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Fast and accurate bootstrap confidence limits on
genome-scale phylogenies using little bootstraps
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Felsenstein's bootstrap approach is widely used to assess
confidence in species relationships inferred from multiple
sequence alignments. It resamples sites randomly with
replacement to build alignment replicates of the same size as
the original alignment and infers a phylogeny from each rep-
licate dataset. The proportion of phylogenies recovering the
same grouping of species is its bootstrap confidence limit.
However, standard bootstrap imposes a high computational
burden in applications involving long sequence alignments.
Here, we introduce the bag of little bootstraps approach to
phylogenetics, bootstrapping only a few little samples, each
containing a small subset of sites. We report that the median-
bagging of bootstrap confidence limits from little samples
produces confidence in inferred species relationships similar
to standard bootstrap but in a fraction of the computational
time and memory. Therefore, the little bootstraps approach
can potentially enhance the rigor, efficiency and paralleliza-
tion of big data phylogenomic analyses.

Felsenstein’s bootstrap resampling approach' (standard BS) is
being applied to increasingly larger datasets in molecular phylo-
genetics due to the widespread accessibility of genome sequence
databases and the assembly of multispecies and multigene align-
ments containing hundreds of thousands of bases’™*. These large
datasets have the power to reconstruct hard-to-resolve evolutionary
relationships with high confidence’*. However, they impose oner-
ous computational demands, because the computational complex-
ity of phylogenomic analyses using the maximum likelihood (ML)
method increases exponentially with the number of sequences
and linearly with sequence length' (Fig. 1b). Consequently, stan-
dard BS can require a large amount of computer memory and take
days to complete for big datasets*'*. Many heuristics moderate the
escalation due to the increasing number of sequences'>'¢, but none
focuses on relieving the onerous computational burden imposed by
an increase in sequence length due to the widespread adoption of
next-generation sequencing methods.

In this Brief Communication, we introduce the bag of little
bootstraps'” (little BS) to place confidence limits on molecular
phylogenies. In the little BS approach, bootstrapping is performed
independently on s little samples, each containing I sites sampled
randomly (with or without replacement) from the full dataset con-
sisting of L sites (I << L). The bootstrap confidence limit for a group
of sequences (bcl,) is estimated for each little dataset i by generat-
ing r bootstrap phylogenies. Each bootstrap phylogeny is inferred
from the bootstrap replicate dataset that contains L sites sampled
with replacement from little subsamples (Fig. 1a). Because [ < L, the
same site is selected many times (upsampling) to build the bootstrap
replicate dataset in the little BS approach (Fig. 1a_and Extended
Data Fig. 1). Then, the bootstrap confidence limit (BCL) for a given

group of species is derived from s little sample bcl values, a proce-
dure referred to as bagging. The average of s little sample bcl values,

called mean-bagging (BCL = % ZS: bel;), was found to work well"”.

In the little BS approach, ever;l slite of the little sample is included
L/l times, on average, in a bootstrap replicate dataset, so they have
the same number of sites as the full dataset. The upsampling has
desirable asymptotic theoretical properties'” and obviates the ad hoc
corrections needed in other divide-and-conquer approaches'. As
the computational burden of ML phylogeny estimation is propor-
tional to the number of distinct site configurations, time and mem-
ory requirements for analyzing a little BS replicate dataset is of order
O(L/l) needed for a standard BS replicate (Fig. 1b). Kleiner et al."”
have suggested the use of little samples of size [=L¢ (0.5<g<1.0; g,
power factor), which can reduce time and memory by orders of
magnitude. In phylogenomics, these savings can be substantial and
remain low as the length of the sequence alignment increases from
thousands to millions of sites (Fig. 1b and Extended Data Fig. 2).

We first present ML phylogenetic analysis of a computer-simulated
alignment containing 446 species and 134,131 sites (Methods). We
conducted 100 standard BS replicates, an ad hoc convention adopted
in many studies to make calculations feasible”. It required 6.1GB
of memory and 13.1 central process unit (CPU) hours per replicate
(54 CPU days of total computation). These analyses established all the
true evolutionary relationships among sequences with very high con-
fidence (BCL>95%). For this dataset, we generated 10 little samples
(s=10) containing [=L°" sites (3,884 sites) and analyzed 10 bootstrap
datasets for each little sample (r=10). ML phylogeny inference of each
little dataset required ~0.3 GB of RAM and ~0.6h, a 95% reduction in
memory and time compared to standard BS. Several little BS datasets
could be run concurrently on a multicore desktop with 8 GB of RAM,
unlike the standard BS analyses, which took up almost all the memory
for estimating the ML phylogeny for one replicate dataset.
__However, little BS with mean-bagging did not produce
BCL > 95% for 32 species groups (7.2% false negatives). These 32
species groups were connected with relatively short branches, and
their confidence limits were underestimated by as much as 24%
(Fig. 1c). We found that the distribution of little sample bcl values
was skewed (Fig. 1d), making the mean unsuitable for measuring
the central tendency. We explored the use of the median because it is
more resilient to outliers”, and median-bagging is expected to have
the same statistical properties as those established for mean-bag-
ging'”. However, median-bagging seems not to have been applied
previously for the bag of little BS.

Median-bagging eliminated 31 false negatives, and the remain-

ing species group received BCL = 90% (Fig. 1c). The average
BCL at every branch length threshold was greater than 95% for
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Fig. 1| The little BS approach and analyses of simulated and empirical phylogenomic datasets. a, Steps in the little BS approach. Shaded boxes represent
sequence alignments, with width representing the sequence length (see main text for a detailed description and Extended Data Fig. 1 for a comparison
with Felsentein’s standard BS approach). b, Time and memory savings per replicate of little BS (open circles) compared to the stggdard BS (filled circles)
for a large simulated dataset containing 446 sequences of 50,000 to 536,534 bases. ¢, The relationship of branch lengths and/BEL produced by little BS
with mean-bagging (orange) and median-bagging (blue) for I=L%". The x axis is restricted to a branch length of 0.04 because BCL = 100% for longer
branches. d, The/\distribution of bel; for 53 species groups that received BCL < 100% in the little BS analysis with mean-bagging of the large dataset.

e, The average BCL for all the species groups connected to the phylogeny with a given cutoff branch Igﬁgth (x axis). The x axis is restricted to 0.02 because
the performance does not change any further. f, The relationship of standard BS (BCL) and little BS (BCL) with mean-bagging and median-bagging for
datasets smaller than 10,000 sites (/=L°). The gray line shows the 1:1 relationship with the standard BS. The linear regression slope is 0.97 (R?=0.93) for
median-bagging and 0.89 (R?=0.89) for mean-bagging. g, The distribution of little sample bcl for species groups in smaller datasets for which standard
BS BCL>95% (black bars=9,359 sites, gray bars =7,002 sites and white bars=4,070 sites). h, The true positive rates (TPRs) for little BS with mean- and
median-bagging compared to other phylogenomic subsampling (PS) approaches (PS and PSR with mean and with median) in which upsampling was not
applied (Methods).

median-bagging, but not for mean-bagging (Fig. le). We con- alignments (4,000<L<10,000, 446 species; Fig. 1f). Median-
firmed the improvement offered by median-bagging for a greater =~ bagging performed much better, because the distribution of bcl
range of BCL values by analyzing three gene-specific sequence values was skewed and contained many outliers for each dataset
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Methods

Simulated and empirical sequence data assembly. We analyzed multigene
alignments assembled from a collection of simulated datasets analyzed
previously”***. These were generated using an evolutionary tree of 446 species
and a wide range of biologically realistic parameter values derived from hundreds
of empirical gene sequence alignments, including sequence length (445-4,439
bases), G+C content (39-82%), transition/transversion rate ratio (1.9-6.0) and
genewise evolutionary rates (1.35 to 2.60 X 107 per site per billion years)*.
Evolutionary rates were also heterogeneous across lineages, simulated for each
gene independently under autocorrelated and uncorrelated rate models**".
Simulated alignments of 100 genes that evolved with the autocorrelated rate model
were concatenated to form the 446 X 134,131 (species X bases) dataset. A bigger
446 % 536,524 sequence alignment was generated by concatenating sequence
alignments generated by concatenating 100 randomly selected gene alignments
from each of the four different lineage rate variation models simulated*!. Three
smaller datasets were analyzed, corresponding to individual simulated genes

(446 % 4,070, 446 X 7,002 and 446 X 9,359 bases).

Ten empirical datasets were also analyzed. These DNA alignments consisted of
sequences from Eutherian mammals', butterflies’, plants (A° and B'), insects (A",
B'*and C°), spiders (A’ and B®) and birds'* (Table 1). The number of species ranged
from 16 to 193, and the number of sites ranging from 61,794 to 5,267,461. We used
the phylogenetic trees (ML trees) presented in the original studies as the reference
trees for empirical datasets. The ground truth for little BS confidence limits were
the standard BS confidence limits reported in the published articles.

Standard and little BS analyses. We used the IQTREE software’' with a general
time-reversible nucleotide substitution model with gamma-distributed rate
variation (GTR+T") and default ML search parameters. One hundred replicates of
standard bootstrap analyses were conducted to generate BCL values, all of which
were very high for the large datasets analyzed. For three single-gene datasets,
1,000 bootstrap replicates were used to generate stable BCL values. The confidence
limits obtained using the standard bootstrap analyses were the ground truth in
our analyses, as the bag of little BS is being investigated as a computationally
efficient alternate. The true tree used in computer simulations was the reference
in the analysis of simulated datasets. The bootstrap confidence limits presented

in the published phylogenies were used as references for the empirical datasets
analyzed. The parameters of the little BS analyses for these datasets were selected
using the protocol presented below. We also applied the UFB'® on the mammal
dataset using the (GTR+I") model in IQTREE with the default option of 1,000
replicates. For little BS analysis, the UFB with the same options was carried out for
each little dataset directly to estimate the required time and memory. These are
approximate estimates, because IQTREE does not have a provision for upsampling
when generating bootstrap replicate datasets. The reported estimates are expected
to be very close to the actual time estimates because IQTREE compresses identical
site configurations during ML calculations, and upsampling only alters site
configurations’ frequencies.

Automatic selection of the little BS parameters. Our procedure automatically
determines the size of the sample (g), the number of samples (s) and the number
of bootstrap replicates (r). The procedure starts with g=0.7 if the sequence
alignment contains >100,000 unique site configuration (such that /< 50,000);
otherwise, we set g=0.8. One may set any starting or fixed Value ofg. Instep 1,

we conduct little BS with s=3 and r=3 to generate initial BCL for all the nodes

in the given phylogeny (if provided) or from a majority rule bootstrap consensus
tree. Using these values, we generate average BCL (Av) and the fraction of inferred
tree partitions with BCL > 95% (Nv). Through an iterative process, we stabilize
and maximize both Av and Nv, as follows. In step 2, we add one little BS replicate
to each subsample (that is, r increases by 1) and then compute Av. We repeat steps
2 and 3 by increasing r until the difference in successive Av values is less than
0.1% (or a user-specified threshold, &,). In step 4, we increase s by 1 and generate

r additional replicate datasets and phylogenies, and compute Av and Nv. If the
difference between Av for the current (s) and the previous (s— 1) sets of subsamples
is greater than 1% (or user-specified &;), then we repeat step 4. In step 5, we check
and see if Nv is less than 100% or the user-specified precision (s.e.) of estimated
BCL > 95% is too high (>5%). If so, we increase the little subsample size by / and
restart the analysis from step 2. In step 6, we go to step 4 if the s.e. has not been
achieved.

Estimating the s.e. of BCLs. Given r bootstrap replicate phylogenies for s samples,
we employ a bootstrap procedure to generate the s.e. of BCL. We use already
computed phylogenies of rX s little BS replicates and derive BCL for all the nodes
from collections of phylogenies by resampling s samples with replacement and

r replicates with replacement every time a subsample is selected. This process

is repeated 100 times, and the standard deviation of each tree partition’s BCL is
generated to estimate its s.e. This process is extremely fast because precomputed
phylogenies are used.

Phylogenomic subsampling approaches without upsampling. We also generated
BCL values by a little BS procedure in which upsampling was replaced by the

standard BS resampling such that the replicate datasets contained only I sites rather
than L sites. We refer to this as the phylogenomic subsampling with resampling
(PSR) approach. For PSR, one may use either mean- or median-bagging. We also
generated BCLs without any resampling or upsampling (that is, r=0) such that

the ML phylogenies were inferred from s subsample datasets containing [ sites
each. We call this the phylogenomic subsampling (PS) approach. We compared the
true positive rates (BCL > 95%) of the little BS, PSR and PS approaches for the
computer-simulated 446 X 134,131 dataset (g=0.7) For all analyses, 100 replicate
phylogenies were generated by using s=10 and r= 10 for little BS and PSR, and
$=100 for the PS approach.

Analysis pipeline for little BS. We developed an R* pipeline to conduct little

BS analysis by using IQTREE. In this case, we used the Biostrings® package to
generate little datasets of the specified lengths (I) and then bootstrap replicate
datasets in which L sites were resampled with replacement from [ sites. The
resulting datasets were used to obtain ML phylogenies that were summarized by
using the function plotBS from the phangorn® library that produced the bcl for
each of the phylogenetic groups in the standard BS phylogeny. Mean- and median-
bagging estimates were obtained from samplewise bcls from s little samples using a
customized function in R. We used 10 samples and 10 bootstrap replicates for little
BS analysis for concatenated gene datasets, and 50 little samples and 20 bootstrap
replicates for single-gene datasets. We applied the automated protocol using a
customized R function. We also developed a customized R function for estimating
the s.e. values of BCLs.

Data availability

All simulated DNA sequence alignments containing 446 taxa were obtained from
published research articles***'. Ten empirical datasets from a variety of species
have been analyzed. These DNA sequence alignments consisted of sequences from
Eutherian mammals', butterflies’, plants (A° and B'), insects (A'!, B> and C°),
spiders (A’ and B®) and birds". All empirical and simulated datasets analyzed in
this paper are available in an online repository*. Source data are provided with
this paper.

Code availability

R codes are available from https://github.com/ssharma2712/Little-Bootstraps. A
capsule containing source codes and datasets for our analyses is available on the
CodeOcean service”. Users can replicate the little bootstraps sampling and bagging
steps in this capsule.
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Extended Data Fig. 1| A comparison of the standard and little bootstrap approaches. Steps of (a) the standard phylogeny bootstrap and (b) the little
bootstraps (BS) approach. Shaded boxes represent sequence alignments, with width representing sequence length. In standard BS, L sites are randomly
sampled with replacement from the original dataset containing L sites. In this resampling process, ~63.2% of the data points'’*° are expected to be
represented in a bootstrap replicate dataset. Each replicate dataset is compressed into weighted resamples that contain only distinct site configurations
and a vector of their counts (represented by stacks of dots). An ML tree is inferred from each replicate dataset, and the BCL for a species group is the
proportion of times that appeared in bootstrap replicate phylogenies. In little BS, L sites are randomly sampled with replacement from the little dataset
consisting of only | = L sites, which produces bootstrap replicate datasets. Because | < L, each site will be represented many times in the little bootstraps
replicate datasets, which we refer to as upsampling that changes the frequency of unique site configurations. Stacks of dots are much higher for little BS
due to upsampling than standard BS that involves only resampling. The number of distinct site configurations in the upsampled dataset is smaller than in
the standard bootstrap replicate dataset because of | < L.
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Extended Data Fig. 2 | The number of sites used in little and standard bootstrap replicates. The proportion of sites included in the little bootstrap
replicates for little datasets with | = L% (open circles) and standard bootstrap (closed circles). The choice of | = L7 offers increasingly greater
computational savings for longer sequences because of a decreasing proportion of sites included in the little samples. For example, the standard bootstrap
replicates always contain approximately 63%° of the site configurations from the full datasets. But, the little dataset size is ~3.1% of the original alignment
for L=100,000 bases, but it decreases to ~1.6% when L increases 10-fold (1,000,000 bases).
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Extended Data Fig. 3 | Patterns of unique site configurations per sequence and little sample size. The relationship of the number of unique site
configurations per sequence (C/S, log-transformed) and little sample size selected (power factor, g) (R? = 0.76).
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Extended Data Fig. 4 | Precision of little bootstrap confidence limits. The relationship between little BS BCLs and their precision (standard errors) for the
selected little BS parameters. The standard errors are inversely related to little bootstrap confidence limits (R? = 0.59).
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