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Abstract

A classic population genetic prediction is that alleles experiencing directional selection
should swiftly traverse allele frequency space, leaving detectable reductions in genetic
variation in linked regions. However, despite this expectation, identifying clear footprints of
beneficial allele passage has proven to be surprisingly challenging. We addressed the basic
premise underlying this expectation by estimating the ages of large numbers of beneficial
and deleterious alleles in a human population genomic data set. Deleterious alleles were
found to be young, on average, given their allele frequency. However, beneficial alleles were
older on average than non-coding, non-regulatory alleles of the same frequency. This finding
is not consistent with directional selection and instead indicates some type of balancing
selection. Among derived beneficial alleles, those fixed in the population show higher local
recombination rates than those still segregating, consistent with a model in which new
beneficial alleles experience an initial period of balancing selection due to linkage
disequilibrium with deleterious recessive alleles. Alleles that ultimately fix following a period
of balancing selection will leave a modest ‘soft’ sweep impact on the local variation,
consistent with the overall paucity of species-wide ‘hard’ sweeps in human genomes.

Impact Statement

Analyses of allele age and evolutionary impact reveal that beneficial alleles in a human
population are often older than neutral controls, suggesting a large role for balancing
selection in adaptation.
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eLife assessment

Drawing on a human population genomic data set, this valuable study seeks to show
that potentially advantageous alleles are on average older than neutral alleles,
invoking the action of balancing selection as the underlying explanation. Currently it
is unfortunately unclear how robust the estimates of allele ages are, and the evidence
for the authors' proposal is therefore at this stage incomplete. If confirmed, the
conclusions would be of interest to population genomicists, especially those studying
humans.

Introduction

Evolutionary adaptation depends upon the spread and fixation of beneficial alleles, however some
neutral and slightly deleterious alleles also drift to high frequencies and become fixed, and so
investigators have long sought ways to distinguish the fixation processes of adaptive alleles from
those that are non-adaptive. Most methods are based on the classic population genetic prediction
that beneficial alleles should move quickly through the range of allele frequencies (3     , 4     ) and
leave a significant footprint on levels and patterns of linked variation (5     ). However, despite
evidence that the fixation of beneficial alleles is common (6     –8     ), investigators have found few
instances where individual fixation events have left a clear footprint (9     –11     ). In the human
context, this has been particularly puzzling given that other methods suggest that there have been
thousands of adaptive amino-acid substitutions in the human lineage since the common ancestor
with chimpanzees (6     , 12     –15     ).

Consequently, much research in recent years has been devoted to understanding the fixation
process of beneficial alleles and the kinds of impacts that may be left in contexts of multiple
mutations (16     , 17     ), changing selection coefficients (18     ), selection at linked sites (19     ), and
population structure (20     –22     ).

To better understand the allele frequency trajectories of beneficial alleles, we undertook a new
kind of analysis that combines two unrelated advances of recent years, one that can identify a
large number of segregating beneficial and deleterious alleles, and another that estimates allele
age. Our initial goal was to test the fundamental population genetic prediction that alleles under
directional selection should be younger, on average, than neutral alleles of the same frequency.
This expectation was clearly affirmed for candidate deleterious alleles; however, the analysis
revealed a striking pattern in which candidate beneficial alleles are older on average than neutral
alleles.

For nonsynonymous single nucleotide polymorphisms (SNPs) in a whole-genome sequencing study
of over 3600 individuals from the United Kingdom (23     ), we identified candidate alleles under
selection using the evolutionary probability (EP) of amino acids residing at each position in 17,209
autosomal genes calculated from a multi-species protein sequence alignment (24     ). EP estimates
are based on alignments of a large number of vertebrate genomes and do not depend on the
alleles currently segregating in a population or their frequency. The use of EP estimates for
identifying alleles under selection is well supported by simulation (25     ), and they are
increasingly used to identify nonsynonymous changes that are candidates for adaptive changes
(26     –30     ). As shown in Figure 1A     , EP values correlate with allele frequency, with common
alleles tending to have higher EP values as expected if high EP alleles are favored by selection
more than are low EP alleles.

https://doi.org/10.7554/eLife.93258.1
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Figure 1

A. EP for non-synonymous SNPs binned by allele frequency. Both alleles of each SNP are included. Each bin includes a 95%
confidence interval on the mean. Sites with higher EP are found at a higher frequency on average while sites with lower EP
are found at lower frequencies.
B. Mean derived-allele frequency binned by ΔEP values. Each bin includes a 95% confidence interval on the mean. Dotted line
represents the average frequency of a neutral (non-coding, non-regulatory) site. Higher positive ΔEP bins have a higher
frequency on average as expected if these sites are beneficial.
C. EP calculation and age estimation targets for GEVA and tc for a hypothetical site with three copies of the derived allele in a
sample of 10 genomes.
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We rooted non-synonymous variants using the inferred ancestral sequence from Ensembl (1     )
and a maximum likelihood estimator. We defined ΔEP as the derived allele EP minus the ancestral
allele EP. The large majority of derived alleles are at low frequency, as expected from basic theory
(31     ), and we observed that mean derived allele frequency increases for sites with higher
positive ΔEP (Figure 1B     ), as expected if they are favored by natural selection (32     , 33     ).

To consider the ages of alleles predicted to be under directional selection, we used a large control
set of non-coding, non-regulatory SNPs. These will necessarily have experienced similar
mutational and recombinational processes, as well as the same demographic history, that non-
synonymous SNPs have experienced, and they offer the ideal landscape upon which to inquire of
the impact of selection on allele age.

Results & Discussion

Summary of segregating and fixed derived nonsynonymous alleles
With many rooted segregating and fixed SNPs, we can examine some basic expectations of positive
and negative directional selection on non-synonymous mutations (Table 1     , Supplemental Table
4). First, if adaptation operates primarily at the margins of optimality, then more non-synonymous
variants will be harmful than beneficial, and the magnitude of effect for deleterious mutations
should be greater on average than for beneficial mutations (34     ). We observe both patterns, with
many more negative ΔEP alleles overall, and the mean absolute magnitude of ΔEP is much greater
for negative ΔEP SNPs than for positive ΔEP SNPs (0.830 versus 0.274). Comparing fixed and
segregating sites, it is expected that derived positive ΔEP alleles with a frequency of 1.0 will have
larger ΔEP values than those in which both ancestral and derived alleles occur in the sample,
which is confirmed (0.418 for fixed vs. 0.274 for segregating). The same prediction for negative ΔEP
SNPs, with fixed alleles having a higher mean value than polymorphic alleles, was also confirmed
(-0.685 vs. -0.830).

Deleterious mutations are younger on average
while beneficial mutations are older on average
than neutral mutations of the same frequency
Both positively and negatively selected alleles are expected to be younger on average than neutral
alleles of the same frequency (3     , 35     –37     ). We used the Genealogical Estimation of Variant
Age (GEVA) method (38     ) to estimate the descendent node time, or coalescent time, for genes
carrying the derived allele (Figure 1C     ). We used RUNTC (39     ) to estimate tc, the time of the
ancestral node of the edge carrying the mutation (Figure 1C     ). Rooted bi-allelic SNPs at non-
coding, non-regulatory sites were used for a control set, identified hereafter as “neutral.” The tc
estimator is not a function of allele frequency, and GEVA makes only limited use of allele
frequency in the setting of priors for the recombinational landscape.

Allele frequency is a strong predictor of allele age, and as expected, the mean derived-allele age
rises with frequency for all three classes of SNPs (Figure 2A     ). For both positive and negative ΔEP
SNPs, an analysis of variance (ANOVA) was conducted to test the hypothesis that selected derived
alleles have the same mean age as control SNPs. In both cases the null hypothesis was strongly
rejected (p = 4.17x10- 12 for negative ΔEP SNPs and 3.04x10-27 for positive ΔEP SNPs). However,
unlike derived negative ΔEP alleles, which were younger on average than control alleles, as
predicted, the positive ΔEP SNPs are older on average. Surprisingly, across most frequency
intervals, derived positive ΔEP alleles exhibit mean ages thousands of generations older than the
neutral control set.

https://doi.org/10.7554/eLife.93258.1
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Table 1.

ΔEP measures for fixed and polymorphic alleles.
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Figure 2

A. Allele age estimates using GEVA by allele frequency, with each frequency bin holding 75,000 neutral sites.
B. Age rank (GEVA) as a function of ΔEP. Age rank for each derived allele was the rank position of the GEVA estimate in a list of
all GEVA ages for neutral alleles with frequency matched derived alleles.
C. Same as B, but for tc.
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To isolate the relationship between ΔEP and allele age independently of allele frequency, we
placed each allele’s age estimate into an ordered list of ages for neutral alleles of the same
frequency. Non- synonymous alleles in the top half of the distribution (ranked higher than 0.5) are
thus older than the median age of those neutral alleles. As shown in Figures 2B      and 2C     , the
ranked ΔEP values show a clear trend, with negative ΔEP values falling consistently below 0.5 (i.e.,
with ages less than neutral alleles of the same frequency) and positive ΔEP alleles have mean age
ranks consistently above 0.5.

Because the set of non-coding, non-regulatory controls necessarily experienced the same
demographic context as the selected alleles, explanations of older ages for candidate beneficial
alleles that depend upon interactions of selection and demography are largely ruled out, at least
for models in which the beneficial alleles are indeed under directional selection. Nor can models
in which these alleles are sometimes neutral and sometimes favored help explain the observation,
as such alleles would still be expected to be younger on average than our control set. This pattern,
in which alleles are maintained longer than alleles that are not subject to selection, is simply not
consistent with positive directional selection, but rather suggests some form of balancing selection
(40     ).

Characterizing old, segregating, positive ΔEP alleles
Overall, a large proportion of positive ΔEP alleles are older than neutral controls. For tc there were
3511 positive ΔEP alleles, 1354 of which had age ranks greater than 0.5 (38.6%). For GEVA there
were 1390 positive ΔEP alleles (fewer than for tc as GEVA cannot be applied to alleles that occur
only once), 741 of which had age ranks greater than 0.5 (53.3%). We considered the possibility that
the elevated ages of segregating positive ΔEP alleles were a kind of sampling artifact, as would
occur if they represented the tail of a distribution of ages for all favored alleles, including those
that became fixed (which do not appear as SNPs and for which we do not have age estimates). This
explanation does not apply to alleles under strong directional selection, for which the mean and
variance in sojourn times are low. On the other hand, weakly selected favored alleles will have a
large mean and variance in sojourn times (41     ), and a large sample of such alleles would have
some that, by chance, had been segregating for a long time. However, if the old segregating
positive ΔEP alleles were only very weakly favored, and if they constitute the minority of alleles
that were held back by the chance effects of genetic drift, then they would make up only a small
fraction of all positive ΔEP alleles, including both fixed and segregating. We do not observe this in
the data, with segregating alleles constituting a large fraction (0.596, Table 1     ) of all positive ΔEP
alleles.

Balancing selection can take many forms (42     ), but whatever the mode of selection for these
alleles, it does not appear to be the kind of long-term balancing selection that causes trans-species
polymorphisms like those found in immune-related genes (43     , 44     ). Of the positive ΔEP alleles,
none of the GEVA values, and only 2.5% of the tc values, are over 200,000 generations, which
would correspond approximately to the human chimpanzee divergence time, assuming a 29-year
generation time (45     ).

Most positive ΔEP sites, including those with age ranks greater than 0.5 (i.e., older than neutral
alleles of the same frequency) also do not fit a conventional model of balancing selection in that
the derived allele frequency is usually low (Figure 2A     , Supplemental Figure 1). For tc the mean
frequency of positive ΔEP sites with age ranks greater than 0.5 is 0.039, while for GEVA it is 0.091.

When we seek these alleles in archaic humans, we find that relatively few positive ΔEP alleles
identified in the UK10K sample (241; 4.0%) occur in a sample of 4 archaic genomes. The same
analysis for negative ΔEP alleles found a smaller proportion of shared alleles (2030; 1.4%), whereas
an intermediate value of noncoding sites (401,741; 3.0%) were observed among the sample of
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archaic genomes. For genomic regions identified as introgressed from archaics, only 13 positive
ΔEP alleles (0.2% of all positive ΔEP sites) and 180 negative ΔEP alleles (0.1% of all negative ΔEP
sites) were found.

We applied an alternative method for identifying balancing selection to positive ΔEP alleles that is
based on the number of nearby polymorphisms that have risen to a similar frequency as the
candidate allele (46     ). We find that the test statistic, β, is significantly higher for positive ΔEP sites
compared to negative ΔEP sites (p-value = 1.588e-6), however the magnitude of these differences is
small at just an average β value of 1.09 for positive ΔEP sites and 0.55 for negative ΔEP sites.
Because most of the positive ΔEP sites in our study are found at low to moderate frequencies, and
because the elevated ages, relative to neutral sites, are on the order of 100’s or 1000’s of
generations, it is likely that there has not been sufficient time for genetic drift to bring flanking
sites in to the configuration that the β statistic is designed to be sensitive to.

Examination of modes of balancing selection:
population structure and overdominance
We observed significant clumping of positive ΔEP SNPs among the genes included in the study. For
every autosome, the observed variance in SNP density was significantly greater than that
generated by population genetic simulation (Supplemental Table 1). Gene ontology analyses for
genes rich in positive ΔEP SNPs revealed enrichment in several categories (Supplemental Table 2),
most notably blood coagulation and several disease pathways.

One mechanism that could give rise to new balanced polymorphisms is if the selection regime
arose because of the human population structure that favored ancestral alleles in some
populations and derived alleles in other populations (as suggested in a recent analysis (47     )). To
examine the possibility that population structure is facilitating a large amount of balancing
selection, we examined FST in the 1000 genomes data (48     ). Analysis of FST values in 1000
Genomes data for alleles from the UK10K samples with positive ΔEP and age ranks greater than 0.5
found no sign that these alleles show greater population structure than control alleles
(Supplemental Table 3). In three comparisons, the hypothesis that FST was higher for positive ΔEP
alleles that are older than expected could not be rejected by single classification Wilcoxon test in
pooled African samples versus pooled European and Asian samples (p = 0.1804), pooled European
versus pooled Asian samples (p = 0.5298), and Great Britain sample versus Italian sample (p =
0.7854).

Another possibility is if heterozygous positive ΔEP sites have higher fitness than homozygotes for
both the ancestral and the derived alleles. To evaluate this in a way that combined the signal from
all positive ΔEP alleles, we asked whether positive ΔEP alleles had higher heterozygote counts than
neutral alleles of the same allele frequencies. Analyzing SNPs with at least 100 derived allele
copies, we observed equal proportions of positive ΔEP sites with more heterozygotes than the
neutral class, compared to fewer; and we found a mean rank for heterozygote count for positive
ΔEP sites of 0.501. A one-sided z-test of the null hypothesis that the mean rank was equal to or less
than 0.5 did not approach statistical significance (p = 0.48). This is consistent with previously
published results which failed to find evidence of overdominance at deletion sites thought to be
under balancing selection (49     ). To assess our ability to detect heterozygote advantage using
counts of heterozygotes, a power analysis was conducted using simulations that mirrored the
actual data set, assuming genotypes are sampled under heterozygote advantage after selection has
acted. The analyses revealed that over a wide range of weak to moderate selection coefficients
where the selective advantage is less than 1% (i.e., s < 0.01), that an excess of heterozygotes is
unlikely to be detected given the UK10K sample size (Supplementary Table 5).

https://doi.org/10.7554/eLife.93258.1
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Models that can account for a period of balancing selection
The absence of very old, derived alleles among positive ΔEP sites suggests that the balancing
selection that occurs undergoes a change of character, such that balancing selection occurs for a
period of time and is then followed by directional selection or no selection (i.e. genetic drift alone)
leading to a loss of one or other of the alleles. If that were not the case, then we would not expect
the absence of very old alleles in this data set. To address this, we consider two models that both
provide mechanisms for balancing selection and that both predict that balancing selection will be
a temporary phase in the process of the fixation of beneficial alleles.

One theory to explain many positive ΔEP alleles with elevated ages includes two selection stages,
including first a period of balancing selection under heterozygote advantage, after which positive
directional selection carries the allele to fixation. Under this “staggered sweep” model, balancing
selection occurs when a favorable allele arises on a chromosome that carries one or more
recessive deleterious alleles at nearby locations, and it lasts until recombination moves the allele
onto other haplotypes not having linked deleterious alleles (50     ). A heterozygote for this
chromosomal region is initially favored because of the new allele’s dominance and the harmful
allele’s recessivity, such that the net positive selection coefficient on heterozygotes is strong
enough to counter the effects of genetic drift. The model is supported by the fact that individual
humans, and human populations, carry very large numbers of deleterious alleles, the large
majority of which are expected to be mostly recessive in their effects. Considering, for example,
just loss-of-function alleles for which diploid European genomes are estimated to carry about 100
(mostly in the heterozygous state), then the odds that a new beneficial mutation arises near to, and
in-phase, with a deleterious allele, may be quite high (51     ).

Testing the staggered sweep model is difficult because local linkage estimates, as well as tc and
GEVA estimates, all depend on a common estimate of the genetic map. However, we can avoid this
complication, and partially test the staggered sweep model, by comparing local recombination
rates near positive ΔEP alleles that are fixed to those that are segregating. If segregating alleles are
under balancing selection because of linkage to deleterious alleles, and the fixed alleles include
those that had escaped by recombination, we expect segregating alleles to show lower local
recombination rates than fixed positive ΔEP alleles. As predicted, the recombination rates of
genomic regions near fixed positive ΔEP alleles were significantly higher than for segregating
alleles (Mann Whitney U test p=6.0x10-19, Figure 3A     ).

Another explanation that also invokes heterozygote advantage is a diploid version of Fisher’s
geometric model (denoted hereafter as DFG) in which mutations that carry the phenotype in the
direction of the optimum may be favored when heterozygous under codominance and yet
disfavored in homozygotes if that phenotype is more extreme and further away from the optimum
(52     ). Under this model, balancing selection may be a common phase during an adaptive walk
toward increasing fitness, with balanced alleles ultimately being lost when new alleles under
simple positive directional selection arise and become fixed. The staggered sweep model and the
DFG model differ most clearly in that the former has the period of balancing selection as a phase
before the fixation of the allele, whereas the latter has the balanced allele being replaced by a new
allele that is simply favored by directional selection. The former model predicts that some,
perhaps many, selective sweeps are actually ‘soft’ sweeps caused by the fixation of a relatively old
allele. In contrast, the DFG model predicts that when a selective sweep occurs, it is a conventional
sweep by a new favored allele (i.e., a ‘hard’ sweep). Both models predict partial sweeps around
new alleles that arise in a balancing selection fitness scheme (Figure 3B     ).

Implications for the adaptation of human populations
We find that the majority of candidate derived beneficial alleles in a human population are
segregating, rather than fixed, and yet the mean ages of these alleles are older than those for
derived control alleles. These relatively old SNPs do not appear to fit a classical balancing selection

https://doi.org/10.7554/eLife.93258.1
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Figure 3

A. Mean recombination rate per base per generation as a function of ΔEP for fixed and segregating alleles.
B. Figurative example of the frequency trajectory of an allele under the staggered sweep (SS) or diploid fisher’s geometric
(DFG) model. Both begin with a phase of rising frequency (A) towards a period of equilibrium (B) caused by heterozygote
advantage when homozygous genotypes are disfavored, either due to recessive deleterious linked variation (SS) or an
overshooting of the optimal phenotype (DFG). Under DFG, variants are ultimately replaced by new mutations that are simply
favored. Under SS, alleles eventually cross over onto chromosomes without linked deleterious alleles, and then rise to fixation
(C).

https://doi.org/10.7554/eLife.93258.1
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model in that most of them are at low frequency and have age estimates almost always less than
the age of the hominin branch.

The overall pattern suggests that when fixation of beneficial alleles does occur, it often follows an
initial period of balancing selection.

We did not find evidence that ΔEP alleles are maintained due to commonly considered
mechanisms of balancing selection such as population structure or heterozygote advantage,
although the power to detect these factors was low, unless selection has been quite strong. Instead,
we found support for the staggered sweep model in which beneficial alleles arise on the same
haplotype as a deleterious mutation which delays them from fixing. Under a staggered sweep
model, we predict that there should be differences in recombination rates between segregating
and fixed alleles allowing for some alleles to escape selection from nearby deleterious which we
find to be true for moderate positive ΔEP sites.

If many beneficial alleles have a lengthy period of balancing selection, before proceeding to
fixation, then a significant fraction of adaptive fixations experienced by the human species (not
just individual populations) will have occurred as a ‘soft’ sweep rather than a ‘hard’ sweep. This
would help explain why there are few unambiguous cases of complete hard sweeps in large
population genomic data sets (9     , 11     ).

An additional implication of these findings is that the process of adaptation by human populations
may be slower than basic population genetic models predict. If a significant fraction of ultimately
beneficial fixed alleles undergoes a period of balancing selection, then at least at these sites, the
process of adaptation is slowed and limited, not for lack of mutation, but rather by the process
causing the period of balancing selection.

Methods

Evolutionary Probabilities, Allele Frequencies, and Data Filtering
Non-synonymous SNP sites in the UK10K dataset were identified with their corresponding
transcript ID using the hg19 RefGene annotations in the UCSC table browser (53     ), that are based
on NCBI RefSeq annotations (54     ), and the UK10K VCF (Variant Calling Format) files (23     ). For
each two-allele polymorphism, the transcript IDs and site locations were used to retrieve the EP
values for both the reference and alternative alleles. EP values were estimated using the method
described in previous literature (24     , 55     ) using posterior probabilities from a multispecies
alignment with associated divergence times. Mutations excluded from this dataset include those
with un-curated transcript IDs that have not been verified. Frequency data for the reference and
alternative allele at each site was extracted directly from the VCF file. Analyses thought to be
sensitive to CpG high mutability where limited to SNPs that did not occur as part of a CpG. These
included analyses that utilized allele ages (Figures 2A     , 2B, and 2C) as mutation rate was used as
a parameter in estimating these values.

Allele Age Estimates
To get approximate allele age estimates, we used both the time of most recent coalescence (tc)
estimator (39     ) from the Hey Lab and the Genealogical Estimation of Variant Age (GEVA)
estimator (38     ). To estimate tc, for each of the autosomal chromosome VCF files, first the
singletons were phased by placing each singleton on the longer of the two haplotypes. Following
this step, the time of coalescence was estimated (runtc.py) using the following parameters: k-
range, mutation rate of 1e-8, and recombination map as HapMap Phase II genetic map for hg19
(56     ). To obtain GEVA (38     ) estimates, the VCF file for each autosomal chromosome was first
parsed and converted into a binary file with corresponding marker and site files containing

https://doi.org/10.7554/eLife.93258.1
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information per variant. GEVA values were obtained for all positive EP SNPs with more than two
copies of the derived allele. GEVA estimates were obtained using the default parameters of
effective population size of 10000, mutation rate of 1e-8, and the provided Hidden Markov Model
(HMM) probability files. The output estimated age files were then filtered using the provided
program in R (https://github.com/pkalbers/geva     ).

GEVA estimates were obtained for all positive ΔEP sites in the sampled genes (2729 in total).
Because of time constraints large random samples of sites were used for non-coding, non-
regulatory sites (71628 in total) and negative ΔEP sites (19053 in total). To generate figures with
binned ΔEP values, the number of sampled noncoding, non-regulatory sites range from 800 to 2500
sites with estimated ages. For the negative ΔEP bins have approximately 1000 to 4000 sites with
estimated ages, while the positive ΔEP bins have 60 to 600 with estimated ages.

Rooting
Two methods of rooting were used, a parsimony-based approach using Ensembl (57     ) and a
maximum likelihood approach using RAxML (58     ). For the parsimony-based rooting method,
estimates of the hg19 ancestral states were retrieved from Ensembl (1     ) and included for each
position in the dataset. For all analyses of allele age, SNPs were limited to those where the
ancestral allele state matched the reference allele. For maximum likelihood rooting a primate
alignment was extracted for each RefSeq annotated gene from an Ensembl alignment whole
genome alignment (http://ftp.ensembl.org/pub/release-104/maf/ensembl-compara/multiple_alignments
/12_primates.epo/12_primates.epo.10_1.maf.gz     ) (57     ).

The phylogeny for each gene was estimated using RAxML-NG using the model GTR+Γ. At positions
in each gene where there was a non-synonymous mutation in the UK10K dataset, the human
sequence base in the alignment was replaced with a missing value, N. Using this newly
constructed primate alignment with the modified human sequence to reflect UK10K mutations,
RAxML-NG was run again to estimate the base pair values at the base of the edge of the human
sequence. The output generated posterior probability estimates for each of the four nucleotides at
each non-synonymous SNP site. Using the posterior probabilities, the most likely ancestral state
was predicted as the base pair with the highest probability. Downstream analyses were filtered by
those sites where a single base pair has a probability above 0.9 indicating a higher certainty for
the ancestral state.

Calculating ΔEP
Values of ΔEP were calculated by finding the difference between the derived EP value and the
ancestral EP value for a position given an estimated ancestral state for that position. The ΔEP
metric indicates the difference from neutrality at a given site between the ancestral and derived
allele. Sites where the amino acid mutated from an unlikely state evolutionarily to a more likely
state yielded a positive ΔEP value, and in the reverse, sites where the amino acid mutated from a
more likely state to less likely state yielded a negative ΔEP value.

Noncoding variants as neutral controls
To account for allele frequency in our analyses of age across the spectrum of ΔEP values, a method
to report age in relation to similar frequency control variants was needed. To assess whether an
allele was young or old, each allele was compared to a large control set of alleles of the same
frequency. For this purpose, we used the ages of noncoding, non-regulatory alleles, treating them
as a neutral control set. Candidate SNPs for the control set were first identified from intergenic
regions using annotations from SNPeff Human Genome build GRCH37 Ensembl release 75 (59     ,
60     ). This set was then filtered to remove those in regulatory regions, identified as falling into at
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least one of three data sets available from the UCSC Genome Browser: Candidate cis-Regulatory
Elements by ENCODE (61     ); RefSeq Functional Elements (62     ); and curated regulatory
annotations in the ORegAnno database (63     ).

Noncoding alleles in non-regulatory regions were assembled into bins of a similar frequency. Of
the variants that have identified ancestral states matching the reference allele, noncoding, non-
regulatory variants were split into bins of approximately 75,000 variants per frequency bin. At the
lower end of frequency bins (k = 1, 2, 3, 4, 5, 6, 7, 8), same k value variants were kept together even
if this resulted in bins larger than a size of 75,000 variants. In higher frequency bins, several k
values were binned together to yield bins of an approximate size of 75,000 noncoding,
nonregulatory variants.

Anova
To test the hypotheses that neutral derived allele ages have the same mean as either beneficial or
deleterious alleles we used two-way ANOVA, with selected vs control as one effect, and allele
frequency bin as a second effect. We first applied the Box-Cox transformation (64     ) to GEVA
estimates of allele age for each treatment and allele frequency group.

Rank Analysis
To account for differences in allele ages between different frequency bins and to compare variants
across the genome, we implemented a ranking system to assign each variant a rank within their
own null frequency distribution. Initially, null distributions of noncoding, nonregulatory variant
ages were constructed as described above. For each non-synonymous variant remaining in the
filtered dataset, the corresponding frequency bin was identified based on the k value of the
derived allele at that site. Within the null distribution of ages that correlated to the frequency bin
for the focal non-synonymous mutation, the position of the focal mutation’s age within the null
distribution was found. Based on that position, the rank within the null distribution was calculated
as the position divided by the length of the null distribution (approximately 75,000 variants). This
yielded a corresponding rank for each non- synonymous variant based on its own specific null
distribution of ages from similar frequency variants.

Recombination Analysis
To identify the changes in recombination across the genome, we found associated recombination
rate values for every segregating and fixed non-synonymous site in the UK10K dataset. With all
segregating and fixed non-synonymous sites identified using the rooting method described above,
the recombination rate at that location was extracted from the genetic map file for the specific
demographic in the dataset. In this case, a UK population specific recombination map (65     ) was
used. With each site’s associated recombination rate, comparisons were made between both fixed
and segregating sites across the spectrum of ΔEP values.

FST Analysis
We examined the relationship between FST and ΔEP. In 1000 Genomes data (48     ), FST was
calculated (66     ) for SNPs also found in the UK10K sample for three comparisons: pooled African
samples versus pooled European and Asian samples, pooled European versus pooled Asian
samples, and Great Britain sample versus Italian sample. Only SNPs with at least 10 copies of the
derived allele in the pooled contrast populations were considered. Supplemental Table 3 shows
mean FST as a function of ΔEP for each contrast.

To test whether FST was higher for older positive ΔEP SNPs than for control SNPs of the same allele
frequencies, the FST for each positive ΔEP SNP with age rank greater than 0.5 was placed in the
ranking of FST for all control SNPs of the same derived allele frequency. A single classification
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Wilcoxon test was conducted on each contrast to test whether there was an excess of positive ΔEP
SNPs with FST ranking above 0.5.

Heterozygosity Analysis
A test was conducted for the hypothesis that positive ΔEP SNPs have higher heterozygosity than
control SNPs of the same allele frequency. For each positive ΔEP SNP, the rank position of the
observed count of the number of heterozygotes was determined by placing the observed count
into a sorted list of heterozygote counts for controls SNPs with the same derived allele frequency.
In case of ties, the rank position was a random value of all possible ranks with the same
heterozygote count. To test the hypothesis that positive ΔEP SNPs have a mean rank above 0.5, a
one-sided z-test was conducted.

A power analysis was conducted by simulating data sets of the same size and distribution of allele
frequencies as the actual data. For a given selection coefficient s, where the fitness of a
heterozygote is 1+s, genotype frequencies were simulated using the observed allele count for each
ΔEP SNPs in the data. Heterozygous counts were then placed in corresponding rankings of null
distributions of heterozygous counts that were simulated for each of the observed allele
frequencies of positive ΔEP SNPs. A z-test was conducted for each of 1000 simulated data sets for
each selection coefficient. The results are shown in Supplemental Table 5.

Dispersion Analysis
To assess whether positive ΔEP SNPs are evenly distributed among the genes for which we have EP
values, we simulated tree-sequence (67     ) samples of 7242 UK chromosomes using STDPOPSIM
(68     ) under an Out-of-Africa model (69     ) for each of the autosomes. Then for each autosome
mutations were simulated for each gene on that chromosome, using each gene’s actual length and
map position, at the same mean density as observed for positive ΔEP SNPS. The variance in
simulated density of SNPs was recorded for each of 200 simulations for each autosome.

Gene Ontology Analysis
To test whether positive ΔEP SNPs appeared more often in specific molecular, biological, and
cellular classes (GO database released 2022-07-01, DOI: 10.5281/zenodo.6799722), PANTHER
pathways (70     ) and protein classes (version 17.0, released 2022-02-22), and Reactome Pathways
(Reactome database version 77, released 2021-10-01), a PANTHER Overrepresentation Test (Release
20221013) was used (71     , 72     ). The analyzed set of genes were identified by counting the
number of positive ΔEP SNPs per gene. The number of positive ΔEP SNPs was normalized by gene
length, and all genes with more than one positive ΔEP were retained. A final subset of 73 genes
were used in the PANTHER GO term analysis.

For the reference list, the gene database for Homo sapiens was used. Analyses were conducted
with a Fisher’s Exact test with a False Discovery Rate correction. Results are detailed in
Supplemental Table 2.

Comparison to Archaic Genomes
In order to identify whether a large proportion of our sites of interest arose prior to the speciation
between modern humans and archaic humans, we examined for each site whether it was also
present in any one of four archaic genomes (73     –76     ). For each category: nonsynonymous –
ΔEP, nonsynonymous + ΔEP, and neutral noncoding sites, the number of shared loci with at least
one archaic genome is reported along with percent of shared sites over the number of all sites in
that category.
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Not only was there interest in knowing whether these sites arose prior to the speciation event, but
some subset of these sites potentially could be found in both modern human genomes and archaic
human genomes due to gene flow between the two species. Sites were identified as appearing in
introgression regions based on S* values generated from the CEU dataset from 1000 Genomes
(77     ) (available at https://data.mendeley.com/datasets/y7hyt83vxr/1     ). Sites annotated as
matching in either Neanderthal or Denisovan would be included as introgression sites for our
analysis.

β (2     ) Values
For β (2     ) scores (46     ), the CEU standardized scores generated from 1000 Genomes data was
used (available at https://zenodo.org/record/7842447     ). For each site in our analysis, we identified
from this published dataset the Beta2 score if available. A Mann-Whitney U test was done to
analyze the difference between the Beta2 values of the – ΔEP and + ΔEP distributions.

Acknowledgements

This research was supported in part by NIH grants R01GM144468-01 to J. Hey and R35GM139540-
02 to S. Kumar. A. Platt was partially funded by N.I.H. grant R35 GM134957-01 and American
Diabetes Association Pathway to Stop Diabetes grant #1-19-VSN-02. This research includes
calculations carried out on HPC (High Performance Computing) resources supported in part by the
National Science Foundation through major research instrumentation grant number 1625061 and
by the US Army Research Laboratory under contract number W911NF-16-2-0189.

Data Availability

Tables of detailed information for nonsynonymous and noncoding variants, as well as a list of
primary mRNA isoforms (in the form of RefSeq IDs) used to retrieve EP values, are available at
https://bio.cst.temple.edu/~tuf29449/nolinks/Pivirotto_Balancing_Selection_info.zip     .

Author Contributions

AMP, SK, AP, and JH developed the idea for the study. RP contributed evolutionary probability
values. AMP and JH conducted the study, including writing scripts and conducted the analyses.
AMP and JH drafted the paper, with comments and suggestions from AP and SK.

Supplementary Figures & Tables

Supplementary Table 1. Results of simulation-based tests of dispersion of positive ΔEP SNPs.
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SNPs in ΔEP bins for three population contrasts. Values are for SNPs that are in the UK10K sample
and occur with at least 10 derived alleles in the pooled populations of the contrast. For each ΔEP
SNP the observed FST was ranked against that for control alleles of the same derived allele
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synonymous mutations and the corresponding EP value for the resulting amino acid in proportion
to their mutation probabilities based on empirical estimates. 95% confidence intervals on the
mean, determined by bias-corrected bootstrap, are given in parentheses.

Supplementary Table 5. Statistical power for detecting excess heterozygosity.

Supplementary Figure 1. Distributions of derived polymorphism frequency in UK10K.

Distribution of derived allele frequency for each ΔEP bin from –1 to +1 in 0.1 increments. Derived
allele frequency ranges from singletons (1 copy of the derived allele) to 7241 copies (only one copy
of the ancestral allele). The majority of sites are found at low frequencies across all bins
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Summary:
In this study, the authors attempt to reinvestigate an old question in population genetics
regarding the age of alleles that have experienced different strengths (and directions) of
natural selection. Under simple population genetic models, alleles that are positively selected
are expected to change frequency in populations faster than neutral alleles. So the naïve
expectation is that if you look at alleles that are the same population frequency, those that
have been evolving neutrally should have been segregating in the population longer than
those that have been experiencing natural selection. While this is exactly what the authors
find for alleles inferred to be experiencing negative selection (i.e. they tend to be younger
than alleles inferred to be neutral that are at the same frequency), the authors find the
opposite for alleles inferred to be under positive selection: they tend to be older than alleles
inferred to be neutral. The authors argue that this pattern can be explained by a model where
positively selected mutations experience a phase of balancing selection that can dramatically
extend the period of time that these alleles segregate in the population.

Strengths:
The question that the authors address is very interesting and thought provoking. When
confronted with a counter-intuitive finding, the authors describe an interesting hypothesis to
explain it. The authors investigate a number of interesting sub analyses to corroborate their
findings.

Weaknesses:
While there are some intriguing hypotheses in this manuscript, I struggle to be convinced.
The main point that the authors argue is that positively selected alleles are older than their
neutral counterparts at the same frequency. They argue that this may be because the
positively selected alleles are stuck in some form of balancing selection for a long time before
they switch to a more classical form of directional selection. The form of balancing selection
they argue is one caused by linkage to deleterious alleles, which takes time for the beneficial
alleles to recombine onto a more neutral background. I would really like to see some
simulations that demonstrate this can actually occur on average. Reading this paper brought
back memories of the classic Birky and Walsh (1988; PMCID: PMC281982) paper that argued
that linkage amongst selected alleles does not impact the substitution rate of linked neutral
alleles, but does reduce the substitution rate among beneficial alleles. Their simple
simulations in 1988 illuminated how this works, and they developed a simple mathematical
model that helped us understand how it works. In the current paper, it seems the authors are
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arguing for a similar effect, but rather than focus on beneficial alleles that fix, they are
focusing on beneficial alleles that are still segregating. These seem like similar stories, but
without simulations or a mathematical model, I struggle to gain any insight into why the
observation is the way it is (and not simply due to a number of possible confounding effects
noted below).
There are a number of elements to the methods and interpretation that could use
clarification.
• Genetic data. One of the biggest weaknesses of this analysis is the choice of genetic data. The
authors use the UK10k dataset, and reference the 2015 paper. Looking at that paper, it seems
that the data may be composed of low coverage whole genome sequencing data (7x) and high
coverage exome sequence data (80x). It appears that these data were integrated into a single
VCF file, similar to the 1000 Genomes Project Phase 3 data. If these are the data that was used,
then there are substantial differences between the coding and non-coding variants that are
compared. However, it is possible that the authors chose to restrict the analysis to the low
coverage WGS data and neglected to indicate it in the methods section. I will assume that this
is the case for the rest of the review, but the authors should clarify.
• Recombination rates. I believe the authors use an LD-based recombination map. While these
maps are correlated at the longer physical distances with pedigree maps, there are
substantial differences at shorter physical scales. These differences have been argued to be
due to the action of natural selection skewing patterns of LD. If that is the case, then some of
the observations in this paper are circular. Please confirm similar findings with a pedigree-
based recombination map.
• Recombination rates, pt 2. The authors compare patterns of non-synonymous coding
variants to a set of non-coding, non-regulatory SNPs. They argue "these will necessarily have
experienced similar mutational and recombinational processes". I don't know that this is
true. There are both distinct recombination patterns and mutational patterns in genes vs
non-coding regions of the genome. It would be important to more carefully match coding and
non-coding variants based on both recombination as well as the type of nucleotide change.
There are substantial differences in CpG composition in coding vs non-coding regions for
example. While the authors say "Analyses thought to be sensitive to CpG high mutability were
limited to SNPs that did not occur as part of a CpG", it is quite unclear what where CpGs were
included vs excluded.
• Identifying ancestral vs derived alleles. It is unclear how the authors identified ancestral vs
derived alleles (they say "inferred ancestral sequence from Ensembl (1) and a maximum
likelihood estimator". Several studies have shown that ancestral misidentification can cause
skews in the site frequency spectrum. If the ancestral state of some fraction of alleles were
misidentified, then the estimated allele age would be incorrect. Figure 1B shows that the
mean frequency of the alleles with the largest delta-EP tend to be very low. This makes me
think that ancestral misidentification may have impacted the results.
• Figure 2B and C. I do not understand how the median can be so far outside the mean and
error bars. The legend does not specify what the error bars are, but I feel the distribution
must be shown if it is so skewed that the mean and any definition of error does not include
the median.
• Inferring allele ages. The authors use two methods for estimating allele ages, but focus on
GEVA. They use the default parameter of effective population size 10,000. How sensitive is the
model to this assumption? It has been shown that different regions of the genome
(particularly coding vs neutral non-coding) experience different rates of deleterious
mutations, and therefore different rates of background selection. Simple models of
background selection would suggest that these regions will therefore have different effective
population sizes.
• Fst analysis. The authors look at Fst among 3 populations as a function of delta-EP compared
to frequency-matched control SNPs. They find there is no statistical support for different
levels of Fst in any pairwise comparison for any delta-EP bin. It seems strange that alleles
with large delta-EP would not show increased Fst compared to control SNPs... If they are
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indeed positively selected, the assumption must be that they are then positively selected in all
populations, which seems unlikely. Alternatively, by considering only narrow allele
frequency bins, it is possible that Fst is also being controlled, and therefore this analysis is
non-informative. A simulation would help understand what the expected pattern is here.
• It would be great to show more figures like 2A. You can place the x-axis on a log-scale so that
it is easier to view the lower allele frequencies. This plot clearly shows differences among the
3 categories. I am very surprised at the much shorter error bars for negative delta-EP at high
frequency compared to positive delta-EP variants... Shouldn't there be very few negative
delta-EP alleles at such high frequency?

https://doi.org/10.7554/eLife.93258.1.sa2

Reviewer #2 (Public Review):

The authors provide an analysis showing that the allele ages of putatively advantageous
alleles tend to be older than those of neutral alleles. To do this, the authors first classify
mutations as either neutral, advantageous or deleterious based on a metric called the
'evolutionary probability' which is correlated to the impact of selection acting on a mutation.
Then, the authors quantify the age of the mutations using the GEVA method and they also
quantify tc (the time of the ancestral node of the edge carrying the mutation). Interestingly,
the authors find that advantageous mutations tend to have an older allele age and an older
value of tc compared to neutral mutations. The authors posit some explanations for this
result invoking the action of balancing selection.

This is an interesting paper and its results could merit an important change in our conception
of how we believe that natural selection is acting on the human genome. I have concerns
about some of the analysis presented on this paper that have to do with two main factors: 1)
Showing that the estimates of allele ages and tc are robust on the dataset presented (more on
this topic here below). 2) Presenting more simulations or analytical theory where the authors
can show that the models presented by the authors to explain the results indeed fit the data
well. As an example, the authors could perform some simulations (likely using SLiM) under
the balancing selection models posited by the authors and then show that they can produce
data where the allele ages for deleterious, neutral and advantageous alleles have similar
patterns to what is observed on the genomic dataset analyzed.

Major concerns

- What is the impact of multiple mutations on the same site on the estimates of allele ages
with GEVA?

- GEVA, which is one of the methods used by the authors, 'overestimates "intermediate" times
and underestimates older times' according to Ragsdale and Thornton (2023) MBE. What is the
impact of this effect for the analysis performed by the authors? Do RUNTC has any known
biases on their estimate of tc?

- Additionally what is the impact of phasing errors on the estimates of allele age presented by
the authors?

https://doi.org/10.7554/eLife.93258.1.sa1

Reviewer #3 (Public Review):

In their manuscript, Pivirotto et al. make an unexpected observation that a set of candidate
beneficial alleles according to the Evolutionary Probability method (EP) have estimated ages
thousands of years older than control alleles of similar frequency and outside of functional
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segments. To explain this unexpectedly older ages, the authors propose a number of
interesting evolutionary processes related to balancing selection, including staggered sweeps.

It is important to first mention that the authors do find that as expected, deleterious alleles
are younger than controls. This provides evidence that the allele age estimates used by the
authors are of sufficient quality to detect age differences between groups of genes. I am also
convinced by the fact that EP can be used to focus on a set of alleles substantially enriched in
deleterious ones, given the very clear frequency patterns related to EP.

I have a number of concerns about the manuscript, including one rather serious one.

My main concern is that many of the observations made by the authors could be caused by
mispolarization of alleles, where either (i) mostly low frequency derived alleles are
mischaracterized as ancestral and the other, actually ancestral allele is mischaracterized as a
high frequency derived allele, or (ii) mostly low frequency ancestral alleles are
mischaracterized as derived. Unfortunately, the authors do not even mention the risk of
mispolarization in their manuscript. This is a serious problem for this manuscript because
ancestral alleles annotated as derived are by definition going to generate older age estimates
than if they were truly derived. It would be very useful to be able to have a look at the full
distribution of allele ages rather than just confidence intervals as in Figure 1. I happen to
have experience with mispolarization of high frequency ancestral alleles as derived by a
maximum likelihood method, different from the one used by the authors (Keightley et al
Genetics 2018), where the mispolarization became visible as a very suspicious SFS with a
visible excess of high frequency variants, especially those expected to be functional (because
of the relatively larger corresponding supply of low frequency deleterious functional
variants). Even if the ML method used by the authors is not the same, mispolarization is still a
serious risk. Glémin et al. Genome Research 2015 also found that mispolarization is far from
being a negligible issue.

Mispolarization of low frequency alleles may be especially prominent in the case of
mispolarized deleterious alleles associated with a very negative delta-EP, that then appear as
alleles with a very positive delta-EP. Focusing on high delta-EP alleles may then in fact enrich
the dataset in mispolarized alleles that then result in older age estimates. Looking at Figure
1B especially, I am worried by the fact that very high delta-EP values seem to go back to the
frequencies observed for very negative delta-EP. This is what mispolarization of low
frequency alleles might cause as a pattern, in this case especially low frequency ancestral
alleles being misidentified as derived?

The authors can address the possible issue of mispolarization in multiple ways. First, they can
use simulations of sequences to estimate amounts of mispolarization based on their
polarization approach, using substitutions/mutation rates as realistic as possible.
Second, the authors could check if there is suspicious symmetry in the distribution of delta-EP
between alleles at frequency f and alleles at frequency 1-f. This pattern could be generated by
mispolarization.

My second less serious concern has to do with the use of high delta-EP as evidence that alleles
are beneficial. The validation set from the Patel & Kumar 2019 paper is arguably small with
24 known selected variants. It does not follow from the fact that a small set of known selected
variants have higher delta-EP, that all variants with high delta-EP tend to be beneficial. This is
especially true in the case where beneficial variants tend to be rare, and there are then far
more variants expected with high delta-EP than there are beneficial variants. I am willing to
change my mind on this if the overall results can be shown to be robust after accounting for
allele mispolarization.

Third, I like the idea of staggered sweeps to explain the results, but I am wondering if there is
any evidence in the literature of interference between deleterious and advantageous variants
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that the authors could base their proposed explanation on.

Finally, and I realize that it is a bit of a stretch, I am wondering if the authors could better
justify their choices of methods to estimate the age of alleles. What about ARGweaver, Relate
or tsdate? How do these methods compare with GEVA? From looking at the literature I could
not find a direct comparison of the precision of GEVA compared to these other tools, but it
may be worth at least discussing that the results could be further put to the test with other
available ARG-based tools to estimate allele ages. Wilder Wohns et al. Science 2022 compare
the performance of these different ARG methods with ancient DNA data, and in fact find that
GEVA does not perform as well as for example Relate or tsdate.

https://doi.org/10.7554/eLife.93258.1.sa0
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