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Abstract
The selection of the optimal substitution model of molecular evolution imposes a high computational burden for 
long sequence alignments in phylogenomics. We discovered that the analysis of multiple tiny subsamples of site pat
terns from a full sequence alignment recovers the correct optimal substitution model when sites in the subsample 
are upsampled to match the total number of sites in the full alignment. The computational costs of maximum-like
lihood analyses are reduced by orders of magnitude in the subsample–upsample (SU) approach because the up
sampled alignment contains only a small fraction of all site patterns. We present an adaptive protocol, 
ModelTamer, that implements the new SU approach and automatically selects subsamples to estimate optimal mod
els reliably. ModelTamer selects models hundreds to thousands of times faster than the full data analysis while need
ing megabytes rather than gigabytes of computer memory.
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Introduction
Mathematical substitution models of evolutionary rates 
between molecular bases and among sites in a multiple se
quence alignment (MSA) are among the most fundamen
tal descriptions of molecular evolution (Buckley and 
Cunningham 2002; Johnson and Omland 2004; Lemmon 
and Moriarty 2004; Kalyaanamoorthy et al. 2017; Abadi 
et al. 2020). These models have become invaluable in 
phylogenetic analyses to track pathogen origins (Boni 
et al. 2020) and spread (Li, Lai et al. 2021), reconstruct 
the evolutionary history of genes and species (Kim et al. 
2017), and determine the tempo and mode of evolution 
(Shen et al. 2018). Thousands of research articles report se
lecting the optimal substitution model (Darriba et al. 2012; 
Kalyaanamoorthy et al. 2017; Tamura et al. 2021) using 
Bayesian and other information criteria (Hurvich and 
Tsai 1989; Posada and Crandall 1998; Kalyaanamoorthy 
et al. 2017) to compare the Maximum-Likelihood (ML) 
fit of several nested and non-nested substitution models.

The computational needs of model selection analyses 
grow exponentially with the acquisition and assembly of 
increasingly longer sequence alignments (Kapli et al. 
2020; Sharma and Kumar 2021). For example, IQ-TREE’s 
ModelFinder (IQ-MF) needed 9.3 GB of computer memory 
(RAM) and more than four days of computing (CPU time) 
to evaluate 286 models needed to select the optimal sub
stitution model for concatenated DNA sequence align
ment from 37 mammals (L = 1,391,742 sites; hereafter 
1 Mbp dataset) (Song et al. 2012). This is because the 

computational costs are a function of the total count of 
unique site patterns (U ) in the whole alignment (fig. 1A) 
(Sharma and Kumar 2021). Partitioning the 1 Mbp dataset 
by codon positions also produced very long alignments 
(each >460,000 sites) that required more than 3.6 GB of 
RAM and 55 CPU hours of computing for model selection. 
In our survey of recently published articles using phyloge
nomics, we found that scientists routinely compare results 
from the analysis of both concatenated and partitioned 
datasets (Prasanna et al. 2020; Vasilikopoulos et al. 2020; 
Haelewaters et al. 2021; Li, Steenwyk et al. 2021). In these 
analyses, model selection for concatenated sequences 
and long partitions can require many hours of computing 
and up to gigabytes of computer memory (table 1).

Results
The Approach of Upsampling Sites From Subsamples
In the 1 Mbp dataset, the number of distinct site patterns 
(U = 775,579) is orders of magnitude larger than the num
ber of free parameters in the most complex substitution 
model evaluated by IQ-MF. From this observation, we hy
pothesized that a faction of site patterns (g) is likely suffi
cient to infer the optimal model reliably, that is g < 100%. If 
true, this property will enable computational efficiency of 
the order 1/g in both time and memory for ML analyses. To 
test this hypothesis, we empirically determined the smal
lest g that consistently produced the optimal substitution 
model identical to that selected using the full MSA by 
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using IQ-MF. We constructed 100 phylogenomic subsam
ples of the 1 Mbp dataset, each containing 1% of the un
ique site patterns (g = 1%). Subsamples were constructed 
by selecting sites randomly without replacement from 
the 1 Mbp alignment until the subsample contained g × 
U different site patterns. Before applying IQ-MF to this 
phylogenomic subsample, we expanded it by randomly 
upsampling its sites until the new alignment contained 
as many sites as the original MSA. Specifically, sites were 
selected randomly with replacement from the subsample 
until the total number of sites became the same as the 
full MSA (Kleiner et al. 2014; Sharma and Kumar 2021). 
Therefore, the subsample–upsample (SU) dataset con
tained 1,391,742 sites, equal to the number of sites in 
the 1 Mbp dataset. We surmised that an SU dataset would 
have statistical power similar to the full MSA’s in selecting 
the optimal model for large enough g. The proportion of 
SU datasets that produced the same optimal model as 
the full MSA is the accuracy of the SU approach for the gi
ven g. This accuracy was 100% for SU datasets with g = 1% 
when using IQ-MF for both SU and full MSA analyses.

The 1% SU dataset contains a small fraction of unique 
site patterns but has the same number of total sites as 
the full MSA. This means that every site pattern occurs 
many times in the SU dataset. Because the time and mem
ory needs of the ML analysis are a function of the number 
of unique site patterns rather than the total sequence 
length, the analysis of the 1% SU dataset was 100 times fas
ter and required proportionately less memory. On average, 
SU datasets utilized only 94 megabytes of peak RAM and 
1.4 CPU hours.

Minimum Subsample Size for Efficient Model 
Selection
Experimenting with phylogenomic subsamples of the 
1 Mbp dataset, we found that a high model selection ac
curacy could be achieved for even smaller subsamples 
(fig. 1B). Accuracies ≥99% were observed for g ≥ 0.5%, 
that is the minimum fraction of unique site patterns (gmin) 
needed to select an optimal model reliably for the 1 Mbp 
dataset was 0.5%. This analysis required only 42 megabytes 
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Fig. 1. Accuracy and computational resource required for model selection using the SU datasets. (A) Increase in computational time (dots) and 
memory (bars) for analyzing sequence alignment with increasing numbers of distinct site patterns (log scale) sampled from the 1 Mbp dataset. 
(B) The accuracy of model selection for subsampled–upsampled (SU) datasets for different fractions of unique site patterns (g) sampled from the 
1 Mbp dataset. The accuracy is the percentage of SU datasets for which the model selected was the same as that for the full MSA. The dotted line 
marks the point (gmin = 0.5%) at which the accuracy becomes 99%. (C ) Fold savings in computational time and memory were achieved in SU 
analysis of many large datasets for subsamples of size gmin at which the accuracy was at least 99% (table 1). (D) The power relationship between 
the number of total unique patterns (U) and the fraction of site patterns needed (gmin) for ≥ 99% accuracy in model selection.
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of peak RAM and was 130 times faster (0.81 vs. 106 CPU 
hours). In contrast, the analysis of subsamples without 
upsampling had a low accuracy (12%) for g = 0.5%. The 
performance of phylogenomic subsampling without up
sampling may not be improved through post hoc linear 
transformations of the information criteria (e.g., BIC) to 
account for the underrepresentation of the number of 
substitutions in the subsample because such linear adjust
ments may not change the relative ranks of the models 
tested.

Therefore, the upsampling procedure can overcome the 
analytical limitations of phylogenomic subsamples by 
achieving higher accuracy without increasing the computa
tional burden. This is because the numbers of unique site 
patterns are almost the same in datasets with and without 
upsampling, but the total number of evolutionary substitu
tions in the SU datasets was similar to that in the full MSAs 
for the 1 Mbp dataset (fig. 2A; ratio = 0.99). Also, the Lorenz 
curve and the Gini index for the SU dataset were similar to 
the full MSA (fig. 2B), showing that SU datasets recapture 
the pattern of information contents among the site pat
terns in the full MSA. This result suggests that the upsam
pling procedure ensures the inclusion of sufficient counts of 
different types of base substitutions to select the optimal 
model reliably. This was not the case for site subsamples 
without upsampling (ratio = 0.000003; fig. 2A), which re
sults in a lower accuracy than SU datasets (12% vs. 95%).

We estimated gmin for many large empirical datasets 
from diverse species (butterflies, insects, birds, and yeasts) 
to assess and measure the generality of the pattern ob
served for the 1 Mbp dataset (table 1). These MSAs con
tained 23–200 sequences and as many as 3.7 million 
distinct site patterns. For large datasets, accuracy ≥ 99% 
was achieved with gmin < 1%, saving >98% of computa
tional time and memory (table 1). For many of these data
sets, > 1,000× computational efficiency was achieved (fig. 
1C). Generally, gmin was smaller for longer sequence align
ments (fig. 1D; R2 = 0.92).

Adaptive Tool for Model Selection
We implemented the SU method into an adaptive tool 
(ModelTamer) that automatically determines the 

minimum g and selects the optimal model for use in em
pirical data analysis (fig. 2C). ModelTamer can be used with 
any method for selecting the optimal model, for example 
IQ-MF, jModelTest (Darriba et al. 2012), ModelTest-NG 
(Darriba et al. 2020), and MEGA-CC (Kumar et al. 2012). 
ModelTamer first calculates the initial fraction of site pat
terns (g0) to subsample, which is predicted using the rela
tionship between gmin and U shown in figure 1D. Then, it 
subsamples U × g0 unique site patternss by random sam
pling of sites without replacement from the full MSA. 
The SU dataset is then generated by upsampling in which 
the subsample is augmented by randomly sampling sites 
from the starting subsample. The SU dataset is analyzed 
in the next step using the chosen model selection method 
(IQ-MF here). The optimal model for the SU dataset can be 
based on BIC, AIC, AICc, likelihood ratio test, or another 
statistical criterion. In the next step, the number of pat
terns subsampled is increased to 2×g0. Optimal models 
produced by the analysis of g0-SU and 2×g0-SU are then 
compared. If they do not match, then the subsample size 
is expanded (k × g0, k = 3, 4, …) and model selection is ap
plied. ModelTamer stops when two consecutive analyses 
produce the same substitution model (fig. 2C). We imple
mented ModelTamer coupled with IQ-MF in an R pro
gram, which also gives users the flexibility to further 
validate the selected model by increasing the number of 
site patterns in the SU dataset.

We applied ModelTamer with IQ-MF to many large and 
small empirical datasets and found it to produce the same 
model as the IQ-MF analysis of the full MSAs (table 2). 
ModelTamer realized ≥95% saving in computational mem
ory and time for large empirical datasets, as the estimated 
ĝmin from 0.1% to 2.4% (table 2, fig. 2D). These savings are ex

pected to be smaller for datasets that contain a small number 
of unique site patterns because ModelTamer will need to use 
a larger fraction of site patterns in each subsample to include 
a few thousand unique site patterns necessary for a reliable 
substitution model selection (table 2, fig. 2D). In all these ana
lyses, ModelTamer did not select the same optimal model as 
the full MSA for one small empirical DNA dataset (Lassa 
Virus; table 2). For this dataset, ModelTamer selected a model 
that was the second best in the IQ-MF analysis of the full 
MSA. Interestingly, the difference in BIC between the top 

Table 1. Time and Memory Requirements of Optimal Model Selection.

Data Summary Full MSA Subsample–upsampled (SU) dataset

Data Type Sequences All Sites Unique 
Patterns

Memory 
(GB)

Time 
(Hours)

Optimal 
Model

Patterns 
Used

gmin Accuracy Memory 
(GB)

Time 
(Hours)

Butterflies DNA 61 5,267,461 3,762,723 75.0 3,140.7 GTR + F + R 1,918 0.05% 100% 0.04 0.67
Insects A DNA 174 3,011,544 2,045,783 115.4 5,000.3 GTR + F + R 4,183 0.20% 99% 0.24 6.85
Insects B DNA 48 2,938,039 1,396,402 21.7 656.0 GTR + F + R 2,796 0.20% 99% 0.04 0.71
Mammals DNA 39 1,391,742 775,579 9.3 106.0 GTR + F + R 3,930 0.51% 99% 0.05 0.81
Yeasts AA 23 634,530 390,960 13.0 973.5 LG + F + R 783 0.20% 100% 0.03 0.63
Birds DNA 200 394,684 226,490 14.6 258.0 GTR + F + R 3,389 1.50% 100% 0.22 2.53
Simulated DNA 52 12,300 10,348 0.1 0.1 TIM2 + F + R 3,709 36.0% 99% 0.06 0.01

Note.− gmin is the minimum fraction of unique site patterns required for selecting the optimal model with an accuracy ≥ 99% in the subsample–upsampled analysis. All 
model selection analyses were conducted using ModelFinder in IQ-TREE. gmin values were rounded up to two digits after the decimal point.
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Fig. 2. ModelTamer protocol and performance in model selection. (A) Relationships between the total number of substitutions in the full MSAs and 
their SU datasets (dotted line; slope = 1.1) and subsample-only datasets (dots on the x-axis; slope = 3 × 10−6). (B) The Lorenz Curve for the relationship 
between the frequencies of site patterns and the proportion of the overall log-likelihood (lnL) contributed by those site patterns for 1 Mbp full MSA 
(lower curve) and the SU dataset with g = 0.5% (higher curve). The Gini Index (GI) shown measures the inequality of information content distributed 
among site patterns. (C) Flowchart of ModelTamer analysis. The shaded box represents the original sequence alignment containing sequences of length 
L, which has U unique site patterns. A subsample (small, shaded box) contains a specified fraction (g) of unique site patterns from the full MSA. The initial 
value of g is predicted using the trend in panel 1D. A random sample of sites is drawn with replacement (multinomial sampling) from the subsample, 
which is then upsampled. The upsampled dataset has the same number of sites (L) as the full MSA, but the number of unique site patterns remains the 
same as the subsample. Each site pattern is represented many times in the SU dataset, represented by many black dots above each position in the shaded 
box (SU dataset). The model selection is performed on this SU dataset. The optimal model found in this analysis can be validated by building SU datasets 
containing an increasing number of unique site patterns (k × g, k = 2, 3, …) until two consecutive runs produce the same optimal model. (d) 
Computational savings in memory (GB) and time (CPU hours) achieved by ModelTamer for large and small empirical datasets (see table 2). (e) 
Scatter plot showing the relationship of the estimated instantaneous substitution rate between bases from full MSA and SU analysis (slope ∼1.0) 
for empirical DNA datasets in table 2.

4

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/11/m
sac236/6779590 by Tem

ple U
niversity user on 15 N

ovem
ber 2022

https://doi.org/10.1093/molbev/msac236


Taming the Selection of Optimal Substitution Models · https://doi.org/10.1093/molbev/msac236 MBE

two models was less than 10, which means that these two 
model fits will be considered statistically indistinguishable 
(Kalyaanamoorthy et al. 2017). This suggests that for smaller 
datasets, ModelTamer may sometimes produce a different 
but statistically equivalent model to that produced by the 
analysis of the full MSA.

The optimal models selected by IQ-MF for large empirical 
datasets were usually the most complex models tested, so 
ModelTamer also selected complex models. We examined 
ModelTamer’s performance when the actual underlying sub
stitution process was simple, but the sequences were long. 
We generated such DNA sequence datasets by computer si
mulations in which the simplest Jukes and Cantor (1969) (JC) 
nucleotide substitution model was used. IQ-MF on the full 
MSA and ModelTamer with IQ-MF selected the JC model 
(table 2). ModelTamer analysis of sequence alignments pro
duced by computer simulations under models with addition
al parameters, such as Kimura (1981) 2-parameter (K2P) and 
Hasegawa-Kishino-Yano (1985) (HKY) models, also pro
duced correct models (table 2). ModelTamer also worked 
well in finding the optimal model produced by the IQ-MF 
analysis of the full MSA for three simulated DNA datasets ob
tained from Abadi et al. (2020) (table 2). In these analyses, 

ModelTamer frequently offered high memory and time sav
ings (table 2).

We also produced amino acid (AA) sequence alignments 
by simulating datasets in which the instantaneous substitu
tion rates between AA residues were the same (Poisson mod
el). ModelFinder produced the correct model (table 2). We 
also tested ModelTamer’s ability to distinguish among equal
ly complex AA substitution models by analyzing sequence 
alignments simulated using the JTT model (Jones et al. 
1992), WAG model (Whelan and Goldman 2001), and LG 
model (Le and Gascuel 2008) (see Material and Methods). 
Both IQ-MF with full MSA and ModelTamer worked well 
(table 2). ModelTamer saved more than 75% of computa
tional time and memory in these analyses. Based on these 
analyses, we expect the accuracy of ModelTamer in selecting 
the correct optimal model to be the same as that of the tool 
used in ModelTamer for evaluating the fit of different models 
(e.g., IQ-MF) because the ModelTamer system is intended to 
reduce the time and memory needs of model selection faith
fully through site subsampling and upsampling. ModelTamer 
can be coupled with any method, including methods that 
consider data errors introduced during molecular sequencing 
and sequence alignments (Spielman and Miraglia 2021).

Table 2. Performance of Model Selection by ModelTamer for Empirical and Simulated Datasets.

Data Bases Sequences All Site 
Patterns

Used 
Patterns

ĝmin Optimal Model 
(MT)

Memory 
(GB)

Time 
(Hours)

Memory 
Saving

Time 
Saving

Empirical Datasets
Big Datasets

Butterflies DNA 61 3,762,723 3,810 0.1% GTR + F + R 0.08 1.00 99.9% 99.97%
Insects A DNA 174 2,045,783 4,190 0.2% GTR + F + R 0.24 7.20 99.8% 99.9%
Vertebrates AA 58 1,547,914 1,806 0.1% JTT + F + R 0.16 3.50 99.9% 99.9%
Insects B DNA 48 1,396,402 4,217 0.3% GTR + F + R 0.07 1.95 99.7% 99.7%
Mammals A DNA 39 775,579 4,702 0.6% GTR + F + R 0.06 0.63 99.4% 99.4%
Yeasts AA 23 390,960 783 0.2% LG + F + R 0.03 1.00 99.8% 99.9%
Birds DNA 200 226,490 4,504 2.0% GTR + F + R 0.29 3.10 98.0% 98.8%
Plants DNA 16 190,352 4,615 2.4% GTR + F + R 0.02 0.13 97.7% 99.3%

Small datasets
Green plants AA 360 17,789 883 5.0% JTT + F + R 0.51 10.10 94.9% 94.9%
Mammals B DNA 274 4,303 2,710 63.0% GTR + F + R 0.24 1.95 36.9% 5.3%
Lassa Virus DNA 179 1,475 931 63.0% GTR + F + R* 0.05 0.03 36.5% 91.2%

Simulated Datasets
Big Datasets

This article #1 DNA 50 95,852 26,895 28.1% JC 0.44 0.41 71.9% 47.2%
This article #2 DNA 50 95,820 31,508 32.9% K2P 0.51 0.75 67.2% −0.04%
This article #3 DNA 50 92,600 21,916 23.7% HKY 0.36 1.15 76.3% 33.2%
This article #4 AA 20 43,864 5,794 12.6% Poisson 0.18 0.38 86.8% 92.2%
This article #5 AA 20 44,895 5,840 13.3% WAG 0.18 0.39 87.0% 86.5%
This article #6 AA 20 46,327 8,624 18.5% JTT 0.26 1.22 81.6% 78.1%

Small Datasets
Abadi et al. 1 DNA 44 13,110 2,612 19.9% TPM2u + F + R 0.08 0.02 59.4% 86.4%
Abadi et al. 2 DNA 51 10,348 4,336 41.9% TIM2 + F + R 0.05 0.06 70.8% 27.3%
Kalyaanamoorthy et al. 1 AA 100 9,806 994 10.0% LG + R 0.16 1.96 86.5% 93.6%
Kalyaanamoorthy et al. 2 AA 100 9,781 995 10.0% LG + R 0.16 1.98 89.7% 96.0%
Kalyaanamoorthy et. al. 3 AA 100 9,775 993 10.0% LG + R 0.16 2.00 89.7% 93.4%
Abadi et al. 3 DNA 52 7,442 4,524 60.8% HKY + F + R 0.08 0.02 39.2% 88.0%

Note. All empirical datasets analyzed were gathered from published articles. We simulated big datasets (see Material and Methods) and used existing ones from published 
articles. ĝmin is the estimated fraction of unique site patterns needed by ModelTamer for selecting the optimal model. Peak memory and total time used in the ModelTamer 
analysis are shown. Time and memory savings are the percent reductions compared to the full MSA analysis. The selected model by ModelTamer was the same as the full MSA 
analysis, except for one dataset (*) for which alternative statistically indistinguishable models existed (BIC difference < 10) (Kalyaanamoorthy et al. 2017). All savings estimates 
used the time and memory taken for IQ-MF analysis of full MSA. ĝmin values were rounded up to one digit after the decimal point.
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ModelTamer for Partitioned Datasets
In the above, we have presented the efficiency of 
ModelTamer for sequence alignments in which all the genes 
and genomic segments were concatenated for phylogenomic 
analysis. In addition to concatenated MSA, most systematic 
studies also designate collections of sites (partitions) based 
on biological, functional, and/or genomic considerations. 
ModelTamer can be applied to each partition separately to 
select the best-fit model efficiently. The adaptive nature of 
ModelTamer will automatically use all the site patterns for 
shorter partitions, taking no more time and memory than 
the standard tool used for model selection. For shorter se
quence lengths, ModelTamer achieved 5–95% savings for 
computing time and 36–95% of peak RAM (table 2, fig. 
2D). ModelTamer will offer high memory and time savings 
for longer partitions, such as those based on genome source 
(e.g., mitochondrion, chloroplast, and nucleus) (Kimball et al. 
2021), specific codon positions (Dos Reis et al. 2018), func
tional annotations (e.g., coding and noncoding) (Thode 
et al. 2020; Kimball et al. 2021), and prior biological and evo
lutionary features (Prasanna et al. 2020; Vasilikopoulos et al. 
2020; Haelewaters et al. 2021). Of course, one may eliminate 
the expense of model selection by simply using the most 
complex substitution model, but this approach has been de
bated in the literature (Keane et al. 2006; Hoff et al. 2016; 
Abadi et al. 2020). For AA sequence analysis, however, 
many models are equally complex and would require model 
selection for which ModelTamer is efficient and accurate. 
Furthermore, as shown below, ModelTamer greatly reduces 
the time and memory needed for estimating substitution 
rate matrix parameters for any model for long sequences.

Estimating Model Parameters by SU Analysis
For a long AA sequence alignment from 58 vertebrate spe
cies (1,806,035 sites), IQ-MF required 4,604 CPU hours (6.4 
CPU months) to finish the optimal model selection on a 
high-performance computer with 139 GB of RAM. For 
this dataset, ModelTamer analysis required less than 3 h 
and less than 1 GB of memory (gmin = 0.1%), making opti
mal selection feasible. The time required was orders of 
magnitude less than IQ-MF’s for even fitting a given substi
tution model and a fixed phylogeny to this dataset, as 
IQ-MF needed 69 GB of RAM and 130 CPU hours. 
Interestingly, estimates of the substitution rates and other 
model parameters (e.g., mean relative rate) produced by 
ModelTamer were very similar to those from the analysis 
of full MSA. ModelTamer estimates of the substitution 
rate matrix parameters showed a 1:1 relationship with 
those produced from the analysis of empirical DNA data
sets (fig. 2E, slope > 0.99; R2 > 0.99). ModelTamer’s esti
mates of site-wise substitution rates were also close to 
those from full MSA analysis (slope = 0.96–1.00; R2 ≥ 0.99).

Conclusions
The power of upsampling of site subsamples and its desir
able theoretical properties are already known for 

estimating confidence intervals (Kleiner et al. 2014; 
Sharma and Kumar 2021). Here, we have demonstrated 
that only a small representative fraction of unique site pat
terns contains sufficient information to effectively select 
the optimal substitution model and estimate its rate para
meters. We have also shown that a simple protocol 
(ModelTamer) can automatically determine the fraction 
of site patterns necessary for SU analysis. These findings 
are likely to have implications for the general application 
of the SU approach. Ultimately, we expect ModelTamer 
to reduce the enormous computational demands of mod
el selection that precede big data phylogeny inference for 
which many efficient tools exist (Stamatakis 2014; Nguyen 
et al. 2015; Sharma and Kumar 2021). Consequently, re
searchers with even commodity computers will be able 
to conduct big data analysis on their desktops, and those 
utilizing high-performance computing infrastructure will 
benefit by achieving greater calculation parallelization be
cause of the small memory footprint of individual calcula
tions in ModelTamer. These computational efficiencies 
will promote higher scientific rigor, broader participation, 
and environment-friendly computing in molecular evolu
tionary research (Kumar 2022).

Materials and Methods
Empirical and Simulated Sequence Data Assembly
Eleven empirical DNA and AA sequence alignments were 
analyzed from yeasts (Salichos and Rokas 2013), plants 
(Ran et al. 2018), insects (A (Peters et al. 2017), and B 
(Peters et al. 2018)), butterflies (Allio et al. 2020), birds 
(Prum et al. 2015), mammals (A (Song et al. 2012), and B 
(dos Reis et al. 2012)), Lassa viruses (Andersen et al. 
2015), green plants (Ruhfel et al. 2014), and jawed verte
brates (Chen et al. 2015) (tables 1 and 2). Five empirical da
tasets (butterflies, birds, Insects A and B, mammal A, and 
yeast) and one simulated dataset were used to generate 
the gmin prediction model. The number of species ranged 
from 16 to 360, and the number of sites ranged from 
3,186 to 5,267,461.

We also analyzed DNA and AA sequence alignments gath
ered from published research articles (Kalyaanamoorthy et al. 
2017; Abadi et al. 2020) (tables 1 and 2) and new simulations 
to generate datasets with specific properties. DNA sequence 
alignments were simulated using simple models: Jukes- 
Cantor (1969) model (JC), Kimura (1981) 2-parameter model 
(K2P), and Hasegawa-Kishino-Yano (1985) model (HKY). The 
transition versus transversion rate ratio for both K2P and 
HKY models was set to 2.00, and the base frequencies for 
the HKY model were set to be (A = 31%, C = 27%, G = 
20%, and T = 22%) referring to HKY + F model in IQTREE 
(Nguyen et al. 2015). Each simulated DNA sequence align
ment contained 50 sequences with a sequence length of 
100,000 (table 2). Similarly, a set of AA datasets were simu
lated under an equal substitution probability (Poisson mod
el) and more complex models: JTT (Jones et al. 1992) and 
WAG (Whelan and Goldman 2001). The AA sequence align
ments simulated were 50,000 long and contained 20 
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sequences. For simulating each sequence alignment, a ran
dom tree was generated using an R function (-rtree) from 
the ape package, where the branch length varied uniformly 
between 0 and 0.2. The multiple sequence alignments were 
simulated using IQTREE (–alisim option). The ground truth 
for these simulated datasets was the substitution modes de
termined by analyzing full sequence alignment using IQ-MF 
(Nguyen et al. 2015; Kalyaanamoorthy et al. 2017).

Model Selection Analysis
We used ModelFinder in IQ-TREE (IQ-MF) with default op
tions to select the optimal model in all analyses, skipping 
the advanced search option (-mtree) due to excessive com
putational time requirement as this option uses a separate 
initial tree for each of the models tested. One hundred sub
sample–upsampled (SU) datasets were generated for each 
g (0.1–1%). The accuracy is the proportion of times SU da
tasets selected the same optimal model as the full MSA 
using IQ-MF. The gmin is the minimum g needed to achieve 
accuracy ≥99%. Accuracy was also calculated for subsam
ples in which no upsampling was performed. We chose 
IQ-MF because it is now widely used in empirical data ana
lysis. Other approaches, such as jModelTest (Posada 2008; 
Darriba et al. 2012; Nguyen et al. 2015), were tested and 
produced similar relative computational savings. 
Unfortunately, our attempts to use machine learning 
methods (Abadi et al. 2020) for large datasets were not al
ways fruitful because of the absence of machine learning 
methods for AA sequence alignments and the failure of 
all available online/offline tools to produce optimal models 
for large nucleotide sequence alignments.

ModelTamer Analysis
We used the ModelTamer protocol (fig. 2C) implemented 
in R (R Core Team 2020). This package has a customized 
function, “SU_MSA,” to generate SU datasets using the 
“Biostrings” package (Pagès et al. 2017). IQ-MF 
(Kalyaanamoorthy et al. 2017) was applied to each SU da
taset; one can couple other tools for model selection with 
ModelTamer. We expect the relative resource-saving to be 
similar when using other tools because the cost of ML ana
lysis is a function of the unique site patterns used in all the 
software packages. The “aggregator_model” function pro
cesses all the outputs and provides the optimal model and 
its parameters. It also outputs peak memory usage and the 
CPU time required by ModelTamer. We have also devel
oped an automated function (ModelTamer.R) in R de
scribed in the main text, which takes the sequence 
alignment as input for model selection and produces the 
optimal substitution model and its parameters.
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