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Abstract

Evolutionary sparse learning (ESL) uses a supervised machine learning approach, Least Absolute Shrinkage and Selection
Operator (LASSO), to build models explaining the relationship between a hypothesis and the variation across genomic
features (e.g., sites) in sequences alignments. ESL employs sparsity between and within the groups of genomic features
(e.g., genomic loci or genes) by using sparse-group LASSO. Although some software packages are available for performing
sparse group LASSO, we found them less well-suited for processing and analyzing genome-scale sequence data containing
millions of features, such as bases. MyESL software fills the need for open-source software for conducting ESL analyses
with facilities to pre-process the input hypotheses and large alignments, make LASSO flexible and computationally efficient,
and post-process the output model to produce different metrics useful in functional or evolutionary genomics. MyESL takes
binary response or phylogenetic trees as the regression response, processing them into class-balanced hypotheses as
required. It also processes continuous and binary features or sequence alignments that are transformed into a binary
one-hot encoded feature matrix for analysis. The model outputs are processed into user-friendly text and graphical files.
The computational core of MyESL is written in C++, which offers model building with or without group sparsity, while the
pre- and post-processing of inputs and model outputs is performed using customized functions written in Python. One of its
applications in phylogenomics showcases the utility of MyESL. Our analysis of empirical genome-scale datasets shows that
MyESL can build evolutionary models quickly and efficiently on a personal desktop, while other computational packages
were unable due to their prohibitive requirements of computational resources and time. MyESL is available for Python
environments on Linux and distributed as a standalone application for both Windows and macOS, which can be integrated
into third-party software and pipelines.

Availability: Download source code, executable, and documentation from https://github.com/kumarlabgit/MyESL

Corresponding author: Sudhir Kumar (s.kumar@temple.edu).

1 Introduction
Evolutionary sparse learning (ESL) uses supervised machine learning with
a sparsity constraint for comparative sequence analysis in a phylogenetic
framework (Kumar and Sharma, 2021). ESL is applied directly to
multiple sequence alignments and builds a model for a given phylogenetic
hypothesis, such as the grouping of organisms in a clade or the presence or
absence of a trait of interest across organisms in a phylogeny. Organisms
can be species, individuals, strains, or cells, among other possibilities.
ESL model parameters are genomic loci, which can be genes, proteins,
exons, introns, intergenic regions, and individual genomic positions (Fig.
1a).

ESL uses the Least Absolute Shrinkage and Selection Operator,
LASSO (Tibshirani, 1996) and automatically compares alternative models
involving different combinations of genomic loci and positions using
sparse group lasso with logistic loss (Simon et al., 2013; Qiao et al.,

2017). The selected model reveals key genes and positions containing the
most informative shared-derived evolutionary substitutions, along with
a measure of the importance of each gene and position referred to as
sparsity scores that are larger for more important loci as well as position
in those loci (Kumar and Sharma, 2021). The classification model based
on these genes could clearly distinguish between members and non-
members of a clade in a phylogeny (Kumar and Sharma, 2021). Recently,
ESL has been used to detect disruptive sequences and unstable clades in
species phylogenies inferred using phylogenomic alignments (Sharma and
Kumar, 2024).

The ESL approach was originally implemented using Sparse Learning
with Efficient Projections (SLEP) software (Liu et al., 2011). It
implements LASSO regression in MATLAB but does not have built-
in functionality to process input sequence alignments and ESL model
outputs. MATLAB is neither universally accessible nor free of cost,
limiting the use of ESL. For proprietary reasons, the MATLAB version
of ESL cannot be distributed with free, user-friendly, and freely available
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software like MEGA (Tamura et al., 2021). In addition, packaging updated
MATLAB codes into a standalone software distribution by third parties
will require that they have a paid MATLAB compiler. Other open-
source computational packages are also available. For example, an R
package, SGL (Simon et al., 2018), is available for sparse group lasso
analysis, incorporating an additional L1 sparsity-inducing penalty, but
its implementation is computationally intensive and requires substantial
memory, making it impractical for large datasets that exceed typical
computational resources(Liang et al., 2022). Other R packages, such
as gglasso (Yang et al., 2020) and biglasso (Zeng and Breheny, 2016),
use alternative algorithms to improve the speed of group lasso analysis
through gradient descent, yet they do not support sparsity at the group
level (Liang et al., 2022). A more recent package, sparsegl, addresses
this limitation by providing a fast implementation of sparse group
lasso regression with group-level sparsity support (Liang et al., 2022).
However, none of these packages can efficiently handle extremely large
datasets with millions of features, such as sequence data, and they lack
integrated pre-processing tools for sequence data, making sparse group
lasso regression on such datasets infeasible on personal desktops due to
excessive computational time or memory requirements (see Section 2.9).
Similarly, the Python package agl (Mendez-Civieta et al., 2021) faces
these same challenges, making sparse group lasso regression on large
datasets a significant difficulty.

The above considerations prompted us to develop an open-
source software implementing SLEP’s lasso and sparse group lasso
functionalities in C++ for computational efficiency and facilitating
easier updates. We also programmed a new library of key input/output
functionalities to process phylogenetic trees and sequence alignments.
This library is written in Python and selected for its common use
in genomics research. These programming language choices for the
new programs, collectively called MyESL, enabled its compilation into
platform-specific executables (e.g., MS Windows and macOS) that can
be distributed and used without setting up a Python environment. This
executable is linked to the MEGA software version 12 (Kumar et al.,
2024), making its applications accessible via a widely used Graphical User
Interface.

2 Results
The analysis options are provided to the MyESL software on the command
line, including a path for the input data file and a text file containing the
evolutionary hypothesis.

2.1 Reading and processing the evolutionary hypothesis:

MyESL begins by reading the text file containing the evolutionary
hypothesis specified in two ways: --classes <classfile.txt>

or --tree <treefile.nwk> directive on the command line. The
classfile.txt is a tab-separated two-column text file containing the
organism name in the first column and a class designation (+1 or −1) in
the second column for use as a response in the regression analysis. The
+1 class is considered the focal class, a clade in a phylogeny or a trait of
interest.

Alternatively, MyESL can automatically generate classes by
processing an input phylogeny provided in a tree file containing a rooted
tree in the Newick format. In this tree, the internal node (clade) with
a label will be used as the focal clade, i.e., all the names found in the
subtree defined by that internal node will be assigned to the +1 class. The
remaining taxa in the tree will be assigned to the -1 class. If multiple
nodes in the input phylogeny have labels, the --clade_list <name>

directive specifies the focal clade. MyESL can conduct multiple ESL
analyses by automatically generating labels for all the internal nodes in

the phylogeny using the --gen_clade_list directive, where users are
required to define the minimum and maximum count of clade members.

2.2 Class balancing:

MyESL provides many ways to achieve class balancing, which refers to
having an equal number of taxa in the two classes (+1 and -1) using
the --class_bal command. Two classes can be balanced by up-
sampling of the minority class (<up> option) or down-sampling of the
majority class (<down> option). In these two scenarios, the taxa included
are selected randomly. The <weighted> option will assign weights
inversely proportional to the class size to balance the contribution of the
two classes.

MyESL provides a novel option (<phylo>) when the evolutionary
hypothesis is specified through a Newick tree that contains branch lengths.
In this phylogeny-aware class balancing, MyESL first assigns a +1 to all
the taxa in the focal clade. Then, it scans the sister of the focal clade
and assigns -1 to each taxa therein (i.e., first cousins). If the number of
taxa in the -1 class is smaller than the focal clade, then the search for
additional taxa continues by moving up to the ancestor of the focal clade
and assigning taxa in the sister clade at the next level to be -1 (i.e., second
cousins). This process is repeated until no more taxa remain or the number
of taxa with a -1 label exceeds those in the focal clade. At this stage, if the
number of taxa in two classes is unequal, MyESL prunes the taxon with
the shortest terminal branch length in the class with the larger number of
taxa, a process repeated until the number of taxa becomes equal between
the two classes. In this way, the most diverse taxa are selected for ESL
analysis.

2.3 One-hot encoding of sequence alignment:

Sequence alignments are read from the FastA files. MyESL assumes that
each FastA file represents a distinct group of alignment positions, such
as a gene or a collection intended to be treated as a group (Fig. 1a).
All sequences are then one-hot encoded, a functionality implemented in
C++ for maximizing speed. In one-hot encoding, every position in the
sequence alignment is converted into as many bit columns as the number
of unique characters present at that position. No bit-columns are created
for the alignment gap character () and the missing data character (?).

A --data_type <nucleotide> directive informs MyESL to
treat A, T, C, G, and U as valid characters without case sensitivity.
All other characters will be treated as missing data. Similarly, the
<protein> option treats all unambiguous IUPAC amino acid letters
(case insensitive) as valid characters. The <molecular> option
provides a way to use both nucleotide and acid letters as valid characters,
allowing for the mixing of two data types. By default, however, MyESL
will treat all letters (case-sensitive) and digits as distinct characters,
which makes MyESL useful for analyzing other types of molecular data.
For example, one may include information about the methylation status
of positions, the presence/absence of genes or genomic segments, and
other molecular characters in the input data files. Even non-molecular
characteristics and features of taxa could be specified using letters and
digits and then used as input during ESL analysis. When using this
flexibility, we suggest users to be careful when preparing their input and
interpreting the results.

MyESL compresses the resulting data matrix by discarding all
monomorphic bit-columns across organisms selected for ESL analysis.
That is, all the sequences at that position have the same character across
taxa, except for the missing data and alignment gaps. Singleton bit-
columns are also removed because only one alignment row contains an
unambiguous character state distinct from others. Such features will never
be informative in the lasso analysis. To further reduce the number of
features input to lasso, one may drop all bit-columns in which bit 1 appears
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Fig. 1. One-hot encoding and Evolutionary Sparse Learning. (a) The sequence alignment input to ESL consists of p positions (columns) belonging to g groups (e.g.,
genes). The one-hot representation of the alignment is shown below the sequence, where each allele present at a position gets a bit column containing a 1 when the given
allele is present in the position and a 0 otherwise. Every bit column is a feature in the ESL model, which produces weights (β) for each bit column. β captures the correlation
between the binary pattern in the bit column and the hypothesis specified by labels (+1 or −1) assigned to rows in the alignment. (b) Computational time comparison for
constructing an ESL model on smaller datasets using MyESL and sparagegl. (c) Computational time comparison for constructing an ESL model on larger datasets using
MyESL and sparsegl, where the computational time for sparseegl was projected. (d) The distribution of non-zero regression coefficients estimated in MyESL. (e) Top
genes ordered by gene sparsity score (GSS) for features selected in the ESL model.

fewer than a certain number of times (--bit_ct <count>), making
MyESL computationally efficient.

2.4 Model building using LASSO regression

MyESL estimates the coefficients of the sparse group LASSO regression
model by minimizing the logistic loss (Liu et al., 2011), which is defined
as:



4 Sanderford et. al. (2025).

L′(β) = l(β) + λ1|β|1 + λ2

G∑
g=1

wg∥βg∥2. (1)

Here, the first term is the logistic loss function, and the second is the
penalty for including individual bitcolumns in the regression model. λ1,
the regularization parameter, penalizes the inclusion of bit-columns in the
ESL model. β is the column vector of regression coefficients, with its
norm |β| =

∑
i=1 |βi| where i ranges from 1 to the number of bit-

columns in the whole dataset. The third term penalizes the inclusion of
groups into the regression model. Here, λ2 is the group regularization
parameter, and ∥βg∥ =

∑
i=1 |βgi|, where i ranges from 1 to the

number of bitcolumns in group g, and βgi is the regression coefficient
for the ith feature in group g. The product of ∥βg∥ and group weight
(wg) is summed over all G groups. The group weight is usually the
square root of the number of bit columns in group g, which MyESL
assumes. Alternatively, the user can provide group weights via a text
file (--group_wt <filename.txt>) containing two tab-separated
columns: the first containing group names and the second containing the
corresponding group weights.

In MyESL, λ1 and λ2 are the bit-column and group penalty
parameters, respectively. These parameters are user-specified by setting
--lambda1 <float> and --lambda2 <float> and vary between
0 and 1. MyESL also allows performing LASSO regression without group
sparsity using the flag --no_group_penalty or providing only a
single FastA file as data input.

2.5 Sparse group lasso implementation

The LASSO regression analysis in MyESL is programmed in C++
for computational efficiency and portability across platforms. The C++
source code is a direct port of the MATLAB code, sgLogisticR,
for logistic regression with other SLEP functions Kumar and Sharma
(2021). Regression models optimize the regression weights by employing
Moreau-Yosida regularization (Liu and Ye, 2010; Liu et al., 2011) and
minimize the logistic loss for sparse group logistic lasso regression,
respectively. MyESL uses the armadillo library in C++ for linear algebra
and scientific computing (Sanderson and Curtin, 2016), which can employ
multiple computing cores for matrix operations.

2.6 ESL Model output, cross-validation, and predictions

MyESL uses supervised machine learning to produce an ESL model for
the given hypothesis. In this process, ESL estimates regression coefficients
β′s for each bit-position in a one-hot encoded matrix, where most of these
coefficients will be zero (β = 0) due to sparsity constraint. MyESL has
a Python function (MyESL_model_apply.py) to utilize a pre-trained
ESL model, specifically, the feature (bit columns) weights or regression
coefficients produced. This function can classify a new set of organisms
whose sequences are aligned with the data used to build the model. The
classification can be performed using logistic loss when the ESL model is
built. Each test organism is assigned a prediction score and a probability
(0 to 1) output in a tab-separated text. A prediction score greater than zero
or a probability greater than 0.5 indicates classification in the class labeled
+1.

Users can also build a pre-trained ESL model for classification by
performing cross-validation. MyESL optimizes regression weights for
multiple training sets and validates the classification accuracy using the
held-out sets. The cross-validation in MyESL is performed using the
directive --kfold <int>. For example, 80% of the taxa are used in
model training, while 20% of taxa are withheld for validation if k-fold
is set at 5. MyESL produces feature weights from the training samples
and classification accuracy for each holdout sample, and users can choose
the model with the highest accuracy or use other criteria (e.g., root mean
square error). Cross-validation in MyESL can select the best pair of

sparsity parameters (Chetverikov et al., 2021) or assess model accuracy
without using test data (Xu and Goodacre, 2018). One should avoid
cross-validation if the focal clade has only a few members.

2.7 Building multiple ESL models

Building multiple models with the same feature/response data is
a common practice in machine learning to select an optimal pair
of sparsity parameters or achieve model averaging. MyESL allows
building multiple ESL models by performing a grid search over the
regularization parameter space. The grid search option lets users
specify the bit (--lamba1_grid <float, float, float>)
and group (--lamba1_grid <float, float, float>) sparsity
parameters by defining the minimum [0-1], maximum [0-1], and step size
[0-1] of the parameter space. MyESL can prematurely terminate the grid
search process to avoid building overly sparse models that may result in
high sparsity parameter values. The --min_group_ct <int> option
sets the minimum number of groups threshold to set the limit of grid
search.

2.8 ESL output of evolutionary parameters

MyESL processes the regression coefficient and produces a series of result
files containing different sparsity scores. These are tab-separated text
files generated using the following directive --stats_out <PGHS>.
Different letters in the input string for the directive will produce the
corresponding results as follows: P: Position Sparsity Scores; G: Group
Sparsity Scores; H: Hypothesis Sparsity Scores; S: A file containing both
Species Prediction Score (SPS) and Species Prediction Probability (SPP)
(see details in Kumar and Sharma (2021)).

2.9 Computational efficiency of MyESL

We evaluated the computational efficiency of MyESL against the
widely-used R package for sparse group lasso analysis, sparsegl. The
sparse group lasso analysis with logistic loss was conducted using
phylogenomic datasets of varying sizes, ranging from 1,000 to 63,430
genes, sourced from a larger phylogenomic dataset containing DNA
sequences of 63,430 (64K) genes from 363 bird species (Stiller et al.,
2024). All sites, represented using one-hot encoding in each gene, were
treated as an independent group in the analysis. The pre-processing of
sequence alignments was carried out using the preprocessing functionality
of MyESL, and the largest feature file, corresponding to the 64K
dataset—contained over 75 million one-hot encoded columns (genomic
features).

The sparsegl package could successfully build ESL models for
datasets with up to 5,000 genes. However, analyzing more genes
exceeded the system’s capacity (64 GB RAM) of a standard desktop
computer. In contrast, MyESL significantly reduced computational time
for building ESL models on smaller subsets (Fig 1b), requiring 10 times
less computational time. Notably, MyESL was also able to build ESL
models for larger data subsets, and we projected the time required for
sparsegl for such larger datasets. Figure 1c shows that MyESL offers
substantial computational time savings compared to sparsegl, even on
regular desktops, while also requiring significantly less computational
memory (Fig 1c).

2.10 Applications of MyESL

The MyESL software provides an integrated workflow, including
preprocessing sequence data, building ESL models for datasets, and post-
processing ESL model outputs. The outputs generated by ESL models
have a wide range of comparative and functional genomics applications.
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We highlighted one recent application of MyESL in identifying fragile
clades in an inferred phylogeny from phylogenomic data.

Discovering fragile clades in inferred phylogeny
We analyzed a fungus dataset containing amino acid sequence alignments
of 1, 233 genes from 86 yeast species (Shen et al., 2016, 2017). We built
an ESL model for a clade (44 species), where all species received a +1

label, while the remaining 42 species were assigned −1. The combined
sequence alignments from all genes contained 609, 013 sites, and the total
number of bit columns was 4, 105, 444, distributed among 1, 233 groups.
We used weighted class balance and set the position and group sparsity
parameter values at 0.1 and 0.2, respectively. MyESL took 5.25 minutes
to read and pre-process input datasets and less than 1 minute to build
the ESL model and process result files. The peak memory usage for this
analysis was 1.3 GB.

The resulting ESL model contained 33 genes (< 3%), 3,745 positions
(< 1%), and 5, 608 bit-columns (1.3%). Regression coefficients were
normally distributed (Fig. 1d). Two genes were much more important
than others (Fig. 1e). Interestingly, one species (A. rubescence) in the
focal clade received a low classification probability (0.05). Based on
such an observation, Sharma and Kumar (2024) introduced a novel
approach (DrPhylo) to detect fragile clades and causal gene-species
combinations, implemented using MyESL. DrPhylo analysis can be
conducted in MyESL using the --DrPhylo directive. MyESL produces
a two-dimensional visualization (species x genes) for this analysis that
reveals causal gene-species combinations (Sharma and Kumar, 2024).

2.11 Distributions

The source codes (Python and C++) for all custom functions used in
MyESL are freely available and distributed using a GitHub repository
https://github.com/kumarlabgit/MyESL. The repository
contains all instructions for installing MyESL for a Python environment in
Linux and performs MyESL analysis for a clade in an example phylogeny
using empirical sequence alignments. We have also packaged all of
these utilities of MyESL in a standalone Windows executable (.exe) file,
MyESL.exe, which is also distributed through the same GitHub repository.
Using this executable, we linked MyESL with DrPhylo mode to MEGA
12 (Kumar et al., 2024) via its AppLinker interface, which made MyESL
capabilities directly accessible to users with one click when the inferred
phylogeny is viewed in MEGA’s Tree Explorer.

3 Conclusion
MyESL is an open-source, extensible, portable, efficient, and lightweight
software that provides all the necessary utilities for researchers interested
in using the ESL approach in molecular evolutionary and functional
genomics. While a few generic packages are available for conducting
sparse group lasso (Yang and Zou, 2015; Zeng and Breheny, 2017;
Simon et al., 2013; Klosa et al., 2020; Civieta et al., 2021), they are
neither optimal nor efficient for handling large phylogenomic datasets,
building phylogenetic hypotheses, achieving phylogeny-aware class
balancing, and domain-specific post-processing of model outputs. Some
of these packages cannot be compiled into standalone applications or
are proprietary, making their integration into GUI applications infeasible.
MyESL overcomes these limitations.

In the above, we focussed on MyESL’s use to build models for
organismal relationships in a phylogeny. For example, we have used the
ESL models built in MyESL to identify fragile clades and associated
sequences in phylogenomics (Sharma and Kumar, 2024). The use of
MyESL produced highly influential positions and groups and predictive
models for downstream analyses in these applications. In the future,

we plan to extend the applicability of MyESL to functional and
population genetic studies. Furthermore, we aim to integrate advanced
sparse learning methods, such as overlapping group lasso and tree-
structured lasso, to further enhance its utility for data-driven discoveries
in molecular evolution and functional genomics. Furthermore, we will
expand MyESL’s capabilities by incorporating lasso and sparse group
lasso regression with the least squared loss, enabling it to build models
for continuous response variables.
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