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ABSTRACT Sequencing of the protein coding genome has revealed many different missense mutations of human proteins
and different population frequencies of corresponding haplotypes, which consist of different sets of those mutations. Here,
we present evidence for pairwise intramolecular epistasis (i.e., nonadditive interactions) between many such mutations through
an analysis of protein dynamics. We suggest that functional compensation for conserving protein dynamics is a likely evolu-
tionary mechanism that maintains high-frequency mutations that are individually nonneutral but epistatically compensating
within proteins. This analysis is the first of its type to look at human proteins with specific high population frequency mutations
and examine the relationship between mutations that make up that observed high-frequency protein haplotype. Importantly, pro-
tein dynamics revealed a separation between high and low frequency haplotypes within a target protein cytochrome P450 2A7,
with the high-frequency haplotypes showing behavior closer to the wild-type protein. Common protein haplotypes containing two
mutations display dynamic compensation in which one mutation can correct for the dynamic effects of the other. We also utilize a
dynamics-based metric, EpiScore, that evaluates the epistatic interactions and allows us to see dynamic compensation within
many other proteins.
SIGNIFICANCE Compensatory mutations provide a clear and widely studied example of adaptation in proteins. A large
number of these compensatory mutations are found within humans at sites associated with genetic disease. Experimental
studies suggest mutations that compensate for the effects of a disease causing mutation. Therefore an approach is needed
to determine the functional effects and mechanisms underlying such compensatory interactions. Here, we show that
compensatory mutations are distinguishable from noncompensatory mutations using a novel protein dynamics analysis.
EpiScore may be used to determine the nature of interactions between two residues regardless of distance, allowing for
increased accuracy in predicting compensatory sites.
INTRODUCTION

Numerous population-level interrogations of human protein
variation have revealed tens of thousands of missense amino
acid mutations resulting from single nucleotide polymor-
phisms that segregate in human populations at an appre-
ciable frequency (>1%) (1). Many more missense
mutations have been observed, but they occur with rather
low frequencies. For our analysis of either case, we obtained
a data set containing the population frequencies of known
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missense polymorphisms within 114 different enzymes for
which we were also able to obtain crystal structures. We
focused only on these missense polymorphisms and their
consequences. Therefore any mention of polymorphisms,
the amino acid mutations (or variants) that they cause,
different alleles as defined by those mutations, and haplo-
types consisting of different sets of those alleles as found
within the human population all refer only to missense poly-
morphisms. From this data set, we observe that some com-
mon variants (8% of common minor alleles) are almost
always observed with another common variant in the same
protein in individuals of the population. These combinations
are high-frequency double variants (HD) (Fig. 1 A). In
contrast, many common variants never co-occur with other
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common variants in the same haplotype. We refer to them as
high-frequency single variants (HS) (Fig. 1 B). They make
up 19% of common minor alleles, a term that refers to the
second most observed allele in human populations. In terms
of population, both HD and HS alleles would likely be
considered benign, as they exist within a substantial portion
of all humans. This follows from the neutral theory of evo-
lution (2), which suggests that amino acid substitutions are
permitted so long as they have no adverse affects on a spe-
cies’ survival. The fact that certain haplotypes containing
either HD or HS alleles are found at very low population fre-
quencies implies that they are disease-associated haplotypes
that are expected to be removed from a population through
natural selection.

HD and HS variants are chosen as very clear examples of
epistasis, which we define as a nonadditive outcome from
two or more amino acid changes within a protein (3), such
as two mutant alleles that may each increase the flexibility
of a certain region but end up decreasing the flexibility of
that region when they are found together. Upward of 90%
of all amino acid substitutions have experienced some
form of epistasis, as shown by Kondrashov et al. (4). Further
computational and theoretical work expanding on that of
Kondrashov (4) has shown that of this 90%, a further
30%–40% can be accounted for by the nonlinear depen-
dence of fitness to folding stability (5). Epistasis is a com-
mon phenomenon, but HD and HS variants represent two
opposite extremes, with two disease mutations leading to
a functional variant and two functional mutations leading
to disease, respectively. How is it possible that two wrongs
make a right or that two rights make a wrong?

For this question, we hypothesized that HD haplotypes
might be direct results of compensatory epistasis, where a
prior mutation may accommodate the permissibility of a
second mutation. Simulated evolution (6–9) and in vitro mu-
tation (10) studies have explored the concept of epistasis as
emergent sets of cooperative alleles. They have observed
that each protein mutation may change the effect of subse-
quent mutations. Currently, metrics using the Potts model
can predict such interactions (11–14); however, these
models become less effective when the spatial distance be-
tween the two positions increases. Other studies have at-
tempted to predict epistatic effects (15,16). These effects
can be negative, reducing the fitness of a protein (10,17),
or compensatory, where the subsequent mutation helps
maintain the functional state (6,9,18). In this sense, HS al-
leles will be used as an example of negative epistasis.

In the past, others have used sequence-based methods to
examine the epistasis taking place within a protein
(11,12,19). Although they can determine residue contacts
with a high degree of accuracy, more insight is needed in re-
gard to longer range interactions and global protein
behavior. More recent studies have explored long-range
epistasis using various techniques, such as statistical models
(20), machine learning (21), nuclear magnetic resonance
spectroscopy (22), and the dynamic analysis of molecular
dynamics (MD) simulations (23,24). We aim to utilize a
similar protein structural dynamics-based approach to pro-
vide additional insight on a set of unique epistatic cases,
our HD and HS mutations.

Within this study, we test our hypothesis from a
biophysics perspective and explore the epistasis of HD
and HS haplotypes using protein structural dynamics to pro-
vide additional mechanistic insights, just as such tools have
already provided insight into protein evolution. The diver-
sity of protein functions has grown over time via molecular
evolution. Analyses of protein families indicate that proteins
evolve for different functions through sequence variation
while conserving their 3D structures (25,26). Evolution
may instead produce changes in protein dynamics such as
stability, flexibility, and allosteric dynamic coupling (27–
34). By measuring such changes using MD simulations,
we can infer overall protein function and predict how func-
tionality may be lost or maintained (25,35–40).
MATERIALS AND METHODS

Dynamic flexibility index

The dynamic flexibility index (DFI) functions by measuring how a single

residue responds to perturbations from each residue within a protein. The

perturbation response scanning technique (41) is used to find the dynamic

response profile of a given position through a combination of equilibrium

dynamics and linear response theory. The perturbation response scanning

approach can make use of the elastic network model (ENM) (41,42) to

find correlated dynamics of positions in native equilibrium. In ENM, a pro-

tein is modeled as an arrangement of Ca atoms in which each atom pair is

connected via a harmonic spring potential. A random Brownian kick is

applied to each Ca atom sequentially to provide a perturbation to the elastic

network. The goal of this perturbation is to simulate the forces exerted on a

protein in a crowded cellular environment. When one residue is perturbed,

the effect propagates through the rest of the network and causes the entire

protein to respond. That response profile is obtained using linear response

theory and given by the equation

½DR�3N� 1 ¼ ½H�� 1
3Nx3N½F�3N� 1; (1)

where H is the Hessian, a 3N � 3N matrix that can be built from 3D atomic

coordinate information and is composed of the second derivatives of the
harmonic potential with respect to the components of the position’s vectors

of length N. F is the external force vector applied at N residues in the pro-

tein, and DR is the response fluctuation of a residue position upon external

force. In order to give an isotropic measure of response, the force is applied

in several directions at each residue, and the magnitude of the response pro-

file is averaged.

ENM is a coarse-grained model, which in this study was used for the

analysis of the 114 enzyme set. In order to improve the accuracy of this

model and allow sensitivity to mutations, the Hessian inverse can be re-

placed with the covariance matrices obtained from MD simulations. MD

simulations were used in this study only for the analysis of cytochrome

p450 CYP2A7 variants.

½DR�3N� 1 ¼ ½G�3N� 3N½F�3N� 1 (2)

Here, G is the covariance matrix containing the dynamic properties of the

system. The covariance matrix contains the data for long-range interactions,

solvation effects, and biochemical specificities of all types of interactions.
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FIGURE 1 Population frequencies (given as

percent values) of various allele combinations

within cytochrome P450 CYP2A7. Two alleles

are given for each locus position (residue index

on the top and left sides). One major and one minor

allele are given. The values next to single-letter

amino acid codes denote the overall frequency at

which the allele is observed. Other values denote

the frequency of haplotypes containing variants

directly upward and to the left. (A) For alleles

131A and 153S, we observe HD behavior, where

both are found together in around half of all se-

quences. Yet neither is found at an appreciable fre-

quency with the major allele present at the other

position. Within our data set, 8% of common minor

alleles exhibit similar behavior. (B) For alleles

368H and 274T, we observe HS behavior, where both are often found with a major allele present at the other position but are never observed together

with an HS allele at both positions. Within our data set, 19% of common minor alleles exhibit this behavior. Both pairs shown here are also shown on

the structure in Fig. S1.

Ose et al.
In this work, the covariance matrices of wild-type cytochrome p450

CYP2A7 and all variants were constructed using previously obtained

800-ns all-atom explicit water MD simulations (see molecular dynamics

simulations for details).

To calculate DFI, we apply unit isotropic perturbations to each individual

residue, one by one, and obtain the residue fluctuation response profile of

each position upon perturbing a specific position using Eq. 2. This process

is repeated until we obtain the perturbation response matrix that contains

the residue response profiles for all positions in a protein.

½A�3N� 3N ¼
2
4
��DR1

��
1

/
��DRN

��
1

« 1 «��DR1
��
N

/
��DRN

��
N

3
5 (3)

Where
���DRj

���
i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDRj

iÞ
2

q
is the magnitude of response at site i due to the
perturbation at site j.

The DFI value of position i is then treated as the displacement response

of position i relative to the net displacement response of the entire protein,

which is calculated by sequentially perturbing each position in the

structure:

DFIi ¼
PN

j ¼ 1

��DRj
��
iPN

i ¼ 1

PN
j ¼ 1

��DRj
��
i

(4)

Therefore, the greater the DFI score at position i is, the more flexible that

site will be, and the lower the score is, the more rigid that site will be, mean-

ing it has less of a response to perturbations in the protein.

Dynamic coupling index

The dynamic coupling index (DCI) is an extension of DFI, developed

to capture dynamic coupling between any given residue and functionally

critical residues such as binding sites. This metric can locate sites that

impact active site dynamics even at a distance through dynamic allosteric

coupling.

As defined, DCI is the ratio of the sum of the mean-square fluctuation

response of the residue i upon functional site perturbations (i.e.,

catalytic residues) to the response of residue i upon perturbations on all

residues:

DCIij ¼
PNfunctional

j ¼ 1

��DRj
��
i
=NfunctionalPN

j ¼ 1

��DRj
��
i
=N

(5)
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Where
��DRj ji is the response fluctuation profile of residue i upon perturba-

tion of residue j. The numerator is the average mean-square fluctuation

response obtained over the perturbation of the functionally critical residues

Nfunctional, and the denominator is the average mean-square fluctuation

response over all residues (43).

In this study, we use an additional tool, EpiScore, based off of DCI.

EpiScore can capture nonadditive behavior between a given pair of residues

using the ratio of the normalized perturbation response to a position k when

a force is applied at two residues i and j simultaneously versus the average

additive perturbation response when each residue i, j, is perturbed individ-

ually (Fig. 6 A). An EpiScore value less than 1 at a given position indicates

that additive perturbations of positions i and j generate a greater response

than a simultaneous perturbation at that position. Likewise, EpiScores

greater than 1 indicate less of a response from additive perturbations than

from a simultaneous perturbation. As EpiScore is a linear scale, the further

the value is from 1, the greater is the effect described above (44).

Molecular dynamics simulations

To find the DFI and DCI scores of cytochrome p450 CYP2A7, we used MD

to find the native conformational ensemble of each variant. The crystal

structure was found using AlphaFold and based on the protein structure

for CYP2A6 from the Protein Data Bank (PDB: 1Z10 (45)). The most com-

mon isoform of CYP2A7 shares a 93.72% sequence similarity with

CYP2A6. To obtain structures for the cytochrome P450 CYP2A7 variants

used, mutagenesis was performed using the PyMol (46) Mutagenesis

Wizard. Topology files for all structures were prepared using the

AMBER TLEAP program with the ff14SB force field (47), which added

hydrogen atoms and surrounded each structure with a 14.0-Å cubic box

of water molecules using the TIP3P (48) water model. Naþ and Cl� atoms

were added for neutralization. The SANDER module of AMBER 14

(49,50) was used to ensure that the system reached a local energetic mini-

mum and remove any unfavorable torsional angles or steric clashes.

During the simulation proper, the protein was first kept fixed with har-

monic restraints, using a force constant of 10 kcal/mol(Å)2, to allow sur-

rounding water molecules and ions to relax. A second minimization

phase followed afterward, in which the restraints were removed, and the

protein-solution was further minimized. Both minimization phases em-

ployed the method of steepest descent followed by conjugate gradient. Dur-

ing the first phase, the solvent underwent 25,000 steepest descent cycles

with a maximum of 50,000 minimization cycles, and during the second

phase, the entire solution underwent 50,000 steepest descent cycles with

a maximum of 100,000 minimization cycles The systems were then heated

from 0 to 300 K over 250 ps using the GPU-accelerated PMEMDmodule of

AMBER 14 (49), at which point long-range electrostatic interactions were

calculated using the particle mesh Ewald method (51,52). Direct-sum,



FIGURE 2 Ribbon diagrams of cytochrome P450 CYP2A7 in two

different orientations. Important binding sites are shown in dark gray. HS

variants and HD variants are represented by blue and red spheres, respec-

tively. Dotted yellow lines connect pairs of red spheres, showing which

HD variants exist together. The average distance between HD sites is

26.00 5 2.84, and for HS sites, it is 28.46 5 3.01. There is no significant

difference (t-test, p ¼ 0.57) between the distance distributions.

Protein dynamics shed light on epistasis
nonbonded interactions were cut off at distances of 9.0 Å or greater. A Lan-

gevin thermostat (53) was used to control the temperature at 300 K and a

Berendsen barostat (54) to adjust the pressure at 1 bar. The systems were

then simulated using MD at constant temperature and pressure with 2-fs

time steps for 800 ns. During these simulations, periodic boundary condi-

tions were used, and the bond length of all covalent hydrogen bonds

were constrained using SHAKE (50).

This study uses a protocol for the convergence of protein dynamics that

has been established and used in prior studies (37,39,40,55). By using the

Hessian in our DFI and DCI calculations, we restrict ourselves to a har-

monic potential, and as such, we assume that data are sampled from a

Gaussian distribution. This assumption is appropriate, provided that ergo-

dicity is fulfilled in both simulation time as well as the time windows

used in covariance matrix calculations. These requirements result in two

basic conditions. 1) All conformations must be sampled from the same dis-

tribution. 2) The covariance matrices obtained ought to be independent of

the initial atomic coordinates in order to eliminate global motions and accu-

rately capture equilibrium coordinate information. To satisfy these condi-

tions, we calculated covariance matrices using 50-ns moving windows

that overlap by 25 ns over the last 300 ns of the trajectory of each simula-

tion. The final average DFI profiles will be independent of the window size,

so that averaging DFI profiles from different time window sizes (for

example, 75 ns rather than 50 ns) will give similar results, and the calcu-

lated covariance matrices extracted from different times of trajectories

within the last 300 ns should also result in similar DFI profiles.
RESULTS AND DISCUSSION

We first explore whether 3D structure alone provides in-
sights about HD and HS variants. Because the protein
sequence of cytochrome P450 CYP2A7 is nearly identical
(93.72%) to CYP2A6, the structure of the proteins should
be nearly identical as well. Therefore, the x-ray structure
of cytochrome P450 CYP2A6 (PDB: 1Z10 (45)) was used
to find the pairwise distances of HS or HD sets as well as
their distance separation from the active site residues. Con-
trary to expectations, no evidence was found of any patterns
differentiating HS sets from HD sets. For example, one
could speculate that HD variant pairs, which always occur
together, would always be interacting residues (i.e., in con-
tact). Thus when one is mutated, the other needs to be
mutated to retain the interactions necessary for the 3D
fold. However, the pairwise distance distribution of HD
pairs does not support this expectation, as we find many
cases of HD pairs occurring spatially far apart (Fig. 2).

Rather than having only one native structure, we now
know that proteins have an ensemble of states that accu-
rately represent the native state. Proteins undergo many
different local changes, which lead to a variety of conforma-
tions. In fact, this variety of conformations is unique to pro-
teins compared with other natural macromolecules, and the
conformational dynamics of proteins play a complex role in
how those proteins evolve (32,35,56–59). Laboratory-
directed evolution studies have shown that function-altering
mutations require stabilizing mutations to compensate for a
loss in stability (60–62). In addition, experimental and
computational studies have shown that the timescales and
motions of enzymatic activity can be widely different
among enzyme homologs of different species, indicating
that these enzymes possess fundamentally different confor-
mational dynamics while maintaining similar folds (36,63).
Certain key regions were revealed in these studies, which
exhibit differences in flexibility that may be mostly respon-
sible for functional divergence. The functional specificity
among structural homologs usually arises due to the evolu-
tion of intermediate frequency modes of structural dy-
namics, which are governed by the motion of local
regions within a protein structure (32,35,56–59). Therefore,
there should be a connection between the variation in
conformational dynamics of specific positions and evolu-
tionary rates. In support of that theory, studies involving
specific protein families and subsets of enzymes have shown
that residues that act as hinges (i.e., sites with low flexi-
bility) are generally more evolutionarily conserved than
other positions for specific protein families or a subset of en-
zymes (36). Although the above analyses suggest that dy-
namics play a role in evolution, we understand that,
ultimately, evolution of proteins involves a continuous accu-
mulation of amino acid substitution at different positions,
some of which are functionally critical. For this reason,
we attempted to determine the difference between HD and
HS substitution types using a protein structural dynamics-
oriented approach.

Particularly, we utilized a position-specific metric, the
DFI. These DFI profiles estimate the role each protein res-
idue plays in mediating structure-encoded dynamics and
have been previously utilized in several important studies.
In addition to being a powerful method to understand the
global dynamics of a protein, DFI profiles have been used
to gain several important insights into the roles that dy-
namics play in protein function. For example, DFI-based
studies have shown that 1) preservation of dynamic of resi-
dues (i.e., flexibility) within 3D structures is critical for the
maintenance of biological function (36); 2) alteration in
structural dynamics during evolution leads to the emergence
of new or altered functions in a diverse set of protein fam-
ilies including green fluorescent proteins (35), beta-lacta-
mase inhibitors (37), and nuclear receptors (38); 3)
Biophysical Journal 122, 2938–2947, July 25, 2023 2941



FIGURE 3 3D scatter plot presenting the clustering of the different var-

iants of cytochrome P450 CYP2A7 based on principle component analysis

of their DFI profiles. High-frequency mutations are generally clustered on

one side of the plot along with the wild-type, suggesting that they exhibit

similar biophysical properties.

Ose et al.
enzymatic function is regulated by dynamically coupled res-
idues that form an allosteric communication network with
the active site (64); and 4) many disease-associated muta-
tions often trigger a global loss in dynamic coupling interac-
tions, which in turn disrupts dynamic communication
networks and ultimately leads to losses or gains in function
(39). Given these successes, it stands to reason that DFIs are
powerful tools that may provide fundamental mechanistic
insights and shed light on the differences between HD and
HS mutations.

The protein ensemble used for this study contains 114
different enzymes with known crystal structures. However,
we chose to focus on cytochrome P450 CYP2A7 as it
harbors many known missense variants and HD pairs.
Cytochrome P450 proteins are catalysts for many reactions
involved in drug metabolism and the synthesis of lipids (65).
CYP2A7 in particular competes with its more widely stud-
ied isoform, CYP2A6, for miR-126* binding (66). Func-
tionally, this downregulates the expression of CYP2A6
within the liver.

To compute the DFI profiles of each variant, we first per-
formed MD simulations to obtain each variant’s native
ensemble and then applied our DFI analysis (see materials
and methods). DFI quantifies the dynamic stability of a
given position. It measures the resilience of a position to
perturbations initiated at positions in the protein distal to
the residue in question, but to which it is linked via structur-
ally encoded global dynamics. Therefore, DFI profiles pro-
vide important information about protein function. Namely,
residues that exhibit very low DFIs do not exhibit large
amplitude fluctuations in response to random Brownian
kicks but rather transfer the perturbation energies
throughout the chain in a cascade fashion; examples of
low DFI residues are those in hinge regions of proteins
that control the motion critical for function (i.e., hinges in
proteins look like hinges on a door; they do not move
much but exert control over large-scale motions). On the
other hand, sites with very high DFI are prone to perturba-
tions to the protein backbone; they are structurally flexible
sites and therefore play an important role in binding,
signaling, or product release during enzymatic function.
Particularly, the change in DFI profile upon amino acid sub-
stitutions captures changes in function, whereas similar DFI
profiles yield similar biophysical properties and functions
(59). To measure the similarities among DFI profiles of
HD and HS variants, we use principal component analysis
by performing singular value decompositions on the DFI
profiles for each variant type. Fig. 3 shows their separation
in the top three principal component axes.

Indeed, a relationship can be seen between the observed
population frequency of variants and a 3D clustering of
DFI values, made by analyzing the principal components
of the DFI profiles of various mutant cytochrome P450
CYP2A7 proteins (Fig. 3). Common polymorphisms are
generally clustered together on one side, whereas the rare
2942 Biophysical Journal 122, 2938–2947, July 25, 2023
(and therefore most likely function-damaging) variants are
clustered on the other, suggesting that they exhibit signifi-
cantly different flexibility profiles leading to drastic changes
in their biophysical properties. Moreover, the DFI profiles of
high population frequency variants are clustered together
with that of the wild-type, demonstrating the role of epistatic
relations. Particularly, variants lead to change in the flexi-
bility profiles of different positions (even positions distal
from the substitution sites in the 3D structure). Thus, the
impact of the substitution can only be evaluated by
computing the impact on the whole network of interactions
(i.e., the given amino acid background composition), with
special consideration to how these substitutions modulate
the dynamics of functionally critical sites.

Indeed, as discussed above for each of the tested substitu-
tions, differences in the DFI profiles were observed, often at
locations distant to the mutation site, suggesting that
changes in long-range dynamic coupling may be respon-
sible for the altered flexibilities. To further analyze the spe-
cific interactions with the mutation sites, particularly with
respect to functionally critical active sites, we employ the
DCI. DCI is a parameter that captures the strength of a
displacement response for position i upon perturbation of
position j, relative to the average fluctuation response of po-
sition i to all other positions in the protein. In this way, DCI
can show the degree of dynamic coupling between i and j. In
this study, the DCI results are presented as %DCI, a percen-
tile rank of the DCI range observed with values ranging
from 0 to 1. It should be noted that the DFI and DCI are
not the same: DFI measures flexibility, and DCI measures
coupling. Furthermore, DCI specifically quantifies the
coupling between individual positions, and as such, DCI
values depend explicitly upon the positions selected for
analysis. In any given protein, every amino acid position
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has a unique network of direct, local interactions that gives
rise to a unique network of highly coupled partner positions.
Across the protein structure, this gives rise to an inhomoge-
neous, overall 3D network (39).

It is known from previous research that residues that are
highly coupled to the active sites are more likely to be path-
ogenic upon mutation because of dynamic allosteric regula-
tion (36,37,59). Highly coupled residues can dynamically
affect one another, even at a distance, through a network
of direct interactions. Through these allosteric effects, resi-
dues that are highly coupled to the active site may impact
the flexibility profiles at the active site. For all mutation sites
in either set of pairs, we calculated the maximum %DCI
with any active site residue, because even a single active
site residue may be essential to enzyme activity. These
DCI values show a much more distinctly bimodal distribu-
tion in HD sites and have an almost exclusively high DCI
in HS sites (Fig. 4 A). The bimodal distribution suggests
one of the pair of variant sites is highly coupled, whereas
the other is not, so the different residues in an HD pair
may play one of two roles: the main communicator, which
FIGURE 4 (A) Violin plots showing the distribution of %DCI with the

active sites for sites of HD (n ¼ 38) and HS (n ¼ 68) pairs within cyto-

chrome P450 CYP2A7. HS variant sites have almost entirely high DCI

values. HD variant sites on the other hand display two different peaks

within their distribution, suggesting that HD pairs have a broader range

of acceptable values. (B) HD and HS distributions from (A) have been split

in half. Each pair is split into a higher %DCI site, pair 1, and a lower %DCI

site, pair 2. These pair 1 and pair 2 sites form their own distributions. Usu-

ally, HD pairs contain one high %DCI site and one low %DCI site, suggest-

ing a pattern for compensatory mutations.
has a high DCI with the active site, or the communication
modulator, which has a lower DCI (Fig. 4 B).

Alone, these variants cause problems within the protein,
but together, they can compensate for the harmful effects
of one another, canceling out more extreme dynamic shifts
of the active site. On the other hand, the single peak around
the high coupling region (0.9 %DCI) for HS pairs suggest
that double mutants of HS pairs may drastically impact
the active site dynamics. Because the HD mutations are
observed in high frequencies together in populations, we
would expect compensation that we should not see in HS
pairs. The HD mutations provide an example of compensa-
tory epistasis, as they are dependent on one another to func-
tion. Knowing that they compensate for one another in how
they affect the active site specifically, that region can be
further examined through the lens of DFI.

We particularly focus on the A117, N297, T305, I366,
and F480 of the active site residues. These residues directly
interact with the substrate, so the change in their flexibility
from that of the wild-type could inhibit binding interaction
by way of mechanically interfering with the function. We
expect that the high-frequency variants should have only a
minor effect on the DFI of the active site, thus allowing
the dynamics of the active site to behave similarly to those
of the WT. Indeed, it is seen that higher frequency variants
do result in active site flexibilities closer to those of the wild-
type. Particularly, we compared the DFI profiles of the dou-
ble HS and HD variants with the average DFI profile of the
corresponding single variants. Each single mutant from a
given mutation pair, on its own, affects the flexibility of
the entire protein through a complex network of interac-
tions. Sometimes regions become more flexible, and some-
times they become more rigid. When the flexibility changes
associated with a single mutation from a given mutation pair
are averaged with the flexibility changes from the other of
the pair, one ends up with DFI profiles that are closer to
the wild-type than either single mutation on its own
(Fig. 5 A and B). When we examine how double mutant
models of the HD pairs affect the DFI profile, we observed
that both mutations together result in a profile that is much
like the average of single mutants. On the other hand, when
we repeated the same analysis for HS pairs, we observed
that their dynamic effects are not necessarily an average
of their two individual effects. One may observe a large dy-
namic shift that is not present in a single variant due to some
interference between the targeted residues. This interference
seems to have an adverse effect on protein function. Only
HS mutation pairs were found with active site flexibility
that differed highly from the mean of either individual mu-
tation. HD mutation pairs on the other hand showed active
site DFI values that were close to both the wild-type protein
and the average DFI of either individual mutation.

The observation that active sites are affected in approxi-
mately the same way by both the average of HD mutations
and HD mutations together implies a degree of additivity
Biophysical Journal 122, 2938–2947, July 25, 2023 2943



FIGURE 5 (A) Ribbon diagrams colored to show a change in flexibility

of the mutants with respect to the wild-type using the dynamic flexibility

index (DDFI ¼ DFImutant – DFIwt). Spheres indicate active site residues.

(B) Bar plot showing how the flexibility of the active site changes when

the DFI profiles of the double mutants are analyzed (in black) and compared

with the average DFI profiles using each DFI profile of single mutants (in

gray).

FIGURE 6 (A) Schematic describing the calculation of EpiScore. The

numerator is the %dynamic coupling index (%DCI) value at position k

upon a simultaneous perturbation to positions i and j divided by the average

%DCI value at position k when positions i and j are perturbed individually.

(B) Histogram showing the EpiScore distribution of commonly found

together HD mutations (38 pairs total) and rarely found together HS muta-

tions (151 pairs total). EpiScores of HDmutations are more strongly peaked

around 1, indicating an additive interaction at the active site. EpiScores of

HS mutations also peaked around 1 but are more widely distributed. Cyto-

chrome P450 CYP2A7 was excluded from this figure, as the abundance of

HD mutations would crowd out samples from the rest of the ensemble. The

distribution with cytochrome P450 CYP2A7 included may be found in

Fig. S2.
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within these HD mutations. Simply put, the effects of muta-
tion 1 plus the effects of mutation 2 equal the effects of mu-
tations 1 and 2. This additivity is not observed in HS
mutations, where the effects of example mutations 1 and 2
together can be quite unexpected. The HD mutations should
be more compensatory and additive depending on one
another for function. To help predict the epistatic effects
of a pair or residues, we use EpiScore (25,44).

EpiScore (Fig. 6 A) is a metric designed to predict the ef-
fects of double mutations on a target residue compared with
their respective single mutations. Using EpiScore, interac-
tions are modeled as the fluctuation response strength of
simultaneous versus individual, additive perturbations be-
tween epistatic residue pairs and important catalytic sites.
A lower EpiScore at a position suggests that the two resi-
dues generate less of a response at that location, whereas
an EpiScore near 1 suggests that the two residues generate
an equal response as the average of their single mutations
at that location, so they are additive.

To expand how general is the distinction between the
epistatic relationships of frequently observed HD versus
2944 Biophysical Journal 122, 2938–2947, July 25, 2023
HS variants, we use an ensemble of 114 enzymes harboring
38 HD and 151 HS variant pairs. For this large set, we
computed the EpiScores of the mutational sites and gener-
ated distributions (Fig. 6 B) based on their observed fre-
quency in the populations. A distribution centered near 1
suggests that most mutation sites behave additively. We
find that the HD mutation distribution is more highly
peaked around 1 with a mean of 1.03 and standard devia-
tion of .61, and we see HS mutations more frequently at
higher EpiScore of value greater than 1 (a mean of 1.17
and standard deviation of 3.70). This implies that a major-
ity of mutation pairs will behave additively with one
another, providing the role of negative selection. More
importantly, the HD pair distribution suggests that the re-
quirements for the HD mutation phenotypes, in terms of
their epistatic interplay, are stricter than for HS mutations.
Particularly, the HD mutations, which are only observed
when both mutations are present, interact in a compensa-
tory manner in which the effects of one mutation are coun-
terbalanced by the other mutation such that the overall
stability and dynamical behavior of the protein for a given
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HD sequence allows the mutation pair to be jointly
permissible.
CONCLUSION

In our study, we took a sample of 114 enzymes and exam-
ined recorded variants from human populations. A number
of these are HD variants, which occur almost exclusively
in pairs. Comparing these with HS variants, which are
almost always found alone, we find significant differences
in their structural dynamic profiles. Previous studies have
found that the closer the DFI profile of a variant is to the
wild-type, the more likely it is that the variant does not nega-
tively impact protein function (38,67). These findings are
supported by the results of this study as well, which shows
that within cytochrome p450 CYP2A7, pairs of HD muta-
tions are closer to the wild-type than pairs of HS mutations.
Analysis of DFI profiles of HD or HS variants on their own
further reveals how they differ. Taking an average of pairs of
DFI profiles from single mutations, we generally find that
changes brought about by the single mutations are corrected
for, especially near the active site. However, when both mu-
tations are present in a single protein, HS pairs display
nonadditive effects in that their flexibility profiles vary
significantly from the average flexibility profiles of individ-
ual single variants and therefore from that of the wild-type.
This suggests that epistatic relationships play a crucial role
in allowing double versus single variants observed in human
populations. To further analyze this on a large scale of 114
enzymes, we computed EpiScore values for residue pairs
with respect to active sites positions, which is a more direct
measure of the additivity using structural dynamics.
EpiScores of HDmutations are near 1 on average, indicating
that additivity is an important quality for these mutations.

DCI also reveals dynamic mechanisms behind HD muta-
tions. We notice that within cytochrome p450 CYP2A7, a
vast majority of HS mutations are highly coupled to the
active site, whereas only around half of HD mutations are
highly coupled to the active site. Because of this, we theo-
rize that HD mutations pairs contain a residue that is highly
coupled to the active site and a residue that is not. Together,
these residues interact in a way that has little negative
impact on the protein. In summary, epistatic HD mutations
leave unique dynamic signatures that affect the active site
differently than other more typical mutations. Perhaps in
future works, these signatures may be used to predict the lo-
cations of epistatic residues.

As additional insight on this phenomenon, we observed
that although the alleles studied here are often observed in
humans, an analysis of homologous species marks them as
unlikely to occur through evolution (1). These evolution-
arily unlikely alleles have been found to alter protein func-
tion at a higher rate than expected. According to our
analysis, HD and HS mutations are found to have a low
evolutionary probability (EP) (less than .05) at rates 1.33
times and 1.16 times higher, respectively, than other alleles
occurring in the same range of frequencies. Fig. S3 shows
that indeed a majority of HS and HD alleles are low EP.
These low-EP, high-frequency mutations would be expected
in the case of special divergence and therefore may repre-
sent uniquely human adaptations.

A lack of these alleles in inferred ancestral sequences in-
dicates negative selective pressure, and high rates of obser-
vation in humans indicate that this is no longer the case. The
reason for this change is presumed to be a continued buildup
of neutral mutations that change the protein’s dynamic land-
scape in such a way that allows these previously forbidden
alleles. In this way, the very nature of low-EP, high-popula-
tion alleles suggests some epistatic interactions. More spe-
cifically to our studied pairs, the landscape may change in
such a way that forces the interaction of two residues. The
fact that low-EP alleles are most common among HD muta-
tions may indicate that pairwise interactions are a common
mechanism through which this landscape change occurs.

As a final thought, we note that the dynamic behaviors of
high-EP alleles show similar patterns to their low-EP coun-
terparts. We find in cytochrome P450 CYP2A7 two high-
frequency, high-EP polymorphisms that are often observed
alone (i.e., HS pairs). They are neutral according to popula-
tion data and expected to be neutral according to their high
EP values, but they are rarely observed together. Like the
low-EP HS pairs, these single variants have the opposite
behavior compared with HD pairs: the average EpiScore
at active sites is 1.21 (ranging in value from 0.37 to 1.62),
indicating a degree of dynamic nonadditivity. Indeed,
when we compare the dynamic flexibility (DFI) of the dou-
ble mutant with the average DFI profiles of the single mu-
tants, we see that double mutant significantly alters the
flexibility of the active site positions and is drastically
different from the average additive profile of the single mu-
tants. The high-EP pair in Fig. S4 may be compared with the
low-EP pair in Fig. 5 A. In either case, although they are
observed frequently in human populations, two neutral mu-
tations significantly alter dynamics when they are presented
together, leading to a negative epistatic effect on function.

Although it has been shown before that protein dynamics
have been able to predict the effects of single mutations,
shown here for the first time to our knowledge, dynamics al-
lows us to distinguish compensatory variants from noncom-
pensatory variants. In particular, the concept of dynamic
epistasis is explored with the metric of EpiScore, which
uses the concept of dynamic additivity. Our findings suggest
that the effects of more enigmatic mutations, which are
almost never found separately, may be additive and compen-
sate for one another to maintain the function of thewild-type.
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