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Abstract: Pharmacogenomics holds the promise of personalized drug efficacy optimization and
drug toxicity minimization. Much of the research conducted to date, however, suffers from an
ascertainment bias towards European participants. Here, we leverage publicly available, whole
genome sequencing data collected from global populations, evolutionary characteristics, and anno-
tated protein features to construct a new in silico machine learning pharmacogenetic identification
method called XGB-PGX. When applied to pharmacogenetic data, XGB-PGX outperformed all ex-
isting prediction methods and identified over 2000 new pharmacogenetic variants. While there are
modest pharmacogenetic allele frequency distribution differences across global population samples,
the most striking distinction is between the relatively rare putatively neutral pharmacogene variants
and the relatively common established and newly predicted functional pharamacogenetic variants.
Our findings therefore support a focus on individual patient pharmacogenetic testing rather than
on clinical presumptions about patient race, ethnicity, or ancestral geographic residence. We further
encourage more attention be given to the impact of common variation on drug response and propose
a new ‘common treatment, common variant’ perspective for pharmacogenetic prediction that is
distinct from the types of variation that underlie complex and Mendelian disease. XGB-PGX has
identified many new pharmacovariants that are present across all global communities; however,
communities that have been underrepresented in genomic research are likely to benefit the most
from XGB-PGX’s in silico predictions.

Keywords: pharmacogenomic; machine learning; adaptation; human evolution

1. Introduction

There is a well-established contribution of genetic variation to drug response that
has resulted in the expectation of personalized optimization of drug efficacy and the
minimization of drug toxicity [1–7]. Unfortunately, there is also a well-documented ascer-
tainment bias in the populations that have been included in genetic and genomic research
to date [8–11]. As a result of recent human evolutionary history, the out of Africa mi-
gration and resulting population bottleneck, Europeans carry only a subset of human
variation [12–16]. Given the overrepresentation of peoples of European descent in pharma-
cogenomic (PGx) research, there are likely to be a non-trivial number of variants that impact
drug response that have not yet been identified, functionally characterized, or incorporated
into clinical guidelines. This bias, therefore, limits the generalizability of results from
genomic and PGx studies to all human populations [9,11,17]. Efforts to mitigate this bias
will help ensure that communities of European descent are not the sole beneficiaries of PGx
research findings [8,11].
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An illustrative example of the implications of PGx ascertainment bias is the case of
warfarin dosing. A variant in the gene calumenin (the rs339097 G allele), rare in individ-
uals with European ancestry, increases the required therapeutic dose of the commonly
prescribed blood thinner warfarin by up to 15% [18]. This variant, as well as other key
variants in established genes such as CYP2C9*5, *6, *8, and *11, have been left out of several
common dosing algorithms and, as a result, these predictive models perform poorly for
individuals that carry these variants [19–21].

Computational or in silico prediction methods for PGx variants have the poten-
tial to alleviate PGx ascertainment bias. Several methods have been developed to pre-
dict pathogenic variants, variants thought to negatively impact protein function [22–25].
Li et al. [26] extended this computational prediction effort to develop a method for func-
tional missense PGx variants, but found that PGx variants looked less like disease variants
(which are thought to have been subjected to purifying selection) and more like neutral
variants. More recently, Zhou et al. [27] applied an ensemble computational approach to
predict deleterious PGx variants and successfully applied it to the minority subset of PGx
variants with existing experimental data. Consistent with Li et al. [26], Zhou et al. [27]
found that relaxing the requirement of evolutionary signatures of purifying selection
improved the computational prediction of PGx variants.

Previous work by us and others has demonstrated the impact that positive selection
has had on global human contemporary variation involved in immune response and
metabolism [11,28–31]. Given the overlap between these gene categories and the genes
involved in drug response, we present here a novel approach to in silico PGx variant
prediction that leverages signatures of adaptation. Our computational approach is designed
to mitigate ascertainment biases in PGx research and identify important PGx diversity that
is currently missing from existing PGx resources.

2. Materials and Methods
2.1. Samples and Data

Whole-genome sequencing data from the Phase 3 of the 1000 Genomes Project [13]
were used to identify global missense variation in previously annotated pharmacogenes
in PharmGKB [32]; more detailed information about the 1000 Genomes Project Phase
3 population samples can be found in Table 1. Clinical Pharmacogenetics Implemen-
tation Consortium (CPIC) gene annotation information was downloaded from CPIC
(https://cpicpgx.org/genes-drugs/) and was last annotated on 25 March 2020. Pharmaco-
gene variant annotation information was downloaded from PharmGKB (https://www.
pharmgkb.org/downloads/) on 28 October 2019. These data were compiled manually
by PharmGKB scientific curators [32]. All of the available human UniProt feature anno-
tations (ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/
genome_annotation_tracks/UP000005640_9606_beds/) were downloaded on 6 December
2019 in bed format. Evolutionary probabilities were calculated as previously described
for the subset of missense variant positions present in PharmGKB annotated pharmaco-
genes and in the UCSD 46 species vertebrate alignment [33,34], and candidate adaptive
polymorphisms (CAPs) were identified as previously described [25,29]. Evolutionary rate,
evolutionary time span, SIFT (Sorting Intolerant From Tolerant), and PolyPhen2 values
were extracted from the e-GRASP Resource [35]. Version 1.5 CADD (Combined Anno-
tation Dependent Depletion) values were downloaded from http://cadd.gs.washington.
edu/download [36]. In total, 38,686 1000 Genomes Project Phase 3 whole-genome se-
quencing missense variants located in 1076 PharmGKB pharmacogenes with evolutionary
probabilities were retained for downstream analyses (Supplementary Materials Table S1).

https://cpicpgx.org/genes-drugs/
https://www.pharmgkb.org/downloads/
https://www.pharmgkb.org/downloads/
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/genome_annotation_tracks/UP000005640_9606_beds/
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/genome_annotation_tracks/UP000005640_9606_beds/
http://cadd.gs.washington.edu/download
http://cadd.gs.washington.edu/download
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Table 1. 1000 Genomes Project Phase 3 data population samples.

Description Label Sample Size

African Caribbean in Barbados ACB 96
Esan in Nigeria ESN 99
Gambian in Western Division, Mandinka GWD 113
Luhya in Webuye, Kenya LWK 99
Mende in Sierra Leone MSL 85
People with African Ancestry in Southwest USA ASW 61
Yoruba in Ibadan, Nigeria YRI 108
Colombians in Medellin, Colombia CLM 94
People with Mexican Ancestry in Los Angeles, CA, USA MXL 64
Peruvians in Lima, Peru PEL 85
Puerto Ricans in Puerto Rico PUR 104
Chinese Dai in Xishuangbanna, China CDX 93
Han Chinese in Beijing, China CHB 103
Japanese in Tokyo, Japan JPT 104
Kinh in Ho Chi Minh City, Vietnam KHV 99
Southern Han Chinese CHS 105
British in England and Scotland GBR 91
Finnish in Finland FIN 99
Iberian Populations in Spain IBS 107
Toscani in Italia TSI 107
Utah residents (CEPH) with Northern and Western European ancestry CEU 99
Bengali in Bangladesh BEB 86
Gujarati Indians in Houston, TX, USA GIH 103
Indian Telugu in the UK ITU 102
Punjabi in Lahore, Pakistan PJL 96
Sri Lankan Tamil in the UK STU 102

2.2. Enrichment Testing

We used a publicly available human dataset of adaptive signatures [28] and tested
for enrichment of annotated PharmGKB pharmacogenes using a permutation approach.
More specifically, for each neutrality test statistic (iHS, XP-CLR, and D) we conducted
1000 permutations assuming 29,521 total genes (the number of genes within 100 kb of
one of the Illumina 1M duo SNPs included in [28]). We used the R sample function
without replacement (replace = FALSE) to randomly sample the respective number of
adaptive signatures for each statistic (9593 iHS loci, 8636 XP-CLR loci, and 17,734 D loci,
respectively, across all population samples). We retained the number of permuted adaptive
signatures that were annotated in PharmGKB as pharmacogenes. We then counted the
number of permutations that were equal to or more extreme than the actual number of
PharmGKB pharmacogenes that overlapped adaptive signatures identified by each statistic.
We additionally used the pnorm function in R to calculate an empirical P-value to measure
whether the extent of overlap between the number of actual pharmacogenes and adaptive
signatures is expected by chance given the permutation distribution.

2.3. Machine Learning Modeling

For each missense variant position, UniProt feature annotations were coded as present
or absent, CAPs were coded as present or absent, global minor allele frequency ranging
from 0 to 1 was included, evolutionary probabilities for reference and non-reference alleles
ranging from 0 to 1 were included, evolutionary rate ranging from 0 to 57,405 was included,
and evolutionary time span ranging from 0 to 2774 was included. The pharmacogenetic
outcome was generated from existing PharmGKB annotation, such that each missense
variant was annotated as a pharmacovariant or not.

The Caret package in R [37], including the associated randomForest [38] and xg-
boost [39] packages, were used for all machine learning PGx modeling. We partitioned the
data into 70% for training and 30% for testing using the createDataPartition Caret function.
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We used the DMwR package [40] smote method to balance the training data (using the
Caret trainControl function with sampling = “smote”), and performed 5-fold cross valida-
tion and 10 repeats for the following models using the Caret train function: random forest
(method = ‘rf’), Logit Boost (method = ‘LogitBoost’), and XG Boost (method = ‘xgbTree’),
which each offering classification-based modeling. Given our relatively higher confidence
in ‘true positives’, we weighted the model evaluation on sensitivity (metric = “Sens”).

3. Results
3.1. Annotated PGx Variation Is Negatively Impacted by Ascertainment Bias

To better characterize the potential impact of ascertainment bias on pharmacogene
annotation, we performed a descriptive analysis of pharmacogenes annotated in CPIC
(see methods for more detail) using the 1000 Genomes Project Phase 3 whole-genome
sequencing data collected from worldwide populations (Table 1) [13]. We found that 70%
of the genetic variants present in pharmacogenes annotated in CPIC are carried by non-
Europeans, as displayed in Figure 1. This result is consistent with our expectation from
global patterns of human genetic variation [12–16]. This result is also consistent with expec-
tations from previous analyses of pharmacogene variation in worldwide populations [41]
that the pharmacogene variation carried by Europeans alone is an incomplete picture of
pharmacogene variation worldwide.

Figure 1. Venn diagram of 1000 Genomes Project Phase 3 pharmacogene variants.

Figure 1 displays a Venn diagram of all of the single nucleotide polymorphisms (SNPs)
included in the 1000 Genomes Project Phase 3 whole-genome sequencing dataset for all
of the pharmacogenes that have at least one CPIC annotation. The light blue shaded area
represents all of the variants present only in non-European population samples, the dark
blue represents all of the variants present only in European population samples, and the
overlapping area represents all of the variants present in both European and non-European
population samples.

3.2. Pharmacogenes Are Enriched for Adaptive Signatures

Previous work by us and others has demonstrated the impact that positive selection
has had on contemporary worldwide human variation involved in immune response and
metabolism [11,28–31]. Moreover, in a study of 62 global human population samples,
Li et al. [42] demonstrate signatures of positive selection in many pharmacogenes. To
further explore the extent to which genome-wide signatures of adaptation are enriched
for pharmacogenes, we leveraged the publicly available dataset of adaptive signatures
identified in Scheinfeldt et al. [28]. This set of adaptive signatures was generated using
three complementary approaches for the identification of adaptive signatures that are
sensitive to classic selective sweeps and selection on standing variation and includes many
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genes known to play a role in immune response and metabolism across diverse African
communities [28]. In this case, we have chosen to focus on signatures of past adaptation
in Africa because our human ancestors emerged in Africa over two hundred thousand
years ago and lived in Africa for tens of thousands of years before a subset migrated out
of Africa over the past eighty thousand years; because of this bottleneck, non-Africans
carry only a subset of human variation [12–16,28]. Consistent with Li et al.’s [42] results,
our permutation enrichment test was significant for all three test statistics: iHS (p < 0.001),
XP-CLR (p < 0.001), and D (p < 0.001). We found comparable results with our empirical
P-value approach: iHS (empirical p < 0.001), XP-CLR (empirical p < 0.001), and D (empirical
p < 0.001).

3.3. In Silico Model Development

Given the extensive pharmacogene variation in non-Europeans (Figure 1), the limited
representation of non-Europeans in genomic and pharmacogenomic research to date, and
the significant enrichment of pharmacogenes in adaptive signatures across the human
genome, we next used a range of evolutionary statistics for each variable missense position
in each pharmacogene (evolutionary rate, evolutionary time, evolutionary probability of the
reference and non-reference allele, and whether the position contains a candidate adaptive
polymorphism (CAP) according to Patel et al. [29]) together with global minor allele
frequency and all available functional annotations included in the human subset of UniProt
feature annotations to develop an in silico prediction method for functionally important
pharmacogene variants (Table S1 includes more detail on the included pharmacogenes,
and Table S2 includes more detail on the included pharmacogene variants).

We compared three machine learning model approaches and assessed which had the
highest sensitivity to detect true positive pharmacogenes in a cross validation of both the
training data and the testing data. Overall, the XG Boost model (XGB) performed the best
on the training data (Table 2) as measured by ROC. While RF performed marginally better
in terms of sensitivity (median 0.97 vs. 0.95, respectively), XGB performed significantly
better in terms of specificity (median 0.70 vs. 0.45, respectively). The XGB model also
performed better than the RF and LB models on the testing data with respect to sensitivity.
As displayed in Table 3, XGB correctly identified more ‘true positive’ pharmacovariants
annotated in PharmGKB (140 vs. 98 and 125, respectively, for RF and LB).

Table 2. Machine learning model comparison using training data.

Statistic Model Minimum 1st Quartile Median Mean 3rd Quartile Maximum

ROC

Random Forest 0.80 0.84 0.85 0.85 0.87 0.90

LogitBoost 0.83 0.86 0.87 0.87 0.89 0.92

XGBoost 0.88 0.90 0.91 0.91 0.92 0.94

Sensitivity

Random Forest 0.96 0.97 0.97 0.97 0.98 0.98

LogitBoost 0.90 0.92 0.93 0.93 0.94 0.96

XGBoost 0.93 0.94 0.95 0.95 0.95 0.96

Specificity

Random Forest 0.31 0.40 0.45 0.45 0.50 0.57

LogitBoost 0.53 0.62 0.69 0.68 0.72 0.82

XGBoost 0.61 0.67 0.70 0.69 0.72 0.78

We additionally reviewed the variables that contributed to the XGB model. Table 4
includes the list of variables in order of importance. As shown, minor allele frequency
(MAF) was the most impactful variable, followed by three evolutionary summary statistics:
whether the position contains a CAP [25,29], evolutionary time [35], and the evolutionary
probability of the non-reference allele [25]. The UniProtKB topological (Topo) domain
feature (the location of non-membrane regions of membrane-spanning proteins) was the
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next most impactful variable, followed by evolutionary rate [35], the UniProtKB topological
chain feature (the extent of a polypeptide chain in the mature protein), and the evolutionary
probability of the reference allele [25]. Six additional UniProtKB features provide lower
levels of impact on the XGB model.

Table 3. Machine learning model comparison using test data.

Model Prediction Not Annotated in PharmGKB PharmGKB PGx

Random
Forest

neutral 11,076 105

PGx 326 98

LogitBoost
neutral 10,877 539

PGx 525 125

XGBoost
neutral 10,716 63

PGx 686 140

Table 4. Overall variable importance for XGB-PGx.

Variable Overall Variable Importance (XGBoost)

Global minor allele frequency 100.00
Candidate adaptive polymorphism (CAP) 10.00
Evolutionary time 4.66
Non-reference evolutionary probability 1.81
Uniprot Topo domain 1.62
Evolutionary rate 1.21
Uniprot chain 1.16
Reference evolutionary probability 0.77
Uniprot domain 0.50
Uniprot helix 0.21
Uniprot repeat 0.18
Uniprot proteome 0.10
Uniprot disulfide 0.07
Uniprot variants 0.07

3.4. Comparison with Existing Methods

Existing computational prediction methods have already been shown to perform
poorly when applied to PGx data [43]. Our new XGB-PGX model outperforms SIFT,
PolyPhen, and EVOD with respect to sensitivity, specificity, accuracy, and AUC (area under
the receiver operating characteristic (ROC) curve) (Table 5). CADD performs marginally
better with respect to specificity; however, XGB-PGX outperforms CADD with respect
to sensitivity, accuracy, and AUC (Table 5). Given our lower confidence in our ability to
identify ‘true negatives’, we consider the specificity results with additional caution.

3.5. Annotation Trends in PGx Variant Prediction

We were interested in determining whether there were any trends involving the new
XGB-PGX ‘predicted’ PGx variants. In particular, we asked if clinically well-studied phar-
macogenes annotated in CPIC and PharmGKB have fewer ‘newly predicted’ PGx variants
relative to pharmacogenes annotated in PharmGKB with less or no clinical annotation
in CPIC. We reasoned that PGx variants in pharmacogenes that have been studied more
extensively for clinical applications may be better understood than PGx variants in phar-
macogenes that have been included in fewer clinical studies. We evaluated whether the
PharmGKB pharmacogenes implicated in more CPIC drug-gene pairs have fewer ‘newly
predicted’ PGx variants relative to pharmacogenes implicated in fewer CPIC drug–gene
pairs, and used this comparison as a proxy to capture PGx variants in pharmacogenes
that have been studied more or less extensively for clinical applications. Figure 2 displays



J. Pers. Med. 2021, 11, 131 7 of 13

the boxplot distributions of newly ‘predicted’ XGB-PGX pharmacogenetic variants for
each category of drug–gene pair. While there is no exact linear relationship between the
number of annotated CPIC drug/gene pairs and the number of newly ‘predicted’ PGx
variants, pharmacogenes associated with more than 10 medications display a noticeable
reduction in newly ‘predicted’ PGx variants: CYP2D6 (2 new), CYP2C9 (0), CYP2C19 (0),
G6PD (0), ABCB1 (0). The full list of included genes, number of PharmGKB-annotated
missense variants, number of newly predicted variants, number of putatively neutral
missense variants, total number of variants included in the analysis, and total number of
annotated CPIC drugs associated with each gene is included in Table S1. Table S2 includes
variant-level information, including all of the variables included in the machine learning
analyses, whether a given variant is annotated in PharmGKB, whether a given variant
is a newly predicted pharmacogenetic variant according to XGB-PGX, and global minor
allele frequency.

Table 5. PGx prediction performance comparison of in silico approaches.

Method Sensitivity Specificity Accuracy AUC

SIFT 0.59 0.42 0.50 0.51
PolyPhen2 0.60 0.44 0.52 0.53

CADD 0.73 0.78 0.75 0.56
EVOD 0.64 0.50 0.57 0.57

XGB-PGX 0.95 0.68 0.82 0.84

Figure 2. Boxplots of newly predicted pharmacogenetic variants across CPIC drug annotation categories.

Figure 2 displays boxplot distributions of the number of newly predicted pharmacoge-
netic variants (along the Y-axis) for each category of pharmacogene (along the X-axis), each
defined by the number of annotated CPIC drugs associated with a given gene. The X-axis
labels denote the number of annotated CPIC drugs associated with a given gene category,
and below in parentheses, the number of genes included in each category is included.
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3.6. Allele Frequency Trends in PGx Variant Prediction

We were also interested in comparing allele frequency distributions between already
known (PharmGKB annotated) and newly predicted pharmacogenetic variants, particularly
given the impact that minor allele frequency had on the XGB-PGX model. If only a fraction
of pharmacogenetic variation is known due to ascertainment bias, we would expect known
pharmacogenetic variants to have relatively high allele frequencies in European population
samples. To test this prediction, we calculated non-reference allele frequencies in each of
the 1000 Genomes Project population samples.

Figure 3 displays the distributions of PharmGKB annotated PGx variant allele frequen-
cies, newly predicted PGx variant allele frequencies, and putatively neutral PGx variant
allele frequencies across all 261,000 Genomes Project population samples. There do not
appear to be meaningful differences in allele frequency distribution across population
samples for already annotated pharmacovariants (Figure 3); however, XGB-PGX predicted
variants are more common in African Caribbeans living in Barbados (ACB), people with
African Ancestry living in Southwest USA (ASW), Esan living in Nigeria (ESN), Luhya
living in Webuye, Kenya (LWK), Gambians living in Western Division, Mandinka (GWD),
Mende living in Sierra Leone (MSL), and in Yoruba living in Ibadan, Nigeria (YRI). More
notable is the dramatic increase in allele frequency in the annotated and predicted PGx
variants relative to the putatively neutral variants.

Figure 3. Allele frequency distributions across functional variant categories and population samples.

The top panel of Figure 3 displays boxplot distributions of the non-reference allele
frequency (along the Y-axis) of each PharmGKB annotated pharmacogenetic variant in each
1000 Genomes Project Phase 3 population sample (along the X-axis) in purple. The middle
panel of Figure 3 displays boxplot distributions of the non-reference allele frequency (along
the Y-axis) of each XGB-PGX predicted pharmacogenetic variant in each 1000 Genomes
Project Phase 3 population sample (along the X-axis) in green. The bottom panel of Figure 3
displays boxplot distributions of the non-reference allele frequency (along the Y-axis) of
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each putatively neutral variant in each 1000 Genomes Project Phase 3 population sample
(along the X-axis) in grey.

4. Discussion

The new in silico PGx variant prediction method, XGB-PGX, described here leverages
identifiable adaptive signatures that have impacted missense variants across the human
genome together with functional protein annotation information. Our approach is de-
signed to mitigate ascertainment biases in PGx research and identify important global PGx
diversity that is currently underrepresented or missing in existing PGx resources. This ap-
proach complements existing, annotated PGx resources and contributes to ongoing efforts
to maximize drug efficacy and minimize drug toxicity in clinical care by identifying a more
comprehensive set of PGx variants for functional characterization and clinical application.

XGB-PGX outperforms existing in silico functional variant prediction methods when
applied specifically to PGx missense variation data. This performance improvement is
likely due to the common assumption by existing methods that functional variants are
deleterious and therefore rare in the general population. This assumption does not hold for
PGx variation—presumably, at least in part, because of the documented impact of positive
selection—and therefore needed to be adjusted in XGB-PGX for better performing PGx
variant prediction.

We explored whether the number of newly predicted PGx variants followed any
pattern related to clinical annotation. We found that CPIC annotated genes associated
with seven or fewer medications had noticeably higher numbers of newly predicted PGx
variants relative to CPIC annotation genes with more than ten associated medications. In
particular, XGB-PGX identified no newly predicted PGx variants in ABCB1 (associated
with 12 medications), CYP2C19 (associated with 21 medications), CYP2C9 (associated with
22 medications), and G6PD (associated with 36 medications), while XGB-PGX identified
only two newly predicted PGx variants in CYP2D6 (associated with 60 medications). We
interpret these results to suggest that the majority of the functional variation present in the
most clinically studied pharmacogenes may already be known despite the ascertainment
bias described above.

Interestingly, genes known to play important roles in immune response, such as
the pharmacogenes that belong to the major histocompatibility complex (HLA-A, HLA-
C, HLA-DQA1, and HLA-DRB1) have over 25 newly predicted missense PGx variants.
Alternately, only one of the pharmacogenes (CYP4F2) belonging to the cytochrome p450
gene family (CYP2D6, CYP2B6, CYP2C9, CYP2C8, CYP2C19, CYP4F2), which is known to
play a role in toxin metabolism, has more than two newly predicted missense PGx variants.
These results suggest that further investigation of functionally predicted immune response
variation is an intriguing new area for pharmacogenomic investigation.

We expected that our XGB-PGX prediction method would identify new PGx variants
that would be more common in communities that have been underrepresented in PGx
research. We found that the allele frequency distributions of already annotated and newly
predicted PGx variants across 1000 Genomes Project global population samples include
a range of allele frequencies, including both common and rare variation. We identified a
modest increase in the newly predicted PGx variant allele frequencies in African Caribbeans
living in Barbados (ACB); people with African Ancestry living in Southwest USA (ASW);
Esan living in Nigeria (ESN); Luhya living in Webuye, Kenya (LWK); Gambians living in
Western Division, Mandinka (GWD); Mende living in Sierra Leone (MSL); and in Yoruba
living in Ibadan, Nigeria (YRI), as displayed in Figure 3. This trend is consistent with our
initial assumption that existing PGx annotations are likely missing important variation,
particularly in underrepresented communities (Figure 3).

The most striking difference among allele frequency distributions is between the
relatively rare putatively neutral variants and the more common annotated and predicted
functional PGx variants, regardless of population affiliation. The presence of a CAP at a
given pharmacogene position is the second most important variable in XGB-PGX (Table 4),
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and this allele frequency pattern is consistent with our previous analyses of CAPs that
demonstrated the majority of these adaptive variants to be common and shared across
worldwide populations [29]. This pattern is also consistent with an older signature of adap-
tation that predates the out of Africa migration of modern humans [29]. More generally,
these findings lend further support to a focus on individual pharmacogenetic testing rather
than on presumptions about patient race, ethnicity, or ancestral migration history.

To date, a disproportionate amount of in silico modeling of functional variation impli-
cated in disease and drug response has focused on rare, deleterious mutations [27,36,44,45];
however, we and others have demonstrated the important impact that positive selection
has had in shaping variation at pharmacogenetic loci [28,29,42]. While negative or pu-
rifying selective pressure tends to suppress deleterious variation, positive or adaptive
selective pressure tends to increase allele frequencies over time [46]. We therefore encour-
age more attention to be given to the important role that common genetic variation plays
in pharmacogenomics and suggest a ‘common treatment, common variant’ perspective for
pharmacogenetics that leverages the characteristics of pharmacovariants that are distinct
relative to the deleterious genetic variants involved in disease.

While complementary to existing computational functional variant prediction meth-
ods that perform well in identifying rare, deleterious mutations involved in disease and
drug response [27,36,44,45], there are several limitations to XGB-PGX. First, XGB-PGX
is a predictive, in silico approach that requires functional validation and exploration of
clinical relevance prior to any application to clinical interpretation. Second, XGB-PGX
was developed using known pharmacogenes and the subset of missense variants that
are in genomic regions that align to the vertebrate phylogeny; thus, variants located in
alignment gaps will not be identified by our method. For example, none of the CYP2C9
and CYP2C19 variants that were functionally assessed by Devarajan et al. [47] were present
in the aligned vertebrate phylogeny and the 1000 Genomes Project Phase 3 whole genome
sequencing datasets used for XGB-PGX. In addition, XGB-PGX was trained on known
PGx variants, and this subset is likely to be impacted by the same ascertainment bias we
note above. We therefore have more confidence in true positives and less confidence in
non-annotated ‘negatives’.

5. Conclusions

XGB-PGX has identified over 2000 new putative pharmacovariants that are equally
relevant to worldwide communities regardless of geographic affiliation; however, commu-
nities that have been left out of past research may benefit the most from in silico prediction
methods such as XGB-PGX until ascertainment bias in genomics and pharmacogenomics
is solved.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-442
6/11/2/131/s1: Table S1 includes the full list of genes included in the machine learning analyses, the
number of PharmGKB-annotated missense variants, the number of newly predicted variants, the
number of putatively neutral missense variants, the total number of variants included in the analysis,
and the total number of annotated CPIC drugs associated with each gene. Table S2 includes all of the
variables included in the machine learning analyses, whether a given variant is annotated in Phar-
mGKB, whether a given variant is newly predicted pharmacogenetic variant according to XGB-PGX,
and the global minor allele frequencies for all variants included in the machine learning analyses.

Author Contributions: L.B.S. designed XGB-PGX with input from S.K. and N.G. L.B.S. performed
data analysis with assistance from D.M.K., A.B. and N.G. L.B.S., D.M.K., A.B., S.K. and N.G., all
contributed to the manuscript writing. All authors have read and agreed to the published version of
the manuscript.

Funding: Support was provided by the National Institutes of Health to S.K. (R01LM013385-02 and
R35GM139540-01) and to L.B.S. (U41HG008736-05).

Institutional Review Board Statement: Not applicable.

https://www.mdpi.com/2075-4426/11/2/131/s1
https://www.mdpi.com/2075-4426/11/2/131/s1


J. Pers. Med. 2021, 11, 131 11 of 13

Informed Consent Statement: Not applicable.

Data Availability Statement: Original/source data used in the analyses described in the paper are
available as follows: 1000 Genomes Project Phase 3 whole-genome sequencing data are available
at the following website: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/; Uniprot functional
annotations can be accessed at the following website: ftp://ftp.uniprot.org/pub/databases/uniprot/
current_release/knowledgebase/genome_annotation_tracks/UP000005640_9606_beds/; mypeg an-
notations can be accessed at the following website: http://www.mypeg.info/evod; PharmGKB
annotations can be accessed at the following website: https://www.pharmgkb.org/downloads/;
CPIC annotations can be accessed at the following website: https://cpicpgx.org/genes-drugs/;
CADD values can be accessed at the following website: http://cadd.gs.washington.edu/download.

Acknowledgments: We would like to thank Jean-Pierre Issa’s laboratory, and, in particular, Jozef
Madzo and Kelsey Keith for their helpful discussions. We would also like to thank Coriell’s bioin-
formatic team for their support and generous bioinformatics server availability. This work was
supported by the Coriell Institute for Medical Research and by R01LM013385-02 and R35GM139540-
01 to SK and by U41HG008736-05 to LBS.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Crews, K.R.; Hicks, J.K.; Pui, C.H.; Relling, M.V.; Evans, W.E. Pharmacogenomics and individualized medicine: Translating

science into practice. Clin. Pharmacol. Ther. 2012, 92, 467–475. [CrossRef]
2. Relling, M.V.; Evans, W.E. Pharmacogenomics in the clinic. Nature 2015, 526, 343–350. [CrossRef] [PubMed]
3. Relling, M.V.; Krauss, R.M.; Roden, D.M.; Klein, T.E.; Fowler, D.M.; Terada, N.; Lin, L.; Riel-Mehan, M.; Do, T.P.; Kubo, M.; et al.

New Pharmacogenomics Research Network: An Open Community Catalyzing Research and Translation in Precision Medicine.
Clin. Pharmacol. Ther. 2017, 102, 897–902. [CrossRef] [PubMed]

4. Rasmussen-Torvik, L.J.; Stallings, S.C.; Gordon, A.S.; Almoguera, B.; Basford, M.A.; Bielinski, S.J.; Brautbar, A.; Brilliant, M.H.;
Carrell, D.S.; Connolly, J.J.; et al. Design and anticipated outcomes of the eMERGE-PGx project: A multicenter pilot for preemptive
pharmacogenomics in electronic health record systems. Clin. Pharmacol. Ther. 2014, 96, 482–489. [CrossRef] [PubMed]

5. Gharani, N.; Keller, M.A.; Stack, C.B.; Hodges, L.M.; Schmidlen, T.J.; Lynch, D.E.; Gordon, E.S.; Christman, M.F. The Coriell
personalized medicine collaborative pharmacogenomics appraisal, evidence scoring and interpretation system. Genome Med.
2013, 5, 93. [CrossRef] [PubMed]

6. Dunnenberger, H.M.; Crews, K.R.; Hoffman, J.M.; Caudle, K.E.; Broeckel, U.; Howard, S.C.; Hunkler, R.J.; Klein, T.E.; Evans, W.E.;
Relling, M.V. Preemptive clinical pharmacogenetics implementation: Current programs in five US medical centers. Annu. Rev.
Pharmacol. Toxicol. 2015, 55, 89–106. [CrossRef]

7. Bank, P.C.D.; Swen, J.J.; Guchelaar, H.J. Implementation of Pharmacogenomics in Everyday Clinical Settings. Adv. Pharmacol.
2018, 83, 219–246. [CrossRef] [PubMed]

8. Bentley, A.R.; Callier, S.; Rotimi, C.N. Diversity and inclusion in genomic research: Why the uneven progress? J. Community
Genet. 2017, 8, 255–266. [CrossRef]

9. Martin, A.R.; Gignoux, C.R.; Walters, R.K.; Wojcik, G.L.; Neale, B.M.; Gravel, S.; Daly, M.J.; Bustamante, C.D.; Kenny, E.E.
Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations. Am. J. Hum. Genet. 2017, 100,
635–649. [CrossRef]

10. Popejoy, A.B.; Fullerton, S.M. Genomics is failing on diversity. Nature 2016, 538, 161–164. [CrossRef]
11. Scheinfeldt, L.B.; Tishkoff, S.A. Recent human adaptation: Genomic approaches, interpretation and insights. Nat. Rev. Genet.

2013, 14, 692–702. [CrossRef]
12. Scheinfeldt, L.B.; Soi, S.; Tishkoff, S.A. Colloquium paper: Working toward a synthesis of archaeological, linguistic, and genetic

data for inferring African population history. Proc. Natl. Acad. Sci. USA 2010, 107 (Suppl. 2), 8931–8938. [CrossRef]
13. Genomes Project, C.; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.;

McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [CrossRef]
14. Biswas, S.; Scheinfeldt, L.B.; Akey, J.M. Genome-wide insights into the patterns and determinants of fine-scale population

structure in humans. Am. J. Hum. Genet. 2009, 84, 641–650. [CrossRef] [PubMed]
15. Scheinfeldt, L.B.; Biswas, S.; Madeoy, J.; Connelly, C.F.; Schadt, E.E.; Akey, J.M. Population genomic analysis of ALMS1 in humans

reveals a surprisingly complex evolutionary history. Mol. Biol. Evol. 2009, 26, 1357–1367. [CrossRef]
16. Choudhury, A.; Aron, S.; Botigue, L.R.; Sengupta, D.; Botha, G.; Bensellak, T.; Wells, G.; Kumuthini, J.; Shriner, D.; Fakim, Y.J.; et al.

High-depth African genomes inform human migration and health. Nature 2020, 586, 741–748. [CrossRef] [PubMed]
17. Baker, J.L.; Shriner, D.; Bentley, A.R.; Rotimi, C.N. Pharmacogenomic implications of the evolutionary history of infectious

diseases in Africa. Pharmacogenom. J. 2017, 17, 112–120. [CrossRef] [PubMed]

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/genome_annotation_tracks/UP000005640_9606_beds/
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/genome_annotation_tracks/UP000005640_9606_beds/
http://www.mypeg.info/evod
https://www.pharmgkb.org/downloads/
https://cpicpgx.org/genes-drugs/
http://cadd.gs.washington.edu/download
http://doi.org/10.1038/clpt.2012.120
http://doi.org/10.1038/nature15817
http://www.ncbi.nlm.nih.gov/pubmed/26469045
http://doi.org/10.1002/cpt.755
http://www.ncbi.nlm.nih.gov/pubmed/28795399
http://doi.org/10.1038/clpt.2014.137
http://www.ncbi.nlm.nih.gov/pubmed/24960519
http://doi.org/10.1186/gm499
http://www.ncbi.nlm.nih.gov/pubmed/24134832
http://doi.org/10.1146/annurev-pharmtox-010814-124835
http://doi.org/10.1016/bs.apha.2018.04.003
http://www.ncbi.nlm.nih.gov/pubmed/29801576
http://doi.org/10.1007/s12687-017-0316-6
http://doi.org/10.1016/j.ajhg.2017.03.004
http://doi.org/10.1038/538161a
http://doi.org/10.1038/nrg3604
http://doi.org/10.1073/pnas.1002563107
http://doi.org/10.1038/nature15393
http://doi.org/10.1016/j.ajhg.2009.04.015
http://www.ncbi.nlm.nih.gov/pubmed/19442770
http://doi.org/10.1093/molbev/msp045
http://doi.org/10.1038/s41586-020-2859-7
http://www.ncbi.nlm.nih.gov/pubmed/33116287
http://doi.org/10.1038/tpj.2016.78
http://www.ncbi.nlm.nih.gov/pubmed/27779243


J. Pers. Med. 2021, 11, 131 12 of 13

18. Voora, D.; Koboldt, D.C.; King, C.R.; Lenzini, P.A.; Eby, C.S.; Porche-Sorbet, R.; Deych, E.; Crankshaw, M.; Milligan, P.E.;
McLeod, H.L.; et al. A polymorphism in the VKORC1 regulator calumenin predicts higher warfarin dose requirements in African
Americans. Clin. Pharmacol. Ther. 2010, 87, 445–451. [CrossRef]

19. Shahabi, P.; Scheinfeldt, L.B.; Lynch, D.E.; Schmidlen, T.J.; Perreault, S.; Keller, M.A.; Kasper, R.; Wawak, L.; Jarvis, J.P.; Gerry,
N.P.; et al. An expanded pharmacogenomics warfarin dosing table with utility in generalised dosing guidance. Thromb. Haemost.
2016, 116, 337–348. [CrossRef]

20. Kaye, J.B.; Schultz, L.E.; Steiner, H.E.; Kittles, R.A.; Cavallari, L.H.; Karnes, J.H. Warfarin Pharmacogenomics in Diverse
Populations. Pharmacotherapy 2017, 37, 1150–1163. [CrossRef]

21. Kimmel, S.E.; French, B.; Kasner, S.E.; Johnson, J.A.; Anderson, J.L.; Gage, B.F.; Rosenberg, Y.D.; Eby, C.S.; Madigan, R.A.; McBane,
R.B.; et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N. Engl. J. Med. 2013, 369, 2283–2293. [CrossRef]

22. Ng, P.C.; Henikoff, S. Predicting deleterious amino acid substitutions. Genome Res. 2001, 11, 863–874. [CrossRef] [PubMed]
23. Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and

server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [CrossRef]
24. Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the deleteriousness of variants throughout the

human genome. Nucleic Acids Res. 2019, 47, D886–D894. [CrossRef] [PubMed]
25. Liu, L.; Tamura, K.; Sanderford, M.; Gray, V.E.; Kumar, S. A Molecular Evolutionary Reference for the Human Variome. Mol. Biol.

Evol. 2016, 33, 245–254. [CrossRef]
26. Li, B.; Seligman, C.; Thusberg, J.; Miller, J.L.; Auer, J.; Whirl-Carrillo, M.; Capriotti, E.; Klein, T.E.; Mooney, S.D. In silico

comparative characterization of pharmacogenomic missense variants. BMC Genom. 2014, 15 (Suppl. 4), S4. [CrossRef]
27. Zhou, Y.; Mkrtchian, S.; Kumondai, M.; Hiratsuka, M.; Lauschke, V.M. An optimized prediction framework to assess the

functional impact of pharmacogenetic variants. Pharmacogenom. J. 2019, 19, 115–126. [CrossRef]
28. Scheinfeldt, L.B.; Soi, S.; Lambert, C.; Ko, W.Y.; Coulibaly, A.; Ranciaro, A.; Thompson, S.; Hirbo, J.; Beggs, W.; Ibrahim, M.; et al.

Genomic evidence for shared common ancestry of East African hunting-gathering populations and insights into local adaptation.
Proc. Natl. Acad. Sci. USA 2019, 116, 4166–4175. [CrossRef]

29. Patel, R.; Scheinfeldt, L.B.; Sanderford, M.D.; Lanham, T.R.; Tamura, K.; Platt, A.; Glicksberg, B.S.; Xu, K.; Dudley, J.T.; Kumar, S.
Adaptive Landscape of Protein Variation in Human Exomes. Mol. Biol. Evol. 2018, 35, 2015–2025. [CrossRef]

30. Fumagalli, M.; Sironi, M.; Pozzoli, U.; Ferrer-Admetlla, A.; Pattini, L.; Nielsen, R. Signatures of environmental genetic adaptation
pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet. 2011, 7, e1002355. [CrossRef]

31. Grossman, S.R.; Andersen, K.G.; Shlyakhter, I.; Tabrizi, S.; Winnicki, S.; Yen, A.; Park, D.J.; Griesemer, D.; Karlsson, E.K.; Wong,
S.H.; et al. Identifying recent adaptations in large-scale genomic data. Cell 2013, 152, 703–713. [CrossRef]

32. McDonagh, E.M.; Whirl-Carrillo, M.; Garten, Y.; Altman, R.B.; Klein, T.E. From pharmacogenomic knowledge acquisition to
clinical applications: The PharmGKB as a clinical pharmacogenomic biomarker resource. Biomark. Med. 2011, 5, 795–806.
[CrossRef] [PubMed]

33. Kent, W.J.; Sugnet, C.W.; Furey, T.S.; Roskin, K.M.; Pringle, T.H.; Zahler, A.M.; Haussler, D. The human genome browser at UCSC.
Genome Res. 2002, 12, 996–1006. [CrossRef] [PubMed]

34. Murphy, W.J.; Eizirik, E.; O’Brien, S.J.; Madsen, O.; Scally, M.; Douady, C.J.; Teeling, E.; Ryder, O.A.; Stanhope, M.J.; de Jong, W.W.; et al.
Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 2001, 294, 2348–2351. [CrossRef]

35. Karim, S.; NourEldin, H.F.; Abusamra, H.; Salem, N.; Alhathli, E.; Dudley, J.; Sanderford, M.; Scheinfeldt, L.B.; Chaudhary, A.G.;
Al-Qahtani, M.H.; et al. e-GRASP: An integrated evolutionary and GRASP resource for exploring disease associations. BMC
Genom. 2016, 17, 770. [CrossRef]

36. Kircher, M.; Witten, D.M.; Jain, P.; O’Roak, B.J.; Cooper, G.M.; Shendure, J. A general framework for estimating the relative
pathogenicity of human genetic variants. Nat. Genet. 2014, 46, 310–315. [CrossRef]

37. Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]
38. Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22.
39. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13 August 2016; Association for Computing
Machinery: New York, NY, USA, 2016; pp. 785–794. [CrossRef]

40. Torgo, L. Data Mining with R, Learning with Case Studies; Chapman and Hall/CRC: Boca Raton, FL, USA, 2010.
41. Wright, G.E.B.; Carleton, B.; Hayden, M.R.; Ross, C.J.D. The global spectrum of protein-coding pharmacogenomic diversity.

Pharmacogenom. J. 2018, 18, 187–195. [CrossRef] [PubMed]
42. Li, J.; Zhang, L.; Zhou, H.; Stoneking, M.; Tang, K. Global patterns of genetic diversity and signals of natural selection for human

ADME genes. Hum. Mol. Genet. 2011, 20, 528–540. [CrossRef]
43. Gerek, N.Z.; Liu, L.; Gerold, K.; Biparva, P.; Thomas, E.D.; Kumar, S. Evolutionary Diagnosis of non-synonymous variants

involved in differential drug response. BMC Med. Genomics 2015, 8 (Suppl. 1), S6. [CrossRef]
44. Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814.

[CrossRef] [PubMed]
45. Nickerson, D.A.; Tobe, V.O.; Taylor, S.L. PolyPhred: Automating the detection and genotyping of single nucleotide substitutions

using fluorescence-based resequencing. Nucleic Acids Res. 1997, 25, 2745–2751. [CrossRef] [PubMed]

http://doi.org/10.1038/clpt.2009.291
http://doi.org/10.1160/TH15-12-0955
http://doi.org/10.1002/phar.1982
http://doi.org/10.1056/NEJMoa1310669
http://doi.org/10.1101/gr.176601
http://www.ncbi.nlm.nih.gov/pubmed/11337480
http://doi.org/10.1038/nmeth0410-248
http://doi.org/10.1093/nar/gky1016
http://www.ncbi.nlm.nih.gov/pubmed/30371827
http://doi.org/10.1093/molbev/msv198
http://doi.org/10.1186/1471-2164-15-S4-S4
http://doi.org/10.1038/s41397-018-0044-2
http://doi.org/10.1073/pnas.1817678116
http://doi.org/10.1093/molbev/msy107
http://doi.org/10.1371/annotation/ca428083-dbcb-476a-956c-d7bb6e317cf7
http://doi.org/10.1016/j.cell.2013.01.035
http://doi.org/10.2217/bmm.11.94
http://www.ncbi.nlm.nih.gov/pubmed/22103613
http://doi.org/10.1101/gr.229102
http://www.ncbi.nlm.nih.gov/pubmed/12045153
http://doi.org/10.1126/science.1067179
http://doi.org/10.1186/s12864-016-3088-1
http://doi.org/10.1038/ng.2892
http://doi.org/10.18637/jss.v028.i05
http://doi.org/10.1145/2939672.2939785
http://doi.org/10.1038/tpj.2016.77
http://www.ncbi.nlm.nih.gov/pubmed/27779249
http://doi.org/10.1093/hmg/ddq498
http://doi.org/10.1186/1755-8794-8-S1-S6
http://doi.org/10.1093/nar/gkg509
http://www.ncbi.nlm.nih.gov/pubmed/12824425
http://doi.org/10.1093/nar/25.14.2745
http://www.ncbi.nlm.nih.gov/pubmed/9207020


J. Pers. Med. 2021, 11, 131 13 of 13

46. Biswas, S.; Akey, J.M. Genomic insights into positive selection. Trends Genet. 2006, 22, 437–446. [CrossRef] [PubMed]
47. Devarajan, S.; Moon, I.; Ho, M.F.; Larson, N.B.; Neavin, D.R.; Moyer, A.M.; Black, J.L.; Bielinski, S.J.; Scherer, S.E.; Wang, L.; et al.

Pharmacogenomic Next-Generation DNA Sequencing: Lessons from the Identification and Functional Characterization of
Variants of Unknown Significance in CYP2C9 and CYP2C19. Drug Metab. Dispos. 2019, 47, 425–435. [CrossRef]

http://doi.org/10.1016/j.tig.2006.06.005
http://www.ncbi.nlm.nih.gov/pubmed/16808986
http://doi.org/10.1124/dmd.118.084269

	Introduction 
	Materials and Methods 
	Samples and Data 
	Enrichment Testing 
	Machine Learning Modeling 

	Results 
	Annotated PGx Variation Is Negatively Impacted by Ascertainment Bias 
	Pharmacogenes Are Enriched for Adaptive Signatures 
	In Silico Model Development 
	Comparison with Existing Methods 
	Annotation Trends in PGx Variant Prediction 
	Allele Frequency Trends in PGx Variant Prediction 

	Discussion 
	Conclusions 
	References

