covid-19 S protein shows the expected high 241 

correlation between the occurrence of mutations and site flexibility (Figure 3) when we compare %DFI 242 

(DFI ranked by percentile) to the average number of variants per position found within a given %DFI bin. 243 

Previous studies have indicated that rigid residues are critical for functional dynamics, thus more likely to 244 

impact function if mutated and, generally, can lead to a loss of function and thus more conserved (Kim, 245 

H. et al. 2015; Butler et al. 2018; Modi, Risso, et al. 2021; Modi, Campitelli, et al. 2021; Kazan et al. 2022; 246 

Ose, Butler, et al. 2022; Stevens et al. 2022; Campitelli et al. 2020a; Kumar, A., Glembo, T.J., Ozkan, S.B. 247 

2015b). This analysis also agrees with these previous studies and highlights the power of negative 248 

selection, in line with the neutral theory of molecular evolution, stating that deleterious mutations (i.e., 249 

those on the rigid positions) should be eliminated and therefore not observed (Kimura, Motoo 1983). 250 
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 251 

Figure 3. The average number of variants observed among residues of different flexibility. Residues were 252 

sorted into one of five bins based on flexibility. After that, the average number of variants for residues 253 

within that bin was calculated. Here, the number of variants is defined as the number of different amino 254 

acid varieties found at that site. Mutational data was calculated across approximately 24,000 SARS-CoV-255 

2 S protein sequences from the NCBI Datasets Project (Brister et al. 2015). Residue flexibility, as reported 256 

here via %DFI, was computed using structure id 6vsb from the Protein DataBank (Berman, H.M. et al. 257 

2000). More rigid residues tend to have fewer variants. (r = 0.94).  258 

Continued mutations within human hosts have resulted in a multitude of variants. Indeed, by fitting 259 

various molecular clock models to genome sequence data, VOC emergence is punctuated by an episodic 260 

period of rapid evolution, with a substitution rate of up to 4-fold greater than the background substitution 261 

rate (Kumar et al. 2021; Tay et al. 2022). With such an aggressive evolutionary rate, we are finding VOCs 262 

to consist of a number of different characteristic mutations, almost all of which are CAPs.  263 

To explore the dynamic effects of the evolution of the Spike in humans, we examine asymmetry with these 264 

new potentially adaptive sites, namely the low EP (CAP) characteristic mutation sites observed in the Delta 265 

variant,  the widely dominant variant from December 2021 to January 2022 (Thye et al. 2021), and the 266 

Omicron variant, a highly transmissible variant whose lineages have remained dominant since January 267 

2022) (Kim et al. 2021) (Figure 4). This analysis revealed a mechanism similar to that for the CAPs in the 268 
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reference protein (Figure 2), as the open-chain binding interface is also allosterically controlled by these 269 

potentially new adaptive sites. Regarding this, we see that the asymmetry is much more pronounced in 270 

observed mutations of Omicron variants suggesting that these new mutations have a stronger power in 271 

controlling the dynamics of open chain hACE2 binding interface compared to those observed in Delta 272 

variants. We can speculate that the difference in virulence and infection rates between Omicron and Delta 273 

(Earnest et al. 2022; Bager et al. 2021; Sheikh et al. 2021; Twohig et al. 2022;(Houhamdi et al. 2022; Menni 274 

et al. 2022) might be due to these specific CAPs within each variant and their differences in allosterically 275 

controlling the dynamics of open RBD binding sites as observed in the DCIasym analysis.  276 

 277 

Figure 4. (A) DCI asymmetry with low EP characteristic mutation sites of Delta or Omicron strains in the 278 

closed chains and the binding interface of RBD in the open chain. Delta displays a second peak closer to 279 

zero, suggesting that Delta mutation sites (M = -0.98, SD = 0.80) have less allosteric control over the 280 

hACE2 binding sites than Omicron mutation sites (M = -1.74, SD = 1.00) (p < .001). However, both sets 281 

of sites have far more control over hACE2 binding sites than expected, based on a random control group 282 

(M = 0.03, SD = 0.85) (p < .001). (B) S protein structure showing binding interface sites (transparent gray), 283 

Delta mutation sites (magenta), Omicron mutation sites (cyan), and sites mutated in both Omicron and 284 

Delta (Blue).  285 

 286 
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Experimental results motivate the use of EpiScore within the SARS-CoV-2 Spike protein. 287 

The fact that the identified CAPs in the reference protein and the more recently evolved CAPs of Delta 288 

and Omicron variants both show a high degree of control over the active sites begs the question: what is 289 

the complex interaction between these previous and new CAP sites? Motivated by this concept, we 290 

explore the interplay of mutational pairs to understand the effects of the specific amino acid backgrounds 291 

associated with these two predominant variants. Some CAP sites in Delta and Omicron have already been 292 

considered adaptive (Kemp et al. 2021; Kistler et al. 2022; Maher et al. 2022; Neher 2022).  293 

It is well understood that the impact of even a single mutation to a protein sequence can sometimes 294 

dramatically alter the biophysical behavior of the system. However, the mechanistic impact of point 295 

mutations can only be fully understood when the sequence background upon which it is made is 296 

accounted for. This means that, in the case of strains with multiple mutations, the interplay between 297 

mutated positions will ultimately impact a protein as an aggregate behavior, where the presence of 298 

previous mutations may strongly (or weakly) influence some mutations. This concept of non-additivity is 299 

known as epistasis. In fact, studies of evolutionary pathways of mutations have suggested that a majority 300 

of the mutations have a second or a higher order epistasis among them (Bershtein et al. 2006). Nature 301 

exploits this higher order complex relationship between the mutations to evolve their function. 302 

To computationally capture and interpret the pairwise effects of mutations, we have developed an in-303 

house computational tool called EpiScore (Figure 5A). Here, we evaluate how a given position pair i j may 304 

affect other critical positions k of the protein. EpiScore is the relative coupling strength to a position k 305 

when positions i and j are perturbed simultaneously compared to the average dynamic coupling strength 306 

of i to k and j to k. EpiScore has previously been used successfully to capture overarching trends in GB1 307 

deep mutational scan data as well as specific instances of the development of antibiotic resistance in 308 

various enzymatic systems (Campitelli and Ozkan 2020). An EpiScore of 1 indicates perfect coupling 309 

additivity, and deviations from this value represent non-additive behavior between position pairs and 310 
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functionally important sites. Prior EpiScore work has shown a difference in EpiScore between the sites of 311 

compensatory and non-compensatory mutations, where both yield distributions with peaks around 1, but 312 

non-compensatory mutations show higher deviation in their EpiScore distribution (Ose, Campitelli, et al. 313 

2022). 314 

Many studies have confirmed epistasis between residues within the S protein (Moulana et al. 2022a; Starr, 315 

Greaney, Hannon, et al. 2022; Moulana et al. 2023; Witte et al. 2023). These epistatic residues can have 316 

various effects on hACE2 or antibody binding. To further motivate our use of EpiScore within SARS-CoV-317 

2, we calculate the EpiScore (Figure 5B) of a set of mutation pairs used by Moulana et al. (Nature comm 318 

2022) and compare our results to quantified epistatic effects determined by the experimental hACE2 319 

binding affinity of “first-order” single mutation variants compared to “second-order” mutation pair. Our 320 

EpiScore results and the experimentally determined epistasis have a reasonable similarity. Both methods 321 

captured highly epistatic behavior among residues 493, 496, 498, 501, and 505, as well as a lack of epistatic 322 

behavior for residues 339, 371, 373, 323 

and 375. 324 

 Figure 5. (A) Schematic 325 

representation of cross-chain 326 

EpiScore, describing i, j, in chain B and 327 

C respectively and its impact in RBD 328 

binding position k in the open RBD 329 

conformer chain A. (B) Colors indicate 330 

EpiScore values for given mutation 331 

pairs, averaged over hACE2 binding 332 

sites.  Cross-chain residue pairs in the 333 

upper right tend to be highly 334 

epistatic, similar to pairwise second-335 

order interaction coefficients from 336 

Moulana et al. (Nature comm 2022).  337 
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Episcore highlights the epistatic relationship between the recent adaptive mutations in VOCs and the 338 

CAPs of the Wuhan reference. 339 

Seeking further to understand the role of epistasis within S protein variants, we explored the possibility 340 

of epistatic relationships between the CAPs of the Wuhan variant and the new CAPs in VOCs. Thus, we 341 

computed the Episcore of these CAP positions in the closed RBD domains (i.e., chain B and C) with respect 342 

to functional hACE2 binding interface sites of the open RBD domain chain (chain A) (Figure 5B) and 343 

obtained Episcore distributions.  344 

  345 

 346 

Figure 6. EpiScores with I = low EP Delta mutation sites (magenta), low EP Omicron mutation sites (Cyan), 347 

and a random selection of sites (gray), j = low EP sites in the Wuhan variant, and k = the binding interface 348 

of the open chain. EpiScores using sites of either variant (Delta: M = 0.70, SD = 0.50, Omicron M = 0.86, 349 

SD = 0.46) are significantly different (p<.001) from a set of EpiScores using random sites (M = 0.84, SD = 350 

0.41), but the distribution for Delta variants differs much more from the other two. EpiScores for other 351 

variants can be found in Supplementary Figure S1. 352 

 353 

To contrast these variants, Omicron (Figure 6, cyan) shows a high proportion of additive, potentially 354 

compensatory, mutations compared to the Delta variant (Figure 6, magenta), with a peak centered on 1. 355 

The comparatively more pathogenic Delta variant exhibited many non-additive, suspected non-356 

compensatory mutations with EpiScores below one. This again suggests that the cross-communication 357 

between the open and closed chain of the S protein is important for regulating the function. Four out of 358 
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seven low EP Delta mutation sites used in this analysis often resulted in EpiScores below 1. Each of those 359 

is found in the N-terminal domain (NTD) on or near the N3 loop and is implicated in antibody escape in 360 

recent studies (Chi et al. 2020; Weisblum et al. 2020; Harvey, Carabelli, Jackson, Gupta, Thomson, 361 

Harrison, Ludden, Reeve, Rambaut, COVID-19 Genomics UK (COG-UK) Consortium, et al. 2021; Klinakis et 362 

al. 2021; Cantoni et al. 2022). The low EpiScores of NTD mutations suggest that they dampen the control 363 

of Wuhan variant CAPs over the active site in addition to their effects on antibody binding. It is possible 364 

that what the Delta variant gained in transmission rate also came with being more harmfully pathogenic 365 

due in part to negatively epistatic interactions. It follows that the mutations leading to the development 366 

of the Omicron strain were compensatory in nature, possibly leading to a lower pathogenicity and higher 367 

effective immune escape, resulting in a higher transmission rate. It is worth noting that other variants 368 

contain NTD mutations which result in low EpiScores, however the proportion of these mutations within 369 

the set is considerably less than in Delta (Supplementary Figure S2). 370 

One of the more notable similarities of generated EpiScore distributions is a tail of EpiScore values upward 371 

of 2.0, indicating highly epistatic behavior. Interestingly, these tails are largely due to three different CAPs: 372 

346R, 486F, and 498Q. Those residues are nearby one another within the protein structure and have been 373 

reported to play a role in antibody binding, either being known antibody binding sites (346R and 486F) or 374 

having received very high antibody accessibility scores (498Q) (Harvey, Carabelli, Jackson, Gupta, 375 

Thomson, Harrison, Ludden, Reeve, Rambaut, COVID-19 Genomics UK (COG-UK) Consortium, et al. 2021; 376 

Raghuvamsi et al. 2021). These observed high Episcore values also support the other studies that the 377 

epistatic interactions between these CAPs and the mutations of the VOCs within the S protein are crucial 378 

for maintaining binding affinity of hACE2 whilst evading immunity (Hong et al. 2022; Moulana et al. 2022b; 379 

Starr, Greaney, Stewart, et al. 2022). 380 

Viewing EpiScores of Delta and Omicron potentially adaptive mutation sites with only CAP site 486F (a 381 

binding site for both hACE2 and antibodies) (Huang et al. 2020; Ali et al. 2021; Harvey, Carabelli, Jackson, 382 
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Gupta, Thomson, Harrison, Ludden, Reeve, Rambaut, COVID-19 Genomics UK (COG-UK) Consortium, et 383 

al. 2021; Raghuvamsi et al. 2021) shows highly epistatic interactions at other hACE2 binding sites (Figure 384 

6). However, within a recent and rapidly spreading subvariant of Omicron, XBB 1.5, we see a mutation of 385 

F to S, a rare double nucleotide mutation, at site 486. This new variant has unprecedented immune escape 386 

capabilities, resisting neutralizing antibodies almost entirely (Qu et al. 2023). EpiScores of other XBB 1.5 387 

specific mutation sites with 486S are almost entirely greater than 1, showing an even higher degree of 388 

epistasis with the binding sites of RBD (Figure 7). These results present a threefold importance for the 389 

F486S mutation: Not only does this residue alter antibody (i.e., immune escape) and hACE2 binding by 390 

directly modifying a binding site, but it may also be responsible for modifying hACE2 binding via epistatic 391 

cooperation with other co-occurring mutations.  392 

 393 

Figure 7. EpiScores with i = 394 

low EP Delta mutation sites 395 

(magenta), low EP Omicron 396 

mutation sites (Cyan), and a 397 

random selection of sites 398 

(gray), j = site 486, and k = 399 

the binding interface of the 400 

open chain. CAP and hACE2 401 

and antibody binding site 402 

486 displays epistasis with 403 

almost all XBB 1.5 variant 404 

sites at almost every hACE2 405 

binding site (M = 1.40, SD = 0.46) and presents a significantly different profile from other variant sites (p 406 

<.01). EpiScores involving 486 for other variants can be found in Supplementary Figure S1. 407 

  408 
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Change in flexibility of RBD binding site correlates with experimental binding affinities for Omicron and 409 

Omicron XBB variants. 410 

Experimental studies have tracked hACE2 binding for different variants since the virus first spread (Ali et 411 

al. 2021; Barton et al. 2021; Ozono et al. 2021; Wu et al. 2022). Within the Omicron variant, for example, 412 

characteristic mutations on the RBD are shown to increase the overall binding affinity of the virus to the 413 

ACE2 receptor, which is suspected to allow it to spread more easily (Kim et al. 2021). Furthermore, the 414 

new Omicron XBB and Omicron XBB 1.5 variants contain additional mutations in the RBD and antibody 415 

binding residues, which may further impact their dynamics and interactions with the host.  416 

 417 

 418 

Figure 8. The %DFI calculations for variants Omicron, XBB, and XBB 1.5. (A) %DFI profile of the variants 419 

are plotted in the same panel. The grey shaded areas and dashed lines indicate the ACE2 binding regions, 420 

whereas the red dashed lines show the antibody binding residues. (B) The sum of %DFI values of RBD-421 

ACE2 interface residues. The trend of total %DFI with the log of Kd values overlaps with the one seen with 422 

the experiments (R=0.97). (C) The RBD antibody binding residues are used to calculate the sum of %DFI. 423 

The ranking captured with the total %DFI agrees with the log of IC50 values from the experiments. 424 
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To gain deeper insights into the impact of dynamics on the binding affinity of hACE2 and antibodies with 425 

the recent Omicron XBB variants, we conducted molecular dynamics (MD) simulations. By analyzing the 426 

resulting trajectories, we investigated how these mutations influence the flexibility and rigidity of the RBD 427 

and antibody binding residues, consequently affecting their binding affinity and potential for immune 428 

evasion (Figure 8). To understand the overall flexibility changes, we measured the sum of DFI of the ACE2 429 

binding residues, as well as the sum of DFI of the antibody binding residues, calculated from the MD 430 

trajectories and compared then with experimental viral binding (disassociation constants) and immunity 431 

evasion antibody IC50 values (Yue et al. 2023). 432 

This investigation elucidated the impact of mutations in the receptor-binding domain (RBD) and antibody 433 

binding residues on the binding affinity of the S protein and immune evasion by modulating their flexibility 434 

and rigidity (Figure 8A). The Omicron XBB variant exhibits heightened flexibility in hACE2 and antibody 435 

binding residues, reducing infectivity and enhancing immune evasion. Conversely, the Omicron XBB 1.5 436 

variant induces distinct dynamics in these regions, rendering the RBD-ACE2 interface more rigid while 437 

increasing flexibility in antibody binding residues. These effects indicate that Omicron XBB1.5 retains its 438 

antibody escape capabilities while regaining ACE2 binding affinity comparable to previous Omicron 439 

variants, in accordance with experimental findings (Yue et al. 2023). These findings suggest that mutations 440 

in the RBD and antibody binding residues can have complex effects on the dynamics of the protein and, 441 

ultimately, on the virus's ability to infect and evade the host immune system through an alteration of 442 

biding site dynamics. 443 

 444 

Conclusion: 445 

We analyzed the evolutionary trajectory of the CoV-2 S protein in humans to understand the dynamic 446 

and epistatic interactions of the mutations defining specific VOCs within the S protein.  We first obtain 447 

the phylogenetic tree of the COV-2 S protein and identify the sites of certain recent mutations known as 448 
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candidate adaptive polymorphisms (CAPs). CAPs are considered adaptive because mutations rarely 449 

tolerated in closely related sequences have suddenly become fixed, implying a degree of functional 450 

importance or evolution (Liu et al. 2016). In addition, our earlier work has shown that CAPS can also be 451 

compensatory as multiple CAPs may dynamically compensate for one another, changing the dynamic 452 

landscape and allowing for different mutations (Ose, Campitelli, et al. 2022). We then explored the 453 

mechanistic insights and epistatic relationship between the observed mutations in different VOCs and 454 

the CAP sites, and, particularly, the relationship between CAP sites and the functionally critical RBD 455 

domain using our dynamic coupling analysis (Kumar, A., Glembo, T.J., Ozkan, S.B. 2015b).   456 

We find a mechanistic pattern in the S protein evolution that is common amongst previously studied 457 

systems, where allosteric sites exert control over the dynamics of the active site, and mutations of these 458 

allosteric sites modulate function. Within the S protein, these critical regulatory sites are CAPs and VOC-459 

defining new putative adaptive mutations. However, this regulation is significantly less in Delta-defining 460 

mutations than in the Omicron variant. We speculate that this may cause some differences in behavior 461 

between the strains. Simply looking at the connection between hACE2 binding and pathogenicity, we 462 

know that the Omicron variant is less pathogenic and has a lower binding affinity (Wu et al. 2022) than 463 

previous variants. Our dynamics analysis provides a mechanistic insight where the Omicron defining 464 

sites have greater control over the active sites than the Delta variant, and compensate for the functional 465 

advantage of CAPs, thus, the greatest infectivity may not be a coincidence.  466 

Specifically, we find that the interactions between CAP sites and VOC-defining mutations show 467 

fingerprints of non-compensatory dynamics within the Delta variant. In contrast, mutations leading to 468 

the Omicron variant are largely compensatory, driving critical dynamical behavior closer to the patterns 469 

observed within the wild-type. These interactions may drive observed behavior similar between the 470 

reference and Omicron strains yet differ in the delta strain, such as the severity of infection as evidenced 471 

by hospitalization rates (Houhamdi et al. 2022; Menni et al. 2022).  472 
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Long-ranged interactions between different sites within a given protein is critically important for protein 473 

function (Peters and Lively 1999; Bershtein et al. 2006; Collins et al. 2006; Ekeberg et al. 2013; Levy et al. 474 

2017; Harrigan et al. 2018; Otten et al. 2018; Rojas Echenique et al. 2019; Shimagaki and Weigt 2019; de 475 

la Paz et al. 2020; Rizzato et al. 2020; Yang et al. 2020; Bisardi et al. 2022) and for the CoV-2 S protein in 476 

particular (Zeng et al. 2020; Castiglione et al. 2021; Dong et al. 2021; Garvin et al. 2021; Nielsen et al. 477 

2022; Ramarao-Milne et al. 2022; Rochman et al. 2022; Rodriguez-Rivas et al. 2022). By showing dynamic 478 

differences between the interactions of CAPs, which have likely played a major role in allowing the virus 479 

to infect human hosts, the binding site, and the characteristic mutations of dominant Delta and Omicron 480 

strains, we see a “fine-tuning” of protein behavior. As variants continue to evolve, Omicron sub-variants 481 

are of growing concern due in large part to further increased immune evasion (Callaway 2022; Wang, Guo, 482 

et al. 2022; Wang, Iketani, et al. 2022), and we observe that the new mutations observed in antibody 483 

binding sites yield more epistatic interaction with the CAPs.  In addition to supporting previous dynamic 484 

research on the S protein, this analysis provides the insight that CAP sites are of continued importance to 485 

protein function and should be given special attention when considering the impact of future mutations. 486 

 487 

Methods 488 

 489 

Dynamic Flexibility and Dynamic Coupling  490 

The Dynamic Flexibility Index utilizes a Perturbation Response Scanning technique that combines the Elas-491 

tic Network Model (ENM) and Linear Response Theory (LRT) (Gerek and Ozkan 2011; Nevin Gerek, Z., 492 

Kumar, S., Banu Ozkan, S. 2013). In ENM, the protein is considered as a network of beads at Cα positions 493 

interacting with each other via a harmonic spring potential. Using LRT, ∆R is calculated as the fluctuation 494 

response vector of residue j due to unit force’s F perturbation on residue i, averaged over multiple unit 495 

force directions to simulate an isotropic perturbation. 496 
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  497 

[∆𝐑]ଷ୒×ଵ = [𝐇]ଷ୒×ଷ୒
ିଵ [𝐅]ଷ୒×ଵ 499 

                                              (1)               498 

H is the Hessian, a 3N × 3N matrix that can be constructed from 3-D atomic coordinate information and is 500 

composed of the second derivatives of the harmonic potential with respect to the components of the 501 

position’s vectors of length 3N. The hessian inverse in this equation may be replaced with the covariance 502 

matrix G obtained from MD simulations as follows.  503 

 504 

[∆𝐑]ଷ୒×ଵ = [𝐆]ଷ୒×ଷ୒[𝐅]ଷ୒×ଵ 506 

                                              (2)              505 

MD simulations were used to obtain the DFI profiles of Omicron, Omicron XBB, and Omicron XBB 1.5. In 507 

order to obtain DFI, each position in the structure was perturbed sequentially to generate a Perturbation 508 

Response Matrix A 509 

 510 

𝐀୒×୒ = ቎

|ΔRଵ|ଵ ⋯ หΔR୒ห
ଵ

⋮ ⋱ ⋮
|ΔRଵ|୒ ⋯ หΔR୒ห

୒

቏ 512 

                                                      (3) 511 

where หΔR୨ห
୧

= ඥ⟨(∆R)ଶ⟩ is the magnitude of fluctuation response at position i due to perturbations at 513 

position j. The DFI value of position i is then treated as the displacement response of position i relative to 514 

the net displacement response of the entire protein, which is calculated by sequentially perturbing each 515 

position in the structure.  516 

 517 
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DFI୧ =
∑ หΔR୨ห

୧
୒
୨ୀଵ

∑ ∑ |ΔR୨|୧
୒
୨ୀଵ

୒
୧ୀଵ

 519 

                                                               (4) 518 

It is also often useful to quantify position flexibility relative to the flexibility ranges unique to individual 520 

structures. To that end, DFI can be presented as a percentile rank, %DFI. All %DFI calculations present in 521 

this work used the DFI value of every residue of the full spike structure for ranking. The DFI parameter can 522 

be considered a measure of a given amino acid position’s ability to explore its local conformational space.  523 

 524 

Dynamic Coupling Index 525 

Similar to DFI, the dynamic coupling index (DCI) (Larrimore et al. 2017; Kumar, A., Glembo, T.J., Ozkan, 526 

S.B. 2015b) also utilizes Perturbation Response Scanning with the Elastic Network Model and Linear 527 

Response Theory. DCI captures the strength of displacement response of a given position i upon 528 

perturbation to a single functionally important position (or subset of positions) j, relative to the average 529 

fluctuation response of position i when all of the positions within a structure are perturbed.  530 

  531 

DCI୨୧ =
∑ หΔR୨ห

୧

୒౜౫౤ౙ౪౟౥౤౗ౢ
୨ N୤୳୬ୡ୲୧୭୬ୟ୪ൗ

∑ |ΔR୨|୧
୒
୨ୀଵ N⁄

 534 

                                                    (5) 532 

When only positional pairs are concerned, this expression reduces to: 533 

 535 

DCI୨୧ =
หΔR୨ห

୧

∑ |ΔR୨|୧
୒
୨ୀଵ N⁄

 537 

                                                    (6) 536 
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As such, this parameter represents a measure of the dynamic coupling between i and j upon a 538 

perturbation to j.  As with DFI, DCIji can also be presented as a percentile-ranked %DCIji.  539 

One of the most important aspects of DCI is that the entire network of interactions is explicitly included 540 

in subsequent calculations without the need for dimensionality reduction techniques. If one considers 541 

interactions such as communication directionality or dynamic coupling regulation between position pairs 542 

as inherent properties of an anisotropic interaction network, it is critical to include the interactions of the 543 

entire network to accurately model the effect one residue can have on another. 544 

Here, we present two further extensions of DCI which allow us to uniquely model coupling directionality 545 

and epistatic effects: DCIasym and EpiScore, respectively. Interestingly, we can capture asymmetry between 546 

different residues within a protein through DCI, as a coupling in and of itself is asymmetric within an ani-547 

sotropic network. That is, each amino acid has a set of positions to which it is highly coupled, and this 548 

anisotropy in connections gives rise to unique differences in coupling between a given i j pair of amino 549 

acids which do not have direct interactions (Figure 2A). DCIasym, then, is simply DCIij (the normalized dis-550 

placement response of position j upon a perturbation to position i) − DCIji (Equation (7)). Using DCIasym we 551 

can determine a cause-effect relationship between the i j pair in terms of force/signal propagation be-552 

tween these two positions. 553 

 554 

DCIୟୱ୷୫ = DCI୧୨ − DCI୨୧ 556 

           (7) 555 

%DCIୟୱ୷୫ = %DCI୧୨ − %DCI୨୧ 558 

           (8) 557 

where a positive DCIasym value indicates communication from position i to position j.  559 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2023. ; https://doi.org/10.1101/2023.09.14.557827doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.14.557827
http://creativecommons.org/licenses/by-nc-nd/4.0/


EpiScore can identify or describe potential non-additivity in substitution behavior between residue pairs. 560 

This metric can capture the differences in a normalized perturbation response to a position k when a force 561 

is applied at two residues i and j simultaneously versus the average additive perturbation response when 562 

each residue i, j, is perturbed individually (Figure 5A, Equation 9). 563 

EpiScore =  
%DCI[୧୨]୩

1
2 ൫%DCI୧୩ + %DCI୨୩൯

 566 

        564 

                                                                                                                            (9) 565 

 567 

EpiScore values < 1 (> 1) indicate that the additive perturbations of positions i and j generates a greater 568 

(lesser) response at position k than the effect of a simultaneous perturbation. This means that, when 569 

treated with a simultaneous perturbation at both sites i and j, the displacement response of k is lower 570 

(higher) than the average effect of individual perturbations to i and j, one at a time. As EpiScore is a linear 571 

scale, the further the value from 1, the greater the effect described above. 572 

Molecular Dynamics (MD) 573 

The production simulations of the variants Omicron, Omicron XBB, and Omicron XBB 1.5 were generated 574 

using the AMBER software package. The mutations in the variants were modeled using PYMOL taking the 575 

template as PDB 6M0J. The initial input proteins were parametrized utilizing the ff14SB force field (Maier 576 

et al. 2015). To ensure adequate solvation of the protein, the solvation box was defined to encompass the 577 

protein, maintaining a minimum distance of 16Å from the protein to the box edges, utilizing the explicit 578 

TIP3P water model (Sun 1995). The neutralization of the solvated system was achieved through the addi-579 

tion of sodium and chloride ions. The system was subjected to a steepest descent algorithm for 11000 580 
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steps for minimization purposes. The minimized system was then heated to 300K and subjected to a con-581 

stant number of particles, pressure, and temperature ensemble (NPT) production simulations. These sim-582 

ulations were conducted using the Langevin thermostat (Hünenberger 2005) and Berendsen barostat 583 

(Berendsen et al. 1984). The hydrogens were constrained using the SHAKE algorithm (Pearlman et al. 584 

1995). The production trajectories were simulated for 1µs at 300K and 1 bar. 585 

 586 

Data and Resource Availability 587 

The code to perform DFI and DCI analysis is available at https://github.com/SBOZKAN/DFI-DCI. 588 

Molecular Dynamics data are available upon request. The mutation sites and EP values are contained in 589 

the supporting information files as “Supplementary_mutation_info.csv”. The alignment used to 590 

generate EP values is also contained within the supporting information files as “EP_alignment.fas”. 591 

Protein Databank ID number 6VXX (Walls et al. 2020) was used for closed conformation DCI calculations. 592 

6VSB (Wrapp et al. 2020) was used for DFI calculations, EpiScore calculations, and open conformation 593 

DCI calculations. 6M0J (Lan et al. 2020) was used in molecular dynamics simulations of the RBD. 594 
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 987 

Supplementary figure S1. EpiScores with i = characteristic mutation sites, j = low EP sites, and k = 988 

the binding interface of the open chain. EpiScores using variant sites are significantly different 989 

(p<.001) from a set of EpiScores using random sites. 990 
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 992 

Supplementary figure S2. EpiScores with i = characteristic mutation sites within the NTD, j = low 993 

EP sites, and k = the binding interface of the open chain. NTD domain mutation sites result in 994 

markedly lower EpiScores compared to elsewhere. 995 
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 999 

Supplementary figure S3. EpiScores with i = characteristic mutation sites, j = site 486, and k = the 1000 

binding interface of the open chain. CAP and hACE2 and antibody binding site 486 displays 1001 

epistasis with almost all XBB 1.5 variant sites at almost every hACE2 binding site.  EpiScores 1002 

using variant sites are significantly different (p<.001) from a set of EpiScores using random sites. 1003 
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