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A simple statistical test for comparing three alternative phylogenetic hypotheses for four monophyletic groups is 
presented. This test is based on the minimum-evolution principle, and it does not require any information regarding 
the branching order within each monophyletic group. It is computationally efficient and can be easily extended to 
five or more monophyletic groups. 

Introduction 

We propose a simple method for inferring the phy- 
logenetic relationships among four monophyletic groups 
of species by comparing all three alternative phylogenetic 
hypotheses. In this method, the minimum-evolution tree 
(Rzhetsky and Nei 1992) can be chosen without know- 
ing the branching pattern of species within each of the 
four clusters. This is particularly useful for determining 
the branching pattern of a deep phylogeny using a large 
number of species. Using the four-cluster analysis, we 
reexamined the relationships of a group of extinct ratite 
birds to extant ratite species (Cooper et al. 1992). 

Method 

Rzhetsky and Nei ( 1993 ) recently showed that the 
expectation of the sum (S) of branch-length estimates 
is smallest for the true tree when the branch lengths are 
estimated by the ordinary least-squares method. Let A, 
B, C, and D be the four monophyletic groups (clusters) 
and suppose that A, B, C, and D contain &, nB, nc, 
and nn species, respectively. In this case, one of the three 
possible trees for the four clusters (see fig. 1) must be 
the correct one, and the expected value of S for this tree 
should be smallest. That is, if Si, Sii, and SIlr are the 
sums of branch lengths for trees I, II,. and III in figure 
1, we need to compute Si - Sri, Si - SIII, and Sii - SIII, 
and test whether one of the S values is significantly 
smaller than the other two. Using equation (2) in 
Rzhetsky and Nei ( 1993 ) to compute the sums of branch 
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lengths for two trees, say SX and Sr and taking the dif- 
ference between them, we obtain 

SX - Sr = 2 wiidu, (1) 
ij 

where dG is the estimate of evolutionary distance between 
species i and j, and X and Y refer to the trees compared. 
The coefficients wti’s are computed by 

’ a/(2nAnB), ifiEAandjEB, 

a/(%nD), ifiECandjED, 

P/(2nAnC), ifiEAandjEC, 
wij = < 

P/(2nBnD), ifiEBandjED, 
(2) 

y/@nAnD), ifiEAandjED, 

’ y/(2nBkh ifiEBandjEC. 

(“i E A ” stands for “species i belongs to group A “), 
where a, P, and y are computed by equations (3), (4 ), 
and ( 5 ), respectively. 

f nAnB + wD 

@A + nC)(nB + nD) ’ 

ifX= Iand Y= II, 

nAnB + nCnD 

(nA + nD)(nB + nC) ’ 
a=c (3) 

ifX= I and Y = III, 

(nA - nB)(nD - k)(nAnB + n&D) 

@A + nC)(nB + nD)(nA + nD)@B + nC) ’ 

L ifX= II and Y = III. 
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FIG. l.-Three unrooted trees for four monophyletic clusters of 
; A, B, C, and D. 

ifX = I and Y = II, 

(nA - nC)(nD - nB)(nAnC + nBnD) 

(nA + nB)(nC + nD)(nA + nD)(nB + nC) 

ifX= Iand Y= III, 

nAnC + nBnD 

(nA + nD)(nB + nC) ’ 

L if X = II and Y = III. 

/ 
(nA - nD)(nC - nB)(nAnD + nBnC) 

@A + nB)(nC + nD)(nA + nC)(nB + nD) ’ 

ifX = I and Y = II, 

- 

Y = 

1 
nAnD d- nBflC 

@A + nB)hC + nD) ’ 
(5) 

2 = (S, - SY)/bqSX - SY). (7) 

Our computer simulation has shown that the distribution 
of Sx - Sy is approximately normal for a wide variety 
of distance measures for nucleotide sequences. There- 
fore, we can apply a two-tailed normal deviate test to 
examine the statistical significance of the difference in 
S between trees Xand Y. Note that the level of statistical 
significance generally increases as the number of species 
used increases. 

One can also test the composite null hypothesis 
WG) = WSII) = JW1II) in the following way, where 
E( Sx) stands for the expected value of Sx. Under the 
null hypothesis, random variables 6, = Sii - Si and 62 
= &II - SI approximately follow a bivariate normal dis- 
tribution with expected values E( 6, ) = E( 6,) = 0 and 
covariance matrix 

ifX= Iand Y= III, 

nAnD + nB@ 

@A + nC)(nB + nD) ’ 

if X = II and Y = III. 

(4) 

V= 
[ 

V(h) Cov(b 9 52) 
Cov(h, 62) 1 V(W ’ 

The variance of Sx - Sr is computed by the standard 
formula of the variance of a linear combination of ran- 
dom variables: 

Jwx- Sy) = c wpq dij) 
icj (6) 
+ 2 2 Wjwk~OV(dij, d/c/). 

&kl 

Then the ellipse containing lOOa% of the joint distri- 
bution of s1 and & is defined by following equation 
(Johnson and Kotz 1972, p. 87). 

6: am2 6; -_ 
vm ~V(S,)V(S,) + V@*) (8) 

= -2( 1 - p2)log( 1 - a), 

where p = Cov(&, 6,)/vV(6,)V(&), and Cov(&, 62) 
is computed by 

cov(h, 62) = C w,ijw2,ijV/( 4y) 
icj (9) 
+ c W,ij%,&ov(& dk/). 

ij#kl 

Coefficients w~,~ and w*,~ are calculated according to 
equations ( 2) - ( 5 ) for 6, = Sir - Si and 6* = SIII - Si , 
respectively. 

Once V(S,), V(62),andCov(G1,62)areobtained, 
we can compute the proportion (p) of the bivariate nor- 
mal distribution contained by the ellipse for specific val- 
ues of 6, and s2 by the following equation. 

I [ 6: 2pw2 
P -- 

= l - exp - V(b) VV(S,)V(S,) (10) 
Once we obtain Sx - Sr and its variance, we can 

compute the test statistic 
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If p is small, the data do not provide sufficient infor- 
mation to distinguish among trees I, II, and III (fig. 1). 
Ifp is large, say >0.95, the null hypothesis E( Si) = E( Sii) 
= E(S,,,) is rejected at the 5% level. Note that value of 
p in equation ( 10) does not depend on the choice of 6’s. 
That is, p remains unchanged if we replace Xii - Si and 
S,,, - SI (and their corresponding variances and co- 
variances) by either & - Si and SIIl - & or &I - 5’1 
and &i - Sir. 

It should be emphasized that a high value of p does 
not necessarily indicate that one of three phylogenies in 
figure 1 is significantly “better” than the other two. In- 
deed, one can encounter situations where the values of 
Si and & are not significantly different from each other 
and Sill is significantly greater than both Si and &. In 
this case p will be large because the null hypothesis E( Si) 
= E( Sir) = E(&,) is rejected. However, one can only 
conclude that tree III is unlikely to be the true tree. 

In this four-cluster analysis, the computation of the 
difference in S between two trees does not require any 
information regarding the branching order within each 
cluster. This is because the estimate of a branch length 
obtained by the ordinary least-squares method depends 
only on ( 1) the numbers of species within the four clus- 
ters associated with this branch and (2) the intercluster 
distances among the species (see eq. [ 21 in Rzhetsky 
and Nei [ 19931) as the estimates of branch lengths within 
clusters A, B, C, and D give the same contribution to 
Si, Si,, and Sill. Therefore, to compute the difference 
between any pair of S values, we need to estimate the 
lengths of only five branches of each four-cluster tree 
(e.g., bi , bZ, b3, b4, and b5 for tree I in fig. 1). 

To simplify the explanation of our method, let us 
assume that tree I is the true tree. This means that both 
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36 Moa 2 

99 Moa3 

5 
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99 

l-l 

! ’ 94 ;- Ostrich 

S, - & and Si - &r are expected to be negative, whereas 
Si, - SIII can be either negative or positive. That is, we 
have 

nAh3 + wb 

‘I - ‘I1 = - (YtA + m)( nB + nD) 

nAnB + wb 

‘I - “” = - (nA + nD)( nB + nC) 

b5 + eI,II, 

b5 + eI,II, 

@A - nB)(nD - nC)(nAnB + nCnD) 

‘I1 - “” = (nA + nC)( nA + nD)(nB + nC)( nB + nD) 

X b5 + eII,III, (11) 

where exy is a linear combination of random errors in- 
troduced in the process of estimating evolutionary dis- 
tances, and b5 is the expected length of the interior 
branch of tree I in figure 1. If both SI - SII and SI - SIII 
are significantly smaller than zero (say, at the 5% level), 
then tree I is likely to be the true tree. 

The four-cluster analysis and the test of interior 
branch length (Nei et al. 1985; Li 1989; Rzhetsky and 
Nei 1992, 1993) usually give correlated but not identical 
results. This is because in the four-cluster analysis we 
consider differences in sums of estimates for five 
branches, rather than just one as in the interior-branch 
test. Further, the interior-branch test is usually applied 
to a single topology rather than to several alternative 
topologies. If the topology for interior branch test is not 
selected a priori but instead chosen to maximize the 
estimated interior-branch lengths, the interior-branch 
test may give liberal results (Sitnikova et al. 1995 ). The 
four-cluster analysis does not suffer from this problem 
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FIG. 2.-The minimum-evolution tree (Rzhetsky and Nei 1993) for 12 ratite birds. Jukes and Cantor’s (1969) distances were used. This 
tree is identical in topology to the one presented by Cooper et al. (1992). The number given to each interior branch is the confidence probability 
obtained by Rzhetsky and Neils ( 1992, 1993) method. The root of the tree was given by using tinamou as the outgroup. 
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Table 1 
Results of Four-Cluster Analyses for Determining the Closest Relative of Moas 
Using Mitochondrial 12s rRNA Sequences 

Best Tree Statistical Confidence lOO(1 -p)% 

a. W, El, W, R)l 

b. [W, Q W, R)l 

c. [UC Oh (M, R)l 

d. [(A, O),(W WI 

Better than [(K, M), (R, E)] at 0.04% level, 
Better than [(K, R), (M, E)] at 3.58% level 
Better than [(K, M), (R, C)] at 0.06% level, 
Better than [(K, R), (M, C)] at 2.04% level 
Better than [(K, M), (R, 0)] at 3.44% level, 
Better than [(K, R), (M, 0)] at 28.92% level 
Better than [(A, R), (M, 0)] at 10.32% level, 
Better than [(A, M), (R, 0)] at 4.44% level 

0.09 

0.22 

12.55 

11.26 

NOTE.-In the analysis we used 12s rRNA sequences from four moas (M), three kiwis (K), two rheas (R), one emu 
(E), one cassowary (C), and one ostrich (0); (A) denotes the kiwis, emu, and cassowary group. Jukes and Cantor’s (1969) 
distance was used in these analyses. The last column shows the value of lOO( 1 - p)% of each of the four-cluster analyses 
(see eq. [lo]). 

because all possible arrangements of four groups of spe- 
cies are examined (see example). 

The four-cluster analysis has advantages over the 
currently available methods in simplicity, computational 
speed (there is no need to examine all possible tree to- 
pologies), and universality (it is easy to use any estimator 
of evolutionary distance). It also can easily be extended 
to five or more groups, though the number of compar- 
isons of S values required increases. 

Example 

As an example, let us consider the evolutionary 
relationships of a group of extinct flightless birds ( moas) 
from New Zealand with other ratite birds that currently 
live in New Zealand (kiwis). Because of their geographic 
proximity and morphological similarity moas were orig- 
inally thought to share a most recent common ancestor 
with kiwis rather than with ratite birds from other parts 
of the world. However, analyzing mitochondrial 12s 
rRNA gene sequences, Cooper et al. ( 1992) concluded 
that kiwis are more closely related to other ratites emu 
and cassowary (Australia and New Guinea) and ostrich 
(Africa and Asia) than to extinct moas. Their conclusion 
is based on the confidence interval test of the interior 
branch of the maximum likelihood tree obtained. How- 
ever, since the confidence interval test is known to be 
too liberal under certain circumstances (Tateno et al. 
1994), it is desirable to test this hypothesis by another 
statistical method. We therefore constructed the mini- 
mum-evolution tree (fig. 2) and applied our four-cluster 
analysis to test the null hypothesis that extinct New Zea- 
land moas are closer to kiwis than to emu, cassowary, 
ostrich, or rhea (South America). In this test, we as- 
sumed that the moas, kiwis, and rheas each constitute 
a monophyletic group and used emu, cassowary, or os- 
trich as the fourth group. These results (table 1 a-c) show 

that in all three tests the null hypothesis is rejected be- 
cause the cluster of kiwis and moas is significantly worse 
than the cluster of kiwis with emu, cassowary, or ostrich 
(P < 5%). This is consistent with the distant relationship 
of moas and kiwis in our minimum-evolution tree and 
the conclusion reached by Cooper et al. ( 1992). 

Furthermore, Cooper et al. suggested that kiwis, 
emus, and cassowaries share a most recent common 
ancestor with ostrich, not with moas. This hypothesis 
can be tested by using moas, rheas, the kiwi-emu-cas- 
sowary group, and ostrich as the four monophyletic 
groups and conducting the four cluster analysis (table 
1 d). Our test does not clearly establish Cooper et al.‘s 
view that kiwi, emu, cassowary, and ostrich shared a 
most recent common ancestor, even though the interior 
branch leading to this group seems to be long (interior 
branch test confidence = 94%). The cluster of ostrich 
with the kiwi-emu-cassowary group is significantly better 
than the ostrich-rhea cluster (P < 5%)) but the hypothesis 
that ostrich is closer to the kiwi-emu-cassowary group 
is not significantly better than the second alternative hy- 
pothesis in which ostrich is closer to moas (P > 10% ) . 
In general, this dataset does not seem to resolve the po- 
sition ofostrich (1 -p > 0.11). 
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