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Felsenstein’s bootstrap approach is widely used to assess 
confidence in species relationships inferred from multiple 
sequence alignments. It resamples sites randomly with 
replacement to build alignment replicates of the same size as 
the original alignment and infers a phylogeny from each rep-
licate dataset. The proportion of phylogenies recovering the 
same grouping of species is its bootstrap confidence limit. 
However, standard bootstrap imposes a high computational 
burden in applications involving long sequence alignments. 
Here, we introduce the bag of little bootstraps approach to 
phylogenetics, bootstrapping only a few little samples, each 
containing a small subset of sites. We report that the median-
bagging of bootstrap confidence limits from little samples 
produces confidence in inferred species relationships similar 
to standard bootstrap but in a fraction of the computational 
time and memory. Therefore, the little bootstraps approach 
can potentially enhance the rigor, efficiency and paralleliza-
tion of big data phylogenomic analyses.

Felsenstein’s bootstrap resampling approach1 (standard BS) is 
being applied to increasingly larger datasets in molecular phylo-
genetics due to the widespread accessibility of genome sequence 
databases and the assembly of multispecies and multigene align-
ments containing hundreds of thousands of bases2–4. These large 
datasets have the power to reconstruct hard-to-resolve evolutionary 
relationships with high confidence4–14. However, they impose oner-
ous computational demands, because the computational complex-
ity of phylogenomic analyses using the maximum likelihood (ML) 
method increases exponentially with the number of sequences 
and linearly with sequence length15 (Fig. 1b). Consequently, stan-
dard BS can require a large amount of computer memory and take 
days to complete for big datasets4,15. Many heuristics moderate the 
escalation due to the increasing number of sequences15,16, but none 
focuses on relieving the onerous computational burden imposed by 
an increase in sequence length due to the widespread adoption of 
next-generation sequencing methods.

In this Brief Communication, we introduce the bag of little 
bootstraps17 (little BS) to place confidence limits on molecular 
phylogenies. In the little BS approach, bootstrapping is performed 
independently on s little samples, each containing l sites sampled 
randomly (with or without replacement) from the full dataset con-
sisting of L sites (l ≪ L). The bootstrap confidence limit for a group 
of sequences (bcli) is estimated for each little dataset i by generat-
ing r bootstrap phylogenies. Each bootstrap phylogeny is inferred 
from the bootstrap replicate dataset that contains L sites sampled 
with replacement from little subsamples (Fig. 1a). Because l ≪ L, the 
same site is selected many times (upsampling) to build the bootstrap 
replicate dataset in the little BS approach (Fig. 1a and Extended 
Data Fig. 1). Then, the bootstrap confidence limit (B̂CL) for a given 

group of species is derived from s little sample bcl values, a proce-
dure referred to as bagging. The average of s little sample bcl values, 
called mean-bagging (B̂CL =

1
s

s∑

i=1
bcli), was found to work well17.

In the little BS approach, every site of the little sample is included 
L/l times, on average, in a bootstrap replicate dataset, so they have 
the same number of sites as the full dataset. The upsampling has 
desirable asymptotic theoretical properties17 and obviates the ad hoc 
corrections needed in other divide-and-conquer approaches18. As 
the computational burden of ML phylogeny estimation is propor-
tional to the number of distinct site configurations, time and mem-
ory requirements for analyzing a little BS replicate dataset is of order 
O(L/l) needed for a standard BS replicate (Fig. 1b). Kleiner et al.17 
have suggested the use of little samples of size l = Lg (0.5 < g < 1.0; g,  
power factor), which can reduce time and memory by orders of 
magnitude. In phylogenomics, these savings can be substantial and 
remain low as the length of the sequence alignment increases from 
thousands to millions of sites (Fig. 1b and Extended Data Fig. 2).

We first present ML phylogenetic analysis of a computer-simulated 
alignment containing 446 species and 134,131 sites (Methods). We 
conducted 100 standard BS replicates, an ad hoc convention adopted 
in many studies to make calculations feasible19. It required 6.1 GB 
of memory and 13.1 central process unit (CPU) hours per replicate 
(54 CPU days of total computation). These analyses established all the 
true evolutionary relationships among sequences with very high con-
fidence (BCL ≥ 95%). For this dataset, we generated 10 little samples 
(s = 10) containing l = L0.7 sites (3,884 sites) and analyzed 10 bootstrap 
datasets for each little sample (r = 10). ML phylogeny inference of each 
little dataset required ~0.3 GB of RAM and ~0.6 h, a 95% reduction in 
memory and time compared to standard BS. Several little BS datasets 
could be run concurrently on a multicore desktop with 8 GB of RAM, 
unlike the standard BS analyses, which took up almost all the memory 
for estimating the ML phylogeny for one replicate dataset.

However, little BS with mean-bagging did not produce 
B̂CL ≥ 95% for 32 species groups (7.2% false negatives). These 32 
species groups were connected with relatively short branches, and 
their confidence limits were underestimated by as much as 24% 
(Fig. 1c). We found that the distribution of little sample bcl values 
was skewed (Fig. 1d), making the mean unsuitable for measuring 
the central tendency. We explored the use of the median because it is 
more resilient to outliers20, and median-bagging is expected to have 
the same statistical properties as those established for mean-bag-
ging17. However, median-bagging seems not to have been applied 
previously for the bag of little BS.

Median-bagging eliminated 31 false negatives, and the remain-
ing species group received B̂CL = 90% (Fig. 1c). The average 

B̂CL at every branch length threshold was greater than 95% for  
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median-bagging, but not for mean-bagging (Fig. 1e). We con-
firmed the improvement offered by median-bagging for a greater 
range of BCL values by analyzing three gene-specific sequence  

alignments (4,000 < L < 10,000, 446 species; Fig. 1f). Median-
bagging performed much better, because the distribution of bcl 
values was skewed and contained many outliers for each dataset  
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Fig. 1 | The little BS approach and analyses of simulated and empirical phylogenomic datasets. a, Steps in the little BS approach. Shaded boxes represent 
sequence alignments, with width representing the sequence length (see main text for a detailed description and Extended Data Fig. 1 for a comparison 
with Felsentein’s standard BS approach). b, Time and memory savings per replicate of little BS (open circles) compared to the standard BS (filled circles) 
for a large simulated dataset containing 446 sequences of 50,000 to 536,534 bases. c, The relationship of branch lengths and B̂CL produced by little BS 
with mean-bagging (orange) and median-bagging (blue) for l = L0.7. The x axis is restricted to a branch length of 0.04 because B̂CL = 100% for longer 
branches. d, The distribution of bcli for 53 species groups that received B̂CL < 100% in the little BS analysis with mean-bagging of the large dataset.  
e, The average B̂CL for all the species groups connected to the phylogeny with a given cutoff branch length (x axis). The x axis is restricted to 0.02 because 
the performance does not change any further. f, The relationship of standard BS (BCL) and little BS (B̂CL) with mean-bagging and median-bagging for 
datasets smaller than 10,000 sites (l = L0.9). The gray line shows the 1:1 relationship with the standard BS. The linear regression slope is 0.97 (R2 = 0.93) for 
median-bagging and 0.89 (R2 = 0.89) for mean-bagging. g, The distribution of little sample bcl for species groups in smaller datasets for which standard 
BS BCL ≥ 95% (black bars = 9,359 sites, gray bars = 7,002 sites and white bars = 4,070 sites). h, The true positive rates (TPRs) for little BS with mean- and 
median-bagging compared to other phylogenomic subsampling (PS) approaches (PS and PSR with mean and with median) in which upsampling was not 
applied (Methods).
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(Fig. 1g). Also, the false-negative rates of phylogenomic subsampling 
approaches were higher when upsampling or median-bagging were 
not used (Fig. 1h). We found that little BS needed smaller samples of 
sites for empirical datasets with larger numbers of unique site con-
figurations per sequence (C/S; Table 1 and Extended Data Fig. 3).  
Therefore, little BS with median-bagging achieves higher accuracy 
by overcoming the deficiency of mean-bagging and traditional 
divide-and-conquer approaches.

For practical applications of little, BS we developed a simple, 
automated protocol to tune key parameters (g, s and r; Methods). 
Its application to the 446 × 134,131 dataset confirmed all correct 
species groups (B̂CL = 100%; g = 0.8, s = 4 and r = 6). We applied 
the automated protocol to analyze empirical sequence alignments 
(Table 1). We also generated standard errors (s.e.) of B̂CL estimates 
during the little BS analysis in which little samples and replicate 
phylogenies were resampled with replacement (Methods). High 
precision (low s.e.) for B̂CL was achieved even when using small s 
and r, because B̂CL values were generally high for most of the spe-
cies groupings in long sequence alignments (Table 1 and Extended 
Data Fig. 4).

Next, we evalulated the performance of little BS for empirical 
datasets. The accuracy of little BS with median-bagging was excel-
lent in these analyses (Table 1). The true positive rate (TPR) at 
B̂CL ≥ 95% was greater than 95% for six datasets and 90% for the 
other four (Table 1). The phylogeny-wide average B̂CL was close 
to that from standard BS BCL, as the average difference was only 
0.1%, achieved by analyzing little samples containing only a fraction 
of sites (Table 1). The computation time was in minutes to hours 
per little dataset (Table 1). For example, the little BS analysis of the 
mammalian dataset required 0.1 GB per replicate, on average, rather 
than 3.1 GB of RAM (~29-fold memory savings) and 0.32 CPU 
hours rather than 9.8 CPU hours per bootstrap replicate (31-fold 
time efficiency). These savings enabled multiple concurrent little BS 
replicates on a standard multicore personal desktop equipped with 
a modest memory (8 GB). A similar pattern was seen for the other 
nine empirical datasets (Table 1).

We also evaluated little BS (LBS) performance by combining it 
with Ultrafast bootstrap16 (UFB). UFB makes standard bootstrap-
ping faster for a large number of sequences. For the mammalian 
dataset, LBS + UFB required only 50 min (0.2 GB of RAM) on a 
computer with five cores when using 10 little samples (r = 1,000, 
default in IQTREE16,21). This was much faster and leaner than using 
only one of the optimizations: UFB alone required 4.5 h and 7.1 GB 
of RAM, whereas LBS alone needed 19.8 h and 0.1 GB of RAM. 
Therefore, plugging in the UFB optimization for generating sample-
wise bcl values further increases memory and time savings. In the 
future, we expect little BS to be used along with other efficient heu-
ristics developed to speed up bootstrap calculations15,16. One may 
also use Transfer Bootstrap22 when estimating confidence limits.

However, users need to ensure that sufficiently large little sam-
ples are utilized in the little BS approach. We recommend using the 
automatic pipeline to selecting key parameters for little BS analysis 
(g, s and r). In addition, it will be prudent to inspect the s.e. values 
reported and reconfirm high B̂CLs associated with large values of 
s.e. (low precision) by conducting additional little BS analysis with a 
larger number of sites in little samples as well as more little samples 
and larger number of bootstrap replicates.

In conclusion, the little BS approach can help break the bottle-
neck created by the rise of large genomic datasets assembled from 
burgeoning sequence databases. It can enable parallelization, 
even with modest computational resources, and promote greater 
reproducibility and scientific rigor in building the tree of life that 
requires assessing the robustness of inferences to selecting bio-
logically distinct subsets of data, choice of substitution models and 
strategies, and application of a myriad of ways of combining mul-
tigene datasets.Ta
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Methods
Simulated and empirical sequence data assembly. We analyzed multigene 
alignments assembled from a collection of simulated datasets analyzed 
previously23,24. These were generated using an evolutionary tree of 446 species 
and a wide range of biologically realistic parameter values derived from hundreds 
of empirical gene sequence alignments, including sequence length (445–4,439 
bases), G+C content (39–82%), transition/transversion rate ratio (1.9–6.0) and 
genewise evolutionary rates (1.35 to 2.60 × 10−6 per site per billion years)23. 
Evolutionary rates were also heterogeneous across lineages, simulated for each 
gene independently under autocorrelated and uncorrelated rate models23,24. 
Simulated alignments of 100 genes that evolved with the autocorrelated rate model 
were concatenated to form the 446 × 134,131 (species × bases) dataset. A bigger 
446 × 536,524 sequence alignment was generated by concatenating sequence 
alignments generated by concatenating 100 randomly selected gene alignments 
from each of the four different lineage rate variation models simulated24. Three 
smaller datasets were analyzed, corresponding to individual simulated genes 
(446 × 4,070, 446 × 7,002 and 446 × 9,359 bases).

Ten empirical datasets were also analyzed. These DNA alignments consisted of 
sequences from Eutherian mammals14, butterflies7, plants (A6 and B10), insects (A11, 
B12 and C5), spiders (A9 and B8) and birds13 (Table 1). The number of species ranged 
from 16 to 193, and the number of sites ranging from 61,794 to 5,267,461. We used 
the phylogenetic trees (ML trees) presented in the original studies as the reference 
trees for empirical datasets. The ground truth for little BS confidence limits were 
the standard BS confidence limits reported in the published articles.

Standard and little BS analyses. We used the IQTREE software21 with a general 
time-reversible nucleotide substitution model with gamma-distributed rate 
variation (GTR+Γ) and default ML search parameters. One hundred replicates of 
standard bootstrap analyses were conducted to generate BCL values, all of which 
were very high for the large datasets analyzed. For three single-gene datasets, 
1,000 bootstrap replicates were used to generate stable BCL values. The confidence 
limits obtained using the standard bootstrap analyses were the ground truth in 
our analyses, as the bag of little BS is being investigated as a computationally 
efficient alternate. The true tree used in computer simulations was the reference 
in the analysis of simulated datasets. The bootstrap confidence limits presented 
in the published phylogenies were used as references for the empirical datasets 
analyzed. The parameters of the little BS analyses for these datasets were selected 
using the protocol presented below. We also applied the UFB16 on the mammal 
dataset using the (GTR+Γ) model in IQTREE with the default option of 1,000 
replicates. For little BS analysis, the UFB with the same options was carried out for 
each little dataset directly to estimate the required time and memory. These are 
approximate estimates, because IQTREE does not have a provision for upsampling 
when generating bootstrap replicate datasets. The reported estimates are expected 
to be very close to the actual time estimates because IQTREE compresses identical 
site configurations during ML calculations, and upsampling only alters site 
configurations’ frequencies.

Automatic selection of the little BS parameters. Our procedure automatically 
determines the size of the sample (g), the number of samples (s) and the number 
of bootstrap replicates (r). The procedure starts with g = 0.7 if the sequence 
alignment contains ≥100,000 unique site configuration (such that l < 50,000); 
otherwise, we set g = 0.8. One may set any starting or fixed value of g. In step 1, 
we conduct little BS with s = 3 and r = 3 to generate initial B̂CL for all the nodes 
in the given phylogeny (if provided) or from a majority rule bootstrap consensus 
tree. Using these values, we generate average B̂CL (Av) and the fraction of inferred 
tree partitions with B̂CL ≥ 95% (Nv). Through an iterative process, we stabilize 
and maximize both Av and Nv, as follows. In step 2, we add one little BS replicate 
to each subsample (that is, r increases by 1) and then compute Av. We repeat steps 
2 and 3 by increasing r until the difference in successive Av values is less than 
0.1% (or a user-specified threshold, δr). In step 4, we increase s by 1 and generate 
r additional replicate datasets and phylogenies, and compute Av and Nv. If the 
difference between Av for the current (s) and the previous (s − 1) sets of subsamples 
is greater than 1% (or user-specified δs), then we repeat step 4. In step 5, we check 
and see if Nv is less than 100% or the user-specified precision (s.e.) of estimated 
B̂CL ≥ 95% is too high (>5%). If so, we increase the little subsample size by l and 
restart the analysis from step 2. In step 6, we go to step 4 if the s.e. has not been 
achieved.

Estimating the s.e. of B̂CLs. Given r bootstrap replicate phylogenies for s samples, 
we employ a bootstrap procedure to generate the s.e. of B̂CL. We use already 
computed phylogenies of r × s little BS replicates and derive B̂CL for all the nodes 
from collections of phylogenies by resampling s samples with replacement and 
r replicates with replacement every time a subsample is selected. This process 
is repeated 100 times, and the standard deviation of each tree partition’s B̂CL is 
generated to estimate its s.e. This process is extremely fast because precomputed 
phylogenies are used.

Phylogenomic subsampling approaches without upsampling. We also generated 
B̂CL values by a little BS procedure in which upsampling was replaced by the 

standard BS resampling such that the replicate datasets contained only l sites rather 
than L sites. We refer to this as the phylogenomic subsampling with resampling 
(PSR) approach. For PSR, one may use either mean- or median-bagging. We also 
generated B̂CLs without any resampling or upsampling (that is, r = 0) such that 
the ML phylogenies were inferred from s subsample datasets containing l sites 
each. We call this the phylogenomic subsampling (PS) approach. We compared the 
true positive rates (B̂CL ≥ 95%) of the little BS, PSR and PS approaches for the 
computer-simulated 446 × 134,131 dataset (g = 0.7) For all analyses, 100 replicate 
phylogenies were generated by using s = 10 and r = 10 for little BS and PSR, and 
s = 100 for the PS approach.

Analysis pipeline for little BS. We developed an R25 pipeline to conduct little 
BS analysis by using IQTREE. In this case, we used the Biostrings26 package to 
generate little datasets of the specified lengths (l) and then bootstrap replicate 
datasets in which L sites were resampled with replacement from l sites. The 
resulting datasets were used to obtain ML phylogenies that were summarized by 
using the function plotBS from the phangorn27 library that produced the bcl for 
each of the phylogenetic groups in the standard BS phylogeny. Mean- and median-
bagging estimates were obtained from samplewise bcls from s little samples using a 
customized function in R. We used 10 samples and 10 bootstrap replicates for little 
BS analysis for concatenated gene datasets, and 50 little samples and 20 bootstrap 
replicates for single-gene datasets. We applied the automated protocol using a 
customized R function. We also developed a customized R function for estimating 
the s.e. values of B̂CLs.

Data availability
All simulated DNA sequence alignments containing 446 taxa were obtained from 
published research articles23,24. Ten empirical datasets from a variety of species 
have been analyzed. These DNA sequence alignments consisted of sequences from 
Eutherian mammals14, butterflies7, plants (A6 and B10), insects (A11, B12 and C5), 
spiders (A9 and B8) and birds13. All empirical and simulated datasets analyzed in 
this paper are available in an online repository28. Source data are provided with 
this paper.

Code availability
R codes are available from https://github.com/ssharma2712/Little-Bootstraps. A 
capsule containing source codes and datasets for our analyses is available on the 
CodeOcean service29. Users can replicate the little bootstraps sampling and bagging 
steps in this capsule.
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Extended Data Fig. 1 | A comparison of the standard and little bootstrap approaches. Steps of (a) the standard phylogeny bootstrap and (b) the little 
bootstraps (BS) approach. Shaded boxes represent sequence alignments, with width representing sequence length. In standard BS, L sites are randomly 
sampled with replacement from the original dataset containing L sites. In this resampling process, ~63.2% of the data points17,30 are expected to be 
represented in a bootstrap replicate dataset. Each replicate dataset is compressed into weighted resamples that contain only distinct site configurations 
and a vector of their counts (represented by stacks of dots). An ML tree is inferred from each replicate dataset, and the BCL for a species group is the 
proportion of times that appeared in bootstrap replicate phylogenies. In little BS, L sites are randomly sampled with replacement from the little dataset 
consisting of only l = Lg sites, which produces bootstrap replicate datasets. Because l ≪ L, each site will be represented many times in the little bootstraps 
replicate datasets, which we refer to as upsampling that changes the frequency of unique site configurations. Stacks of dots are much higher for little BS 
due to upsampling than standard BS that involves only resampling. The number of distinct site configurations in the upsampled dataset is smaller than in 
the standard bootstrap replicate dataset because of l ≪ L.
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Extended Data Fig. 2 | The number of sites used in little and standard bootstrap replicates. The proportion of sites included in the little bootstrap 
replicates for little datasets with l = L0.7 (open circles) and standard bootstrap (closed circles). The choice of l = L0.7 offers increasingly greater 
computational savings for longer sequences because of a decreasing proportion of sites included in the little samples. For example, the standard bootstrap 
replicates always contain approximately 63%30 of the site configurations from the full datasets. But, the little dataset size is ~3.1% of the original alignment 
for L = 100,000 bases, but it decreases to ~1.6% when L increases 10-fold (1,000,000 bases).
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Extended Data Fig. 3 | Patterns of unique site configurations per sequence and little sample size. The relationship of the number of unique site 
configurations per sequence (C/S, log-transformed) and little sample size selected (power factor, g) (R2 = 0.76).
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Extended Data Fig. 4 | Precision of little bootstrap confidence limits. The relationship between little BS B̂CLs and their precision (standard errors) for the 
selected little BS parameters. The standard errors are inversely related to little bootstrap confidence limits (R2 = 0.59).
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