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Abstract

Motivation: Timetrees depict evolutionary relationships between species and the geological times of their diver-
gence. Hundreds of research articles containing timetrees are published in scientific journals every year. The
TimeTree (TT) project has been manually locating, curating and synthesizing timetrees from these articles for almost
two decades into a TimeTree of Life, delivered through a unique, user-friendly web interface (timetree.org). The
manual process of finding articles containing timetrees is becoming increasingly expensive and time-consuming.
So, we have explored the effectiveness of text-mining approaches and developed optimizations to find research
articles containing timetrees automatically.

Results: We have developed an optimized machine learning system to determine if a research article contains an
evolutionary timetree appropriate for inclusion in the TT resource. We found that BERT classification fine-tuned on
whole-text articles achieved an F1 score of 0.67, which we increased to 0.88 by text-mining article excerpts surround-
ing the mentioning of figures. The new method is implemented in the TimeTreeFinder (TTF) tool, which automatical-
ly processes millions of articles to discover timetree-containing articles. We estimate that the TTF tool would
produce twice as many timetree-containing articles as those discovered manually, whose inclusion in the TT data-
base would potentially double the knowledge accessible to a wider community. Manual inspection showed that the
precision on out-of-distribution recently published articles is 87%. This automation will speed up the collection and
curation of timetrees with much lower human and time costs.

Availability and implementation: https:/github.com/marija-stanojevic/time-tree-classification.

Contact: marija.stanojevic@temple.edu or s.kumar@temple.edu or zoran.obradovic@temple.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction project, initiated in 2004, has been locating research articles con-
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articles containing domain-specific knowledge from the fast-
expanding corpus of scientific literature. One such area is evolution-
ary biology, in which the growing affordability of genome
sequencing technology has revolutionized the assembly of the tree of
life. Hundreds of new peer-reviewed articles containing timetrees,
phylogenetic trees scaled to time, are published yearly in many jour-
nals (Kumar ez al., 2022). Timetrees are present in published articles
in graphical formats (images) that display hierarchical trees of spe-
cies. These results are not always accessible by text searching when
looking for divergence times of species of interest and the articles
containing relevant divergence times. The TimeTree of Life (TToL)
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conducting their meta-analysis to produce a global timetree (Hedges
et al., 2006; Kumar et al., 2022). In the most recent release, the glo-
bal timetree contains >135 000 species assembled from constituent
timetrees from >4000 published articles (Kumar et al., 2022).
This information is delivered through a user-friendly web resource
cited thousands of times. Many students and the general public
also use the TToL website, evidenced by >250 000 database queries
annually.

Since 2004, curators of the TimeTree (TT) database have been
manually identifying relevant research articles. A combination of
keywords is used to search the Google Scholar (GS) and PubMed
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archives, which produce a list of articles via the web. Then, curators
scan article titles to identify potential timetree articles, which is
time-consuming, expensive and eye-straining. This scanning is fol-
lowed by clicking the PDF/text-download link of promising articles,
another time-consuming step, followed by a manual inspection of
the article’s content. When an article contains a timetree, it is
retained for further processing. For almost two decades, the curators
have downloaded and inspected titles of thousands of articles and
manually scanned 14 366 downloaded full-text articles to look for
timetrees. Of these, 4292 research articles were found to contain
timetrees, which is a manual true positive rate of 29.88%. Those
timetrees became candidates for curation into the TT database
(www.timetree.org). This approach of locating relevant research
articles is tedious, time-consuming and error prone because a time-
tree in an article is not entirely predictable based on its title or ab-
stract alone.

The TT curators did not use text-mining tools, except for inter-
net searching, to find research articles containing timetrees because
there were no tools for processing the corpus of scientific articles to
discover evolutionary knowledge. While many computational text-
mining approaches and tools have been applied extensively in
medical and molecular biology research, our survey revealed no
investigations of their usefulness for retrieving articles containing
evolutionary trees and guidelines on the best tools and their domain-
specific optimization. Therefore, the main goal of this study was to
investigate the performance of available simple and advanced text-
mining techniques to identify timetree-containing articles. The new
TimeTreeFinder system (TTF; Fig. 1) processes the corpus of rele-
vant scientific literature accessible from resources such as GS, PMC
Open Access (PMC-OA) Database, PMC Historical, bioRxiv and
scientific journals’ websites.

In the following, we present the results of the implementation
and analysis of TTF that uses TFIDF (Jones, 1972; Luhn, 1957),
Lasso (Tibshirani, 1996) and word2vec (Mikolov et al., 2013a, b)
algorithms for constructing Google search queries and state-of-the-
art machine learning algorithms such as BERT (Devlin et al., 2018),
BioBERT and SciBERT for detecting the presence of timetrees in re-
search articles. BERT-based state-of-the-art models can process up
to 512 words, so we trained them to classify research articles using
only titles and abstracts in the same way as used by manual curators
of the TT project.

As shown below, recognizing timetree-relevant papers solely
from title and abstract was the least effective approach (see results).
This problem prompted us to test the hypothesis that more accurate
retrieval is possible by analyzing full-text articles. While it improved
results, it still produced many errors. The full text can be misleading
to classification methods because many articles contain informative
phrases, but no timetrees are present in the article. We hypothesized
that models would be more accurate if trained and applied to care-
fully excerpted texts around the figures because timetrees are usually
present in the image form in the research articles.

In the following, we discuss the created TTF tool that ultimately
achieves an F1 score of 0.88 in classification despite the high dimen-
sionality of the problem. We also investigated machine learning
models and features (word and word pairs) essential for finding
articles containing timetrees accurately. Finally, we discuss how
the system presented can be adapted to collect relevant data and
discover meaningful information from various texts (e.g. grants pro-
posals, reports, research papers, web pages and news) for other
scientific and non-scientific applications.

2 Materials and methods

The new automated system, TimeTreeFinder (TTF), to search, ex-
tract and analyze the corpus of scientific literature and individual
articles to identify relevant articles is outlined in Figure 1.

2.1 The ground truth TT dataset
Over the last 20 years, the TT project staff has manually scanned 14
366 articles and labeled them. The articles were labeled as positive
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Fig. 1. Overview of the proposed TimeTreeFinder (TTF) system, including search-
ing, collecting and analyzing research articles to discover timetree-containing
articles

(4292) if they contained tables, figures or descriptions of molecular
divergence times. Otherwise, they were given a negative label
(10 074). This dataset was used in all our analyses and experiments
as ground truth.

2.2 Processing the corpus of scientific literature

We retrieved scientific articles from four online resources for this
project: GS; journals that published most of the articles in the TT
dataset; PMC-OA subset; PMC Historical dataset (https:/www.
ncbi.nlm.nih.gov/pmc/tools/textmining/); and bioRxiv machine ac-
cess and text/data mining resources (https://www.biorxiv.org/tdm).
These online resources are massive, and it is time- and resource-
consuming to download and analyze PDF files and other informa-
tion about millions of articles, even when done automatically.
Therefore, we searched for and downloaded only pertinent articles
when possible (GS). In addition, we filtered out irrelevant articles
from all sources.

The approach taken to process the GS dataset was as follows.
We first determined representative phrases (words and word pairs)
from the ground truth TT dataset. We used TFIDF (Jones, 1972;
Luhn, 1957) to create features (words and word pairs) and L1-
regularized logistic regression, LASSO (Tibshirani, 1996), to classify
articles from the TT dataset. Lasso suppresses irrelevant features
and gives positive coefficients to the most important phrases for
detecting research articles containing timetrees. This list of phrases,
called PL, is provided in the Supplementary Material. Then, we
applied the word2vec algorithm (Mikolov et al., 2013a, b) to iden-
tify additional informative words used frequently in the same con-
texts as the PL words. The resulting collection of phrases was
filtered by frequency to remove rarely occurring combinations and
misspellings. The resulting list of features, WL, was added to PL to
form the final list of phrases, FL.

We designed two types of queries using phrases from FL. The
FL-simple query utilized one phrase, and the FL-complex query used
a logical combination of phrases. These efforts retrieved 5070
articles from the FL-simple query and 8013 articles from the FL-
complex query. While we expected a much larger number of articles,
GS’s restrictive policies forbid downloading too many PDFs, and
our university’s library could not access all the journals. However,
we can run the automatic search again and collect the articles when
they become available. Details on GS search are provided in the
Supplementary Material.

Unlike GS, which provides a search engine, we needed to develop
ad hoc approaches for collecting articles from all the other resources
(see Supplementary Material). In this case, we downloaded all avail-
able PDFs without imposing any filtering by keywords. Naturally,
we downloaded a large number of articles, which ranged from 117
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000 articles from biological journals to 4.17 million articles from
PMC-OA. Next, we filtered them to reduce irrelevant articles using
keywords (see Supplementary Material). This procedure removed
51% of the articles downloaded from journals, 90% of PMC-OA
articles, 94% of PMC Historical articles and 75% of bioRxiv
articles. The resulting collections were candidates for finding time-
trees. These data collections were then subjected to representation
learning and classification analysis.

2.3 Representation learning

We compared six representation learning methods: TFIDF (Jones,
1972; Luhn, 1957), doc2vec (Le and Mikolov, 2014), BERT (Devlin
et al., 2018), SGBERT (Beltagy et al., 2019), DistilBERT (Sanh
et al., 2019) and BioBERT (Lee et al., 2020). Doc2vec is a method
that uses a small neural network to learn the vector representation
of sentences and paragraphs. TFIDF creates a matrix in which rows
represent document vectors, columns represent word vectors and
values are TFIDF scores for each word-document combination. An
advantage of TFIDF is that it aims to capture information from the
entire document instead of relying on a local context learned by
doc2vec. Research articles are long texts with possible distant
dependencies; therefore, we hypothesize that doc2vec is not power-
ful enough to represent such long texts. BERT-based models learn
from the whole sequence, like TFIDF, but they can learn from
sequences of up to 512 words. We considered SciBERT and
BioBERT as they specialize in the representation of research articles
and biological articles, respectively. Finally, we tested DistilBERT as
a lighter and faster version of BERT known to achieve similar per-
formance (Sanh et al., 2019).

2.4 Representation enhancing

Since representation is learned separately from classification, labels
are not required for that step. We integrated the ground truth TT
dataset and downloaded filtered datasets for representation learning
to benefit from more data and contexts. We ran classification mod-
els on representations learned just from the TT dataset and represen-
tations learned from all data to test if using additional data to learn
representation improves classifications.

2.5 Classification

Research articles are complex and high-dimensional data, and it is
hard to form hypotheses about their classification. Therefore, we
compared nine diverse but commonly used classification methods:
L1-norm-regularized logistic regression (L1), decision tree (DT),
random forest (RF), k-nearest neighbors (KNN), support vector
machines (SVM), adaptive boosting (Ada), gradient boosting (GB),
bagging (Bag) and classification layers of BERT-based methods
(BERT, DistilBERT, SciBERT, BioBERT). They represent different
types of classification algorithms with various desirable properties,
enabling us to explore which approaches perform best at classifying
the biological domain of timetrees.

2.6 Evaluation

We investigated the classification results of models to understand
when errors were made. The models that performed poorly missed a
lot of relevant articles (type II error) and kept a lot of irrelevant
articles (type I error). As curators need to review the data from all
research articles predicted as positive, the objective is to reduce type
I error to decrease human effort. We also wanted the smallest pos-
sible type Il error as the main goal is to identify as many articles con-
taining a timetree as possible. We used the F1 score (range 0-1) as
the main metric since it is maximized when both types I and I errors
are minimized. We fine-tuned each model using a grid search of
hyperparameters and selected those with the best F1 score on the
cross-validation dataset. Details are described in the Experimental
Settings paragraph in the Supplementary Material. Documents pre-
dicted as positive were checked by human curators to ensure that
the predictions contain a timetree and that the analysis of empirical
datasets produces it.

2.7 Generation of text excerpts datasets

We found machine learning models to make three main types of
errors in misclassified articles. The first mistake was identifying
articles that only described methodology, especially software used
for visualization, but did not contain any data on new timetrees.
Second, many false positives discussed geological periods or species
but lacked information on molecular divergence times. Third, re-
search articles describing the time of divergence of species in small
parts of the text were wrongly excluded (false negatives).

We hypothesized that these issues would be reduced by selecting
relevant information from articles and classifying articles based on
that information instead of the whole text. This technique has two
benefits: (i) shorter texts are easier for machine learning models to
comprehend and (ii) we automatically exclude irrelevant text in search
of a timetree (e.g. introductions, references and other descriptions).

Since timetrees are usually displayed in figures, we selected figure
captions as well as parts of research articles that mention figures.
We considered both figures described and shown in the main text
and the supplement of the research articles. We used newline spac-
ing to understand when the paragraph or caption mentioning figures
starts or ends. Additional details are provided in the Supplementary
Material.

To understand how much text context is needed for a model to
learn if the figure contains a timetree, we compared the performance
using 800 characters and only 300 characters around the place
where a figure was mentioned. Then, we followed the process
described in representation learning, representation enhancing, clas-
sification methods and evaluation using datasets containing text
excerpts and short text excerpts instead of whole-text datasets.

2.8 TTF tool

All the methods mentioned above are implemented in the TTF tool.
It supports searching, collecting, extracting, filtering and normaliz-
ing data from relevant sources of phylogenetics research articles.
The TTF tool is also used for training representation learning and
classification methods on research articles from the TT dataset. In
addition, it implements the selection of short and long text excerpts
relevant to timetrees and representation and classifier learning over
those data. Finally, the TTF tool validates learned models using the
TT dataset, which was set aside from training data and evaluated
performance on newly collected datasets. A detailed description of
the training and validation split and other experimental settings can
be found in the Supplementary Material.

3 Results and discussion

This section presents results obtained using TTF, which automates
search, collection, filtering and timetree discovery in the research
articles described in Section 2. We discuss the properties of collected
datasets and how they compare to the original data. Then, we com-
pare scores from different machine learning techniques for data rep-
resentation and classification and propose techniques for selecting
relevant text excerpts from papers.

3.1 Most common words in the TT dataset

Figure 2a shows the cloud of the most common words in the ground
truth manually curated TT dataset. The size of the words corre-
sponds to their frequency in the TT dataset. The most common
words are species, evolution, molecular, phylogenetic, data, gene,
analysis, tree, genetic, sequence, clade and divergence. We excluded
generic stop words and other common words irrelevant to phyloge-
netics (see Supplementary Material) from the word cloud figures
(Figs. 2 and 3).

3.2 Properties of collected and filtered datasets

This section investigates the properties of datasets collected through
the process described in Section 2. Figure 2b and c represents the dis-
tributions of the most prominent words in datasets obtained from
GS by FL-simple and FL-complex queries. Those datasets show
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(a) TimeTree Dataset ( )GS FL-5|mpIe query (c)GS FL-complex query

Fig. 2. Frequencies of most common words in (a) TimeTree dataset, Google Scholar
datasets from (b) FL-simple query and (c) FL-complex query, (d) PMC-OA, (e)
PMC Historical and (f) bioRxiv dataset
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Fig. 3. Comparison of the distributions of the most common words among papers
labeled as (a) positive and (b) negative in the TimeTree dataset. There is quite a bit
of overlap between the two sets

extensive overlaps with the TT dataset. This similarity means that
classifiers learned using the TT dataset would perform well on GS
datasets, saving effort in finding timetree-containing articles.
Datasets collected from journals, PMC-OA and bioRxiv are avail-
able only in bulk and could not be searched for relevant articles.
Therefore, we created a filtering step to select relevant papers.
Filtering removes articles that do not contain at least one of the
most relevant timetree words (see the full list in the Supplementary
Material). This filtering system was tested on the TT dataset to en-
sure it performs well. None of the positively labeled documents in
the original dataset were removed, i.e. the false negative rate was
zero. Only 9.6% of TTD papers in the true negative set were not
retained. Therefore, the filtering system works well.

We applied the filtering system to all the datasets. Most articles
were filtered out from the PMC Historical datasets (only 6%
retained) because they contain articles on many topics unrelated to
phylogenetics and timetrees. This dataset also contained phyloge-
netics articles published before the 1990s, which did not have infor-
mation on timetrees because the field has grown much in the last
three decades. The PMC-OA dataset, while still heavily focused on
medicine, retained 10% of the article collection since it is more re-
cent and contains more phylogenetic information. The filtering
retained 25% of the bioRxiv articles as bioRxiv focuses on biology
and contains many more recent research articles (since 2013). In the
last two decades, the publication of timetrees has been more com-
mon and driven by the analysis of molecular datasets. In processing
research articles from selected journals, 50% were retained because
we collected only research articles from relevant journals.

Common words in the PMC-OA, PMC Historical and bioRxiv
datasets are shown in Figure 2c—f, respectively. Their comparison
with the common words of the TT dataset reveals that PMC and
bioRxiv datasets are not very similar to the ground truth despite filter-
ing. Some TT dataset frequent words, such as data, species and ana-
lysis, are common in bioRxiv as well, but many medical words which
are not common in the TT dataset frequently occur in PMC datasets.

3.3 Classification models and their predictions
Figure 3 shows that papers with positive and negative labels in TT
dataset have an almost identical distribution of most common
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Fig. 4. Scatter plot of words from articles in original datasets. The horizontal axis
represents word frequency in negatively labeled documents and the vertical in posi-
tively labeled. The top positive and negative words are displayed on the right. See
full-size figure provided in Supplementary Material

words, pointing to the complexity of the classification task. Figure 4
shows phrases with a positive coefficient in the Lasso model as blue
and those with a negative factor as dark red. The x-axis displays the
frequencies of words in negatively labeled research papers, and the
y-axis displays word frequencies in positively labeled research
papers. Many words are on the diagonal, i.e. they have a similar fre-
quency in positively and negatively labeled papers. The column on
the right of the figure shows the words with the most significant
positive and negative influence. We conclude that word distribution
in positively and negatively labeled research articles are very similar,
and classifying those papers is difficult. In fact, classification results
show that the best model, achieved with a gradient-boosting classi-
fier over TFIDF features, could produce an F1 score of 0.72 (the se-
cond row of Table 1).

We utilized the best classifier to classify papers in collected data-
sets so that positive papers could be considered for expanding the
TT database. When applying the classifier to datasets collected by
searching GS using FL-simple and FL-complex queries, we predicted
that 13% and 17.8% of the collection contained a timetree, respect-
ively. Also, 7.8% of the corpus downloaded from relevant journals
is predicted to contain the timetrees. Only 0.79% of PMC,
0.00039% of PMC Historical and 1.4% of bioRxiv articles received
a positive label.

3.4 Improving predictions using text excerpts

Figure 5 (top) shows that selecting only relevant text excerpts to rep-
resent articles from the TT dataset changes the word distribution
while keeping the genuinely relevant words species, analysis, data,
divergence and tree as the most common. Keywords for finding
timetrees such as time, trees, clade, analysis, analyses and distribu-
tion are more prominent in a graph of selected texts excerpts than
when using the whole texts. The impact of text excerpts was more
significant in the bioRxiv dataset (Fig. 5, bottom). Many unimport-
ant words (e.g. made, acc, display) were eliminated, and some rele-
vant words (such as genes and analysis) became more prominent.
Figure 6 has similar content to Figure 4, but it is created for the text
excerpts in the TT dataset. It has a different distribution. The points
are more scattered, with many more words showing the positive or
negative influence and making the problem easier to solve. Also, the
list of top positive words in Figure 6 is more relevant to timetrees.

Figure 7 compares contexts for words mega (left) and tree (right)
learned using the doc2vec algorithm. We display the context of
those words as they are truly relevant to molecular timetrees text,
but they also have different properties. MEGA is a unigram and is
the name of a commonly used software, and it is not expected to be
used in other contexts in the corpus at hand. “#ree” is a common
word in the English language that can be used in other circumstan-
ces, and it is also often used as part of a bigram in phylogenetics
(e.g. timetree, molecular tree).

We display the ten most similar words according to the learned
vector space, and all four figures show that learned vectors are
meaningful. However, there is an apparent difference between the
top and bottom graphs. The top graphs mainly contain misspellings,
while the bottom graphs contain contextually similar words. This
happens because representation learned from selected text excerpts
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Table 1. Results from classification analysis

Method Features from labeled data only
Whole text 800-character excerpts 300-character excerpts
L1+ TFIDF 0.711 = 0.004 0.792 £ 0.012 0.689 £0.009
L1+ doc2vec 0.642 £0.015 0.750 +0.013 0.751+£0.018
DT + TFIDF 0.634 £0.001 0.757 = 0.005 0.643 £0.010
DT + doc2vec 0.532 £0.011 0.616 = 0.004 0.654 =0.039
RF + TFIDF 0.695 £0.001 0.839 +0.003 0.717 £0.009
RF + doc2vec 0.617 £0.001 0.750 = 0.003 0.750 £0.007
KNN + TFIDF 0.557+0.019 0.760 = 0.005 0.608 =0.008
KNN-+doc2vec 0.582 +0.007 0.674 +0.037 0.639 +0.029
SVM + TFIDF 0.711 £0.017 0.817 = 0.005 0.689 £0.001
SVM-+doc2vec 0.659 +0.019 0.788 £ 0.004 0.754 = 0.005
Ada + TFIDF 0.673 £0.027 0.783 £0.010 0.683 =0.023
Ada+doc2vec 0.589 £0.013 0.720 = 0.011 0.687 £0.015
GB + TFIDF 0.720 = 0.007 0.810 = 0.002 0.693 £0.005
GB + doc2vec 0.599 £0.030 0.757 +£0.023 0.729 £ 0.007
Bag + TFIDF 0.707 £0.010 0.812 +0.003 0.707 £0.005
Bag + doc2vec 0.547 £0.013 0.733 £0.008 0.728 = 0.004
Distilled BERT 0.661 £ 0.009 0.873 +0.006 0.852 +0.002
BERT 0.672 £0.001 0.880 = 0.003 0.830 £ 0.044
SciBERT 0.618 =0.078 0.837+0.018 0.864 = 0.002
BioBERT 0.657 £0.003 0.868 +0.001 0.852 +£0.001
Note: Average F1 scores and their standard deviations are shown.
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Fig. 5. Comparison of distributions of most common words between whole texts
(left) and selected texts (right) from two research papers datasets: original (top) and
bioRxiv (bottom)
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uses only relevant portions of text in which misspellings or errors
due to OCR or parsing are fewer. In addition, it is easier to learn the
context from shorter selected texts. Consequently, most algorithms
perform better on the excerpt dataset (Table 1). For the dataset of

Fig. 7. Comparison of projected 100-dimensional embeddings of words in contexts
of words mega (left) and tree (right) learned on the whole papers (top) and on
selected texts (bottom)

800-character excerpts, BERT produced the best results, followed
by the performance for excerpts that were 300 characters long.

Applying the best classifier on text experts from collected data-
sets, we found that 27.4% and 20.8% of the text excerpts were
labeled as positive in the GS FL-simple and FL-complex query data-
sets, respectively. The journal collection has 11.3% of positive text
excerpts. Only 2% of PMC, 1.3% of PMC Historical and 2% of
bioRxiv selected text excerpts are predicted as positive. Percentages
of positive predictions are larger for classifying the selected text
excerpts because no text excerpts contained informative words from
many irrelevant papers. Those findings prove that datasets from
bioRxiv and PMC sources need to be further filtered using a more
complex technique.

3.5 Classification results and discussion

Results for different combinations of techniques are presented in
Table 1. Columns display the F1 score results of those techniques
when representation is learned only on the original dataset. Results
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with enhanced representation are provided in Supplementary
Material. We fine-tuned hyperparameters to optimize for the F1
score as we need to minimize both type I and type Il errors. The best
classification method for each column is displayed in bold letters.
BERT classification using full text achieved an F1 score of 0.672,
much smaller than BERT trained on selected text excerpts of length
800, which increases the F1 score to 0.880 with a small standard de-
viation (0.003).

The best representation and classification methods depend on
which parts of the text are used for representation. When the whole
text is used, TFIDF representation has the best performance in gen-
eral, as BERT-based models can look only into the first 512 words,
and doc2vec does not have enough capacity to learn from such a long
text. When selected text excerpts are used, BERT-like models perform
the best. BERT is the best in classifying selected texts of length 800
characters, and SciBERT is the best on selected text excerpts of length
300. DistilBERT, as expected from the literature review, has a 1%
worse performance than BERT, but it is twice smaller and twice faster
in inference, according to our results. BIoOBERT was expected to per-
form better than BERT because of its fine-tuning for biological and
medical data, but it does not for any of our datasets. SCiBERT was
also expected to perform better than BERT in general, as it is fine-
tuned on 80% of biological scientific articles. But, its performance is
~5% worse than BERT’s (Table 1). However, it does show excellent
performance on short text excerpts.

Enhanced representation does not show a clear improvement in
our experiments, although it is usually helpful for doc2vec algorithm
learning from the whole text. However, learning from the whole
text hurts performance compared to representations learned from
text excerpts. The results provided in the Supplementary Material
show the discouraging performance of enhanced representation
learning, which is probably caused by the considerable difference be-
tween distributions of words in the ground truth TT dataset and the
target datasets, but further experiments are needed to understand
the problem better. TFIDF representation achieves better results
than doc2vec representation except when combining doc2vec with
enhanced representation on selected texts. It also achieves the best
result, F1=0.720, when trained on whole texts with gradient-
boosting classification. This result is consistent with our hypothesis
that TFIDF will perform better due to its ability to learn from the
whole document and not the small contexts that doc2vec uses.
However, we can also see that when data are shorter (selected texts)
and more data are used (enhanced representation), we can achieve
close to the best doc2vec results.

3.6 The proportion of additional timetree articles

predicted

To establish model precision on out-of-distribution data, we manu-
ally examined journal articles predicted as timetree-containing by
the best-performing model (BERT with 800-character excerpts). We
restricted our assessment to all the articles from three relevant jour-
nals (Molecular Phylogenetics and Evolution, Systematic Biology
and Zoologica Scripta) because they needed to be manually
inspected by the TT curators. BERT, with 800-character excerpts,
predicted 304 articles to have a timetree from these three journals.
Of these, 163 contained the timetree, i.e. a true positive rate of
53.6%. The blue line in Figure 8 (left y-axis) shows prediction preci-
sion (true positive among all positive) per year. The TTF accuracy
was 87% for recently published articles. Most older articles misla-
beled as positives contained a tree but lacked a time component.
Therefore, future enhancement of this approach could focus on
reducing such false positives for early articles.

Of these true positives, 84 were missing from the TimeTree data-
base (51.5%). The fraction of timetrees missing from the TT data-
base shows a temporal pattern, i.e. a greater percentage of articles
are missing from recent years (Fig. 8, green bars, right y-axis). This
is because the number of published articles is increasing, and
the cost of manual standardization and assimilation of articles into
the TT database is significant. Therefore, the TTF system would
help double the number of research articles in the TT database.

= Precision in percents Number of newly discovered articles
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80 20
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Fig. 8. Precision per year of BERT trained on 800-character excerpts and evaluated
on. y = a proportion of timetree-containing articles in the journals Molecular
Phylogenetics and Evolution, Systematic Biology and Zoologica Scripta identified
by BERT-800 are missing from the TimeTree database

4 Conclusions

In this work, we created an automatic process for searching, collect-
ing and filtering articles containing molecular timetrees. In addition,
we have shown that mining articles represented by text excerpts sur-
rounding mentions of figures achieve better results than all the other
alternatives tested. We considered six representation learning techni-
ques and nine classification learning techniques to achieve an F1
score of 0.88 (20.8% absolute improvement over BERT baseline) in
selecting articles containing timetrees or divergence times. This sys-
tem will save considerable time previously devoted to manually
scanning full texts and searching the web using keywords.
Furthermore, our analyses show that many articles in the published
literature are missing from the TT database. Their processing and in-
clusion will increase the number of species covered and the number
of studies per species in the TT database, making it more compre-
hensive (Kumar et al., 2022).

In addition, the TTF tool can be adapted to search for other phylo-
genetic information in the scientific literature, such as locating articles
containing phylogenies without times and extracting lists of species
and other metadata in the selected article. Of course, the TTF models
can also be used to parse other relevant literature such as reports,
news and blogs. More generally, the TTF tool can be used for search-
ing other documents by training the model using a small labeled data-
set with positive and negative labels (ground truth). TTF can extract
the most important phrases for finding relevant documents, search GS
or other relevant sources based on those phrases and make predic-
tions. In addition, the excerpts selection tool needs to be updated with
a new search phrase, and experts should provide a list of possible
sources of data to be searched for, enabling search resources unless
journals, PMC-OA or PMC are used.
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