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Abstract

Reliable estimates of divergence times are cru-
cial for biological studies to decipher temporal
patterns of macro- and microevolution of
genes and organisms. Molecular sequences
have become the primary source of data for
estimating divergence times. The sizes of
molecular data sets have grown quickly due
to the development of inexpensive sequencing
technology. To deal with the increasing
volumes of molecular data, many efficient dat-
ing methods are being developed. These
methods not only relax the molecular clock

and offer flexibility to use multiple clock
calibrations, but also complete calculations
much more quickly than Bayesian approaches.
Here, we discuss the theoretical and practical
aspects of these non-Bayesian approaches and
present a guide to using these methods effec-
tively. We suggest that the computational
speed and reliability of non-Bayesian
relaxed-clock methods offer opportunities for
enhancing scientific rigour and reproducibility
in biological research for large and small
data sets.
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12.1 Introduction

Computational methods to estimate divergence
times of genes and species from molecular data
have enjoyed a long history of development,
spanning more than 50 years (dos Reis et al.
2016; Kumar and Hedges 2016). Divergence
times derived by using these methods and
molecular data have illuminated the role of geo-
logical history in shaping the emergence of spe-
cies (Hedges et al. 1996; Hedges and Kumar
2009), tempo and mode of speciation (Hedges
et al. 2015; Marin et al. 2017), dynamics of
genome evolution through gene duplication
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(Huerta-Cepas and Gabaldón 2011; Jiao et al.
2011; Yu et al. 2017), and evolution of pathogens
(Faria et al. 2014; Worobey et al. 2014; Biek et al.
2015; Metsky et al. 2017). Every year, hundreds
of studies report estimates of species divergence
times, enabling the assembly of the grand time-
tree of life and revealing the fundamental
biological processes underlying species diversity
(Hedges et al. 2015).

Early statistical methodologies of molecular
clock dating (Zuckerkandl and Pauling 1962)
were based on the assumption of a constant rate
of evolution over time and across lineages
(strict clock) and used fossil-age calibrations as
point values (Kumar 2005). Over the last two
decades, molecular dating methods have become
increasingly sophisticated and embrace greater
biological realism. They now relax the strict-
clock assumption and have the ability to estimate
divergence times even when molecules have
evolved with vastly different evolutionary rates
across loci and lineages (Ho 2014; Ho and
Duchêne 2014; Kumar and Hedges 2016). Many
modern approaches are also available to incorpo-
rate detailed information from the fossil record to
generate time-calibrated phylogenies (time-trees).

Statistical development of molecular dating
methods remains vibrant even after six decades
of development. It is at the centre of systematics,
biodiversity, and genome evolution research
owing to the ease with which large sequence
data sets can now be assembled (Kumar and
Hedges 2016). Chronologies of molecular dating
methods and their statistical properties have been
presented in recent years (Kumar 2005; Ho 2014;
Ho and Duchêne 2014; Kumar and Hedges 2016;
dos Reis et al. 2016). Therefore, here we focus on
a more pragmatic account of molecular dating
methods, aimed at assisting researchers to select
and utilize available methods.

12.1.1 Non-Bayesian Versus Bayesian
Methods

Increased sophistication of molecular dating
methods has often been accompanied by
increased demand for computational time and

memory. There exists a clear dichotomy of
molecular dating methods based on their compu-
tational resource requirements for large data sets.
Bayesian methods are computationally demand-
ing because of their need for extensive sampling
from the posterior distribution using the Markov
chain Monte Carlo (MCMC) approach
(Bromham et al. 2018). The computational bur-
den is usually very high for large data sets and
grows with the number of sequences (Crosby and
Williams 2017; Tamura et al. 2018). In addition,
problems in MCMC mixing can increase the
computational time further (Bhatnagar et al.
2011). Sometimes, there is a need to run multiple
Bayesian analyses to test different prior
assumptions and calibration settings, which
might result in the requirement for high-
performance computing infrastructure.

In contrast, many non-Bayesian methods tend
to have much smaller computational needs, while
still allowing rates to vary throughout the tree. For
example, both penalized likelihood (Sanderson
2002) and RelTime (Tamura et al. 2012, 2018)
are very fast and known to be accurate. Although
their computational requirements increase line-
arly with the number of sequences and sites,
they still take orders of magnitude less time than
the Bayesian methods (Fig. 12.1). Computational
time demands of these non-Bayesian methods
are essentially the same as the time taken to
estimate branch lengths of a phylogeny, for exam-
ple by using the maximum-likelihood method.
Non-Bayesian methods can also be applied
directly to a phylogeny with branch lengths
(phylogram), which decreases the computational
times further for very large data sets.

In this chapter, our focus is on providing
practitioners with a guide to effectively using
non-Bayesian methods for molecular dating. We
also discuss the advantages and disadvantages of
these methods, because the best approach
depends on the size of the available data, degree
of rate variation among species and loci, nature of
clock calibrations, and the availability of comput-
ing resources. Table 12.1 shows a summary of
different non-Bayesian methods, their statistical
properties, and the software packages in which
they are implemented.
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12.2 A Practical Guide to Selecting
Non-Bayesian Methods

12.2.1 Using Strict- and Local-Clock
Methods

The simplest scenario for molecular dating is
when the evolutionary rates are the same
(or very similar) across different evolutionary
lineages. In this case, methods that assume a strict
clock will usually be reliable and produce the
most precise time estimates. This assumption
was commonly employed in the earliest

molecular dating studies that produced many
fundamental biological insights, including the
finding that humans shared a most recent com-
mon ancestor with chimpanzees only five million
years (Myr) ago, rather than 15–20 Myr ago
based on the classification of Homo as a sister
group to apes in the early 1960s (Sarich and
Wilson 1967, 1973).

Interestingly, methods based on the strict clock
continue to be developed and used today. For
example, the mean path length (MPL) method
(Britton et al. 2002), implemented in the software
PATHd8 (Britton et al. 2007), has been used in
many recent studies (e.g., Louca et al. 2018; Lu
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Fig. 12.1 Computational times required by Bayesian,
penalized likelihood (PL), and RelTime methods to esti-
mate divergence times for data sets containing an increas-
ing number of sequences (n). Bayesian (blue solid line) is
the computational time of the Bayesian method using
molecular sequences as input. PL-bl (green dashed line)
and RelTime-bl (pink dashed line) are the computational
times of PL and RelTime methods using phylogenetic
trees with branch lengths as input. PL-ML (green solid
line) and RelTime-ML (pink solid line) are the total
computational times required by PL and RelTime methods
using molecular sequences as input, which are the sum of
the computational time of maximum likelihood

(ML) inferences of branch lengths and the computational
time of PL-bl and RelTime-bl. ML inferences of branch
lengths were conducted in MEGA X (Kumar et al. 2018).
Bayesian, PL, and RelTime analyses were conducted in
MCMCTree (Yang 2007), treePL (Smith and O’Meara
2012), and MEGA X, respectively. All times were
estimated on a single-core computer by using an alignment
of 4493 sites that was simulated with extensive rate varia-
tion (RR50 from Tamura et al. 2012). For this data set, the
best-fit exponential equation is 0.06 � n2.28, 0.08 � n1.16,
0.07 � n0.97, 0.03 � n1.27, and 0.01 � n0.44 for Bayesian,
PL-ML, PL-bl, RelTime-ML, and RelTime-bl,
respectively
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et al. 2018). This method assumes that the ratio of
ages between two nodes in a phylogeny is pro-
portional to the ratio of their average node-to-tip
distances. Therefore, it is only suitable for data
sets in which the substitution rates are strictly or
nearly constant among lineages throughout the
phylogeny (Britton et al. 2002).

The problem of the equal-rates assumption is
illustrated in the analysis of a phylogeny
consisting of two clades (X and Y) with an
outgroup (Fig. 12.2a). Each clade contains two
orthologous DNA sequences of zinc-finger genes
zfx and zfy; this is a simple gene-family tree with
two genes that arose from a gene duplication prior
to the divergence of human and mouse. Molecu-
lar dating methods should produce the same
values for tX and tY because they refer to the
same evolutionary event: the divergence between
human and mouse. Therefore, the expected ratio
of tX and tY is 1, which is what a molecular dating
method should produce despite the fact that
mouse zfx gene has evolved four times more
quickly than the human zfx, and the mouse zfy

gene has evolved seven times more quickly than
the human zfy.

Analysis of this data set by the MPL approach
in the PATHd8 software produced a tX/tY ¼ 0.43,
which is much smaller than 1. It estimated that the
divergence between human and mouse in clade Y
(tY) happened much earlier than the same event in
clade X (tX) (Fig. 12.2b). This result is clearly
inconsistent with the phylogenetic tree in
Fig. 12.2a and shows that strict-clock methods
produce biologically incorrect results if they are
used for data sets in which evolutionary rates vary
extensively among lineages. Smith and O’Meara
(2012) have also reported that PATHd8 was not
so reliable in analyses of empirical data sets and
simulated data sets when evolutionary rates
varied. Another least-squares method (Xia and
Yang 2011) minimizes the residual sum of
squares of patristic distance and distance
computed by the rate and time under the global
clock. This method, implemented in the DAMBE
software (Xia 2018a), also produced an incorrect
date ratio of 0.37 (Fig. 12.2c).

Table 12.1 A summary of available efficient non-Bayesian dating methods

Software
Statistical
basisa

Clock
typeb

Calibration
typec

Confidence
interval References

Lintre Regression SC F Bootstrap Takezaki et al. (1995)
PATHd8 MPL SC F, B Bootstrap Britton et al. (2007)
DAMBE LS SC, LC,

RC
F, B, S Bootstrap Xia and Yang (2011), Xia (2018a)

r8s LF, NPRS,
PL

SC, LC,
DC, RC

F, B, S Bootstrap Sanderson (1997, 2002, 2003)

treePL PL SC, RC F, B Likelihood Smith and O’Meara (2012)
Ape—chronos &
chronoMPL

PL, MPL SC,
DC, RC

F, B Bootstrap Paradis (2013)

MEGAX—RelTime,
RTDT

RRF SC, RC F, B, D, R,
S

Analytical Kumar et al. (2018), Tamura et al.
(2018), Tao et al. (2019), Miura et al.
(2020)

TipDate Regression SC S Likelihood Rambaut (2000)
TREBLE UPGMA SC S Bootstrap Yang et al. (2007)
Physher ML SC, LC,

DC
S Bootstrap Fourment and Holmes (2014)

LSD LS SC, RC S Bootstrap To et al. (2016)
treedater LS, ML SC, RC S Bootstrap Volz and Frost (2017)
TreeTime ML SC, RC S Likelihood Sagulenko et al. (2018)
aMPL mean path length, LS least squares, LF Langley–Fitch method (Langley and Fitch 1974), NPRS nonparametric
rate-smoothing, PL penalized likelihood, ML maximum likelihood, RRF relative-rate framework
bSC strict clock, LC local multi-rate clock, DC discrete multi-rate clock, RC relaxed clock
cF fixed node calibration, B node calibration boundary,D node calibration density, R substitution rate, S sampling tip date
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Therefore, the use of strict-clock methods is
appropriate only if lineages have evolved with a
strictly or nearly constant rate. The simplest way
to ensure that this condition is valid is to conduct
a molecular clock test. An early molecular clock
test was proposed by Fitch (1976) for data sets
containing two sequences and an outgroup, and
was followed by many others (Wu and Li 1985;
Muse and Weir 1992; Tajima 1993). For larger

data sets, equality of rates on multiple lineages
can be evaluated by least squares (Takezaki et al.
1995) and by likelihood-ratio tests (Nei and
Kumar 2000). Software packages such as
MEGA X (Kumar et al. 2018), LinTre (Takezaki
et al. 1995), PAML (Yang 2007), and DAMBE
can be used for testing the molecular clock. For
example, the difference in log likelihoods with
and without assuming the strict clock was
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Fig. 12.2 Molecular dating analysis of four DNA
sequences. (a) An example phylogeny of orthologous
DNA sequences of two zinc-finger genes (GenBank acces-
sion numbers gi296010876, gi113205066, gi223890138,
gi156938288, and gi363728820). The branch lengths are
shown in substitutions per 100 base pairs. This is an
excellent test case because the expected time for human–
mouse species divergence based on gene zfx (tX, red clade)
and zfy (tY, blue clade) should be the same (tX/tY ¼ 1), as
the gene duplication event occurred prior to the diversifi-
cation of mammals. Shown are the time-trees produced by

(b) PATHd8, (c) DAMBE with strict clock, (d) DAMBE
with relaxed clock, (e) treePL, (f) RelTime, (g)
MCMCTree (Bayesian) with the autocorrelated branch-
rates model, and (h) MCMCTree (Bayesian) with the
independent branch-rates model. Ratios of node ages for
human–mouse divergence based on zfx (tX, red arrow) and
zfy (tY, blue arrow) genes of all resulting time-trees are
labelled. One root calibration was used in PATHd8,
DAMBE, treePL, and Bayesian analyses. No calibrations
were used in the RelTime analysis

12 Efficient Methods for Dating Evolutionary Divergences 201



207.33 in PAML for the example data in
Fig. 12.2a. The likelihood-ratio test rejects the
molecular clock (P < 10�80, degrees of free-
dom ¼ 3) for this data set.

In fact, we expect the hypothesis of the strict
molecular clock to be readily rejected for most
contemporary data sets, which often consist of
many genes and/or genomic segments from
many species. Therefore, a practitioner usually
needs to use dating methods that do not assume
a strict clock. They might choose to apply local
clocks that allow different rates in different clades
(subtrees) in the phylogeny (Hasegawa et al.
1989; Yoder and Yang 2000). In local-clock
methods, a strict clock is assumed to exist within
each clade, so one needs to specify clades that
show rate homogeneity (clocklike evolution).
This is not straightforward to accomplish unless
there are clear biological reasons for defining
such clades (Sanderson 2002; Ho and Duchêne
2014). Consequently, methods that allow rates to
vary throughout the phylogeny are more practical
in analyses of real data.

12.2.2 Relaxing the Strict Clock

Relaxed-clock methods allow molecular dating
when evolutionary rates vary throughout the
tree. We focus on rapid non-Bayesian
approaches, as Bayesian approaches have been
discussed extensively elsewhere (dos Reis et al.
2016; Nascimento et al. 2017) and in Chaps. 6
and 13. Among the non-Bayesian approaches,
penalized likelihood and RelTime are often
used. Penalized likelihood estimates divergence
times under the statistical criterion that minimizes
the squared differences between ancestral and
descendent branch rates (Sanderson 1997,
2002). That is, large rate changes are penalized,
which is biologically intuitive because an ances-
tor and its direct descendants are likely to share
similar genomic properties, biological attributes,
and living environments, and thus will tend to
have more similar mutation rates (Gillespie
1984). This property would result in autocorrela-
tion in branch rates (Thorne et al. 1998; Kishino
et al. 2001) (Table 12.2).

The penalized-likelihood approach uses a pen-
alty parameter (λ) for penalizing rate changes
(Sanderson 2002). A large penalty will favour a
strict-clock model, because it will tend to assign
very similar rates to ancestor–descendant pairs.
Small values of λ will allow rates to vary through-
out the tree and will relax the molecular clock.
The optimal value of λ depends on the data set
being analysed and can be determined by a cross-
validation procedure (Sanderson 2002). In this
procedure, one terminal branch is removed from
the tree at a time, so its immediate ancestral node
and other branches are left in place. The rate and
node age of the immediate ancestral node is
estimated using the remaining branches for a
given λ. The optimal value of λ is that which
minimizes the difference between the observed
substitutions on the ancestral branch and the num-
ber of inferred substitutions, which is calculated
using the estimated rate and node age. This rate-
smoothing approach is effective when applied to
the example data in Fig. 12.2a. Penalized likeli-
hood produced an estimate of tX/tY ¼ 0.92
(Fig. 12.2e), which is much closer to 1 than that
from methods based on a strict clock. The original
penalized-likelihood method was implemented in
the r8s software (Sanderson 2003) and a faster
version is implemented in the treePL software
(Smith and O’Meara 2012) and in the R package
APE (Paradis 2013). The penalized-likelihood
method has also been adopted by Xia and Yang
(2011) in their strict-clock method to relax the
clock through rate smoothing (Xia 2018a). It pro-
duced a time ratio of 0.90 when applied to the
example data (Fig. 12.2d).

The RelTime approach is another relaxed-
clock method that minimizes differences between
the evolutionary rates of ancestral and descendent
lineages (Tamura et al. 2012, 2018). An evolu-
tionary lineage consists of a branch and the
descendent clade (including all of the taxa and
branches). For example, lineage a contains three
branches in Fig. 12.3, so the length of lineage
a (La) is based on b1, b2, and b5. Tamura et al.
(2018) presented a mathematical formulation that
produces relative lineage rates purely from the
branch lengths in a phylogeny. In their algebraic
relative-rate framework, the difference between
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rates in ancestral and descendent lineages is
minimized and the observed difference in evolu-
tionary rates between sister lineages is
accommodated.

The use of lineage rates, rather than the branch
rates, is a major difference between RelTime and
other relaxed-clock methods (Table 12.2). For
example, Bayesian methods use a statistical dis-
tribution (e.g., lognormal) as a prior to account for
the variation in branch rates across a phylogeny,
and the penalized-likelihood method smooths the
rate change between ancestral and descendent
branch rates using a global penalty function. If
we consider node 7 in Fig. 12.3, penalized-
likelihood computation will attempt to minimize
the difference between branch rates r5 and r1 and
for other pairs globally. In contrast, RelTime will
minimize the difference between lineage rates Ra

and R1 and other pairs individually. Therefore,
RelTime does not need to use any penalty
functions or distributional priors, which makes it
different from penalized-likelihood and Bayesian
methods. In the example four-taxon data,
RelTime produces a tX/tY ratio of 0.9, which is
close to 1.0 (Fig. 12.2f). The RelTime method is
available in the MEGA X software. Mello (2018)
has provided a detailed protocol for estimating
time-trees with RelTime in MEGA X.

Overall, we find that the time ratios
produced by non-Bayesian relaxed-clock
methods (Fig. 12.2d–f) are similar to the estimate

Table 12.2 Differences between Bayesian dating methods, penalized likelihood, and RelTime

Bayesian Penalized likelihood RelTime

Framework Bayesian statistics Penalized likelihood Algebra
Rate prior Independent or

autocorrelated
rates and probability
distributions

Autocorrelated rates
and a penalty parameter

Not needed

Tree prior Birth-death or
coalescent process

Not needed Not needed

Estimate Node times and branch
rates

Node times and branch rates Node times and
lineage rates

Uncertainty Credibility intervals Confidence intervals Confidence intervals
Consider site sampling error Yes Yes Yes
Consider rate variation Yes No Yes
Consider calibrations Yes; allow the use of

boundaries and
densities

Yes; allow the use of
boundaries

Yes; allow the use
of boundaries and
densities
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Fig. 12.3 An example phylogeny showing branch
lengths (b), branch rates (r), lineage lengths (L ), and
lineage rates (R). Ra is the rate of the lineage La that
consists of branches with lengths of b5, b1, and b2, and
Rb is the rate of the lineage Lb that consists of branches
with lengths of b6, b3, and b4. Lineage rates R1 to R4 are the
same as branch rates r1 to r4, so they are not shown.
Relative lineage rates can be computed in MEGA X from
branch lengths using Eqs. (6–9, 19–24) for arithmetic
means or (28–31, 34–39) for geometric means in Tamura
et al. (2018)
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generated by the Bayesian approach when an
independent branch-rate (IBR) model was used
(0.91, Fig. 12.2h). The use of an autocorrelated
branch-rate (ABR) model produced a time
ratio of 0.98, an estimate that is very close to
1 (Fig. 12.2g). The ABR model assumes that
the branch-specific molecular rates are
autocorrelated, such that closely related branches
share similar rates and distantly related branches
have more different rates (Thorne et al. 1998;
Kishino et al. 2001; Ho and Duchêne 2014).
The IBR model assumes molecular rates are inde-
pendent among branches, such that rates on
closely related branches do not need to be similar
(Drummond et al. 2006; Ho and Duchêne 2014).
Results from Bayesian analyses suggest that the
ABR model might fit these data better. In fact,
Tao et al. (2019) reported the autocorrelation of
branch rates to be the dominant pattern in molec-
ular phylogenies for diverse groups of species in
an analysis of DNA and amino acid sequences.
Therefore, the assumption of autocorrelation is
likely to be valid for this example data set.

12.2.3 Performance of Non-Bayesian
Relaxed-Clock Methods

Non-Bayesian relaxed-clock methods have been
tested extensively in computer simulations with
large data sets. Smith and O’Meara (2012)
conducted computer simulations under the ABR
model on large phylogenies (100–10,000 species)
and reported that the penalized-likelihood method
can achieve high accuracy in estimating diver-
gence times (see Fig. 1 in Smith and O’Meara
2012). However, they did not test the perfor-
mance of penalized likelihood using IBR data
sets and did not evaluate the accuracy of
divergence-time estimates node-by-node; their
investigations conducted using the treePL and
r8s software were rather limited in scope and
depth. In contrast, RelTime has been extensively
tested and has a well-justified mathematical foun-
dation (Tamura et al. 2018).

Tamura et al. (2012) conducted extensive
simulations under ABR and IBR scenarios on a

master time-tree of 446 taxa. In all scenarios,
RelTime produced estimates of node ages that
were close to the true values (Fig. 12.4a–c; also
see Figs. 3 and 5 in Tamura et al. 2012). RelTime
estimates were similar to those from the Bayesian
method in the IBR case where rate variation was
low (Fig. 12.4a). However, the Bayesian method
tended to overestimate divergence times (median
deviation ¼ 19%) when the rate variation in IBR
was larger (Fig. 12.4b). This pattern might relate
to the need to specify a single model of branch
rates in Bayesian methods. When the specified
rate model is not the correct model for the
observed rate variation, biased time estimates
might be produced. Model averaging can poten-
tially reduce this bias in Bayesian analysis (Li and
Drummond 2012). In contrast, RelTime does not
need to model branch rates and it performed much
better in this case (Fig. 12.4b, median devia-
tion ¼ �5%). RelTime also performed better
(median deviation ¼ �2%) than the Bayesian
method (median deviation ¼ 14%) for the ABR
data sets (Fig. 12.4c). Mello et al. (2021) also
reported RelTime to perform as well as Bayesian
methods for dating phylogenies that encompass
both species and population divergences using
simulated data sets.

Apart from the simulation tests, Chernikova
et al. (2011) and Gunter et al. (2016) reported
that penalized-likelihood methods produced
results consistent with those from Bayesian
analyses for some data sets. Mello et al. (2017)
and Battistuzzi et al. (2018) have also examined
many empirical data sets from different groups
across the tree of life and found that RelTime
produced time estimates that were very similar
to those from Bayesian methods, as long as the
equivalent calibration boundaries were used. Tao
et al. (2020) developed a method for utilizing
calibration densities in RelTime and found that
RelTime produced not only time estimates but
also the surrounding uncertainties that were com-
parable to those from Bayesian methods in empir-
ical data analyses.

In fact, some studies have found that
non-Bayesian methods performed better than
Bayesian methods when some priors (e.g.,
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branch-rate model) were incorrectly specified
(Tamura et al. 2012, 2018). For example, Tamura
et al. (2012) did a simulation test of a clade-
specific speed-up, where a random clade of at
least 50 taxa was selected to undergo a rate
increase while the rest of the branches remained
at their original rates simulated under the IBR
model. This meant that two different IBR models
were applied to the same phylogeny, where one
clade had a higher mean rate and the other clade
evolved more slowly. The Bayesian method
yielded accurate estimates in one clade, but
biased estimates in the other clade (Fig. 12.4d–e,
also see Fig. 5 in Tamura et al. 2012). This
occurred because the single model of branch-
rate variation was unable to account for the het-
erogeneity associated with multiple contrasting

clade-specific rate variations. However, RelTime
performed well and generated accurate time
estimates for both clades (Fig. 12.4d–e), because
RelTime does not require the specification of a
branch-rate model.

Therefore, the high computational speeds
afforded by some of the non-Bayesian dating
methods do not come at the expense of accuracy.
In fact, whenever possible, it is prudent to analyse
data by using methods based on different statisti-
cal frameworks to obtain reliable estimates and to
assess the potential biases introduced by the
assumptions and methods (see Sect. 12.9). How-
ever, efficient non-Bayesian methods might be
the only feasible option for many users for
analysing large data sets containing thousands of
genes and species (e.g., Li et al. 2019).
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Fig. 12.4 Distributions of the normalized differences
between true node times (NT) and estimated times
obtained from RelTime and MCMCTree for internal
nodes. Comparisons of the performance of RelTime
(black curve) and MCMCTree (grey curve) for data sets
simulated under (a) independent branch-rates (IBR) model
with low variation, (b) IBR model with high variation, and

(c) autocorrelated branch-rates (ABR) model.
Comparisons of the performance of RelTime (black
curve) and MCMCTree (grey curve) for estimating node
times (d) outside the speed-up clades and (e) inside the
speed-up clades. Data and results are from Tamura et al.
(2012). Dashed grey line indicates the 0% difference in NT
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12.2.4 Eliminating Rate Variability
Before Molecular Dating

Before proceeding further, let us consider
approaches to reduce or eliminate rate variation
in data sets containing multiple genes or genomic
segments, before applying clock methods. This is
important because high rate variation is a key
contributor to the uncertainty in time estimates
(Zhu et al. 2015; Kumar and Hedges 2016). By
reducing the degree of molecular rate variation in
a phylogeny, both the accuracy and precision of
time estimates might be improved.

We can eliminate (or reduce) evolutionary rate
variation by excluding species that have evolved
significantly more quickly or slowly than the rest
in a sequence alignment, or by excluding genes
that fail the molecular clock test. For data sets that
contain large numbers of genes and genomic
segments, this is a viable option for dating species
divergences (Hedges et al. 1996; Smith et al.
2018). In the 1990s, Hedges et al. (1996) and
Kumar and Hedges (1998) applied this strategy
to date major mammalian and vertebrate
divergences, respectively, because relaxed-clock
methods were not available at that time. In those
early multigene studies, genes and species failing
the molecular clock test of Tajima (1993) were
removed before divergences were dated using a
strict clock. These analyses revealed that major
orders of placental mammals and of birds were
likely to have originated prior to the K-Pg extinc-
tion (Hedges et al. 1996), which challenged the
hypothesis of adaptive radiation and founded a
very active area of biological research (Kumar
and Hedges 1998; Eizirik et al. 2001; dos Reis
et al. 2014; Phillips 2015; Prum et al. 2015).
Takezaki et al. (1995) presented a statistical
approach to detect lineages that evolved at rates
that were significantly different from the
phylogeny-wide average. Using such gene- and
species-elimination approaches, evolutionary
timescales were assembled from many large data
sets, including those for Hawaiian drosophilids
(Russo et al. 1995), diatoms (Kooistra and Medlin
1996), metazoans (Wray et al. 1996), and major
eukaryote lineages (Doolittle et al. 1996; Feng
et al. 1997).

Smith et al. (2018) proposed a ‘gene shopping’
approach that extended the original practice of
Hedges et al. (1996) to genes that passed the
molecular clock test in large phylogenies. Their
strategy also requires that the selected genes have
a sufficient number of informative sites and that
selected gene trees are highly concordant with the
species tree. They reported that the application of
strict-clock or relaxed-clock methods on the
selected clocklike genes improved the precision
of time estimates by more than 50%, as the 95%
highest posterior density (HPD) intervals became
much narrower. The higher precision is achieved
by reducing the rate heterogeneity in the phylog-
eny, which is a key contributor to wide 95% HPD
intervals. Higher precision of estimates enables
more powerful tests of biological hypotheses and
helps to establish evolutionary and ecological
patterns more reliably.

Even after ‘gene shopping’, it is possible that
some intrinsic directional rate variation remains
in the data set because molecular clock tests are
not so powerful when sequences are short or the
evolutionary rate is low. This can be remedied by
applying a more stringent clock test to exclude
genes and species showing even small rate
differences (Kumar and Hedges 1998; Hedges
and Kumar 2003; Hedges and Shah 2003). We
also propose that one should do ‘species shop-
ping’ to remove species that show evolutionary
rates significantly different from others before
conducting molecular clock dating, to further
reduce rate variation and the uncertainty in time
estimates (Takezaki et al. 1995; Hedges et al.
1996). In our view, whenever feasible, a combi-
nation of gene shopping and species shopping
with relaxed-clock methods is the best strategy
when many genes and species are available for
estimating divergence times.

12.3 Utility of Relative
Divergence Times

All of the non-Bayesian methods can generate
relative times directly from a phylogeny in
which branch lengths are either provided by the
user or inferred from the sequence data using a
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model of nucleotide or amino acid substitution.
The ability to produce relative node ages and rates
without using any branch-rate model, speciation
model, and even calibration priors can have many
benefits (Tamura et al. 2012). First, the relative
node ages obtained without any calibrations can
be used to identify the calibration constraints or
densities that would be expected to have a notable
impact on the final time estimation (Marshall
2008). This is because the relative and absolute
(‘calibrated’) node ages should be linearly related
when calibration constraints and/or densities do
not conflict with the signal from molecular data
(Battistuzzi et al. 2015).

Second, the estimates of relative rates can be
directly used to identify lineages with signifi-
cantly lower or higher evolutionary rates, because
the standard errors of the relative-rate estimates
are available. Those lineages are potentially very
interesting because they might indicate the pres-
ence of strong selective pressure and other
biological factors (Chikina et al. 2016). In addi-
tion, the relative rates computed from branch
lengths only, without knowing node times, pro-
vide insights into evolutionary patterns between
the ingroup and outgroup sequences. If the
distributions of lineage rates are significantly dif-
ferent, the assumption of the same pattern of rate
variation between the ingroup and outgroup taxa
might need to be reconsidered.

Third, the relative lineage rates estimated by
RelTime can be used for generating new tests of
biological hypotheses and for model selection.
Tao et al. (2019) used these lineage rates and the
machine-learning framework to develop a new
statistical test (called CorrTest) that can distin-
guish between IBR and ABR models, which has
been challenging previously (Paradis 2013; Ho
et al. 2015a). CorrTest performed better than
other methods in detecting the presence of rate
autocorrelation in a simulation analysis.

Fourth, the relative divergence times might be
useful for detecting clades that have undergone a
shift in the rate of diversification, which might
indicate the effect of a geological event or the
appearance of an ecological niche. Therefore,
the knowledge of relative times and rates is useful
for discovering exciting biological patterns,

developing new methods, and examining the
impact of fossil constraints or other prior settings.

12.4 Inferring Absolute
Divergence Times

12.4.1 Dating with a Fixed Global
Evolutionary Rate

A substantial proportion (12%) of molecular
clock studies have been found to use a fixed
substitution rate to calibrate the molecular clock
(Hipsley and Müller 2014). This is the only
choice in cases where no node calibrations are
available. An average evolutionary rate from
another species group is used to date the
divergences in the species group of interest. The
estimation of node times is simple in this case: a
fixed evolutionary rate is used to convert node
heights (in substitutions per site) into divergence
times. One just needs to divide all the node
heights (in substitutions per site) by the fixed
rate of evolution (in substitutions per site per
time unit, such as years or million years). Some
dating programs (e.g., MEGA X) provide such an
option. The use of a fixed rate is only reasonable
if there is a good reason to believe that the aver-
age evolutionary rates and the biological markers
are the same between the species group from
which the calibration rate has been derived and
the species group to which it is being applied
(Wilke et al. 2009). Also, the reliability of the
fixed substitution rate depends on the calibrations
used in the study from which the rate is obtained
(Ho and Phillips 2009).

12.4.2 Dating with a Fixed Node
Calibration

A better approach is to derive the clock calibra-
tion by using a known divergence time for a
node in a phylogeny and then to scale all other
node ages in this phylogeny based on this clock
calibration. This approach does not require one to
assume a molecular clock, because rapid relaxed-
clock methods can deal with rate differences
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among branches and lineages to generate an
ultrametric tree. The clock calibration is the rela-
tive node height divided by fixed time in the
ultrametric tree, and then this calibration sets the
scale to convert relative times into absolute times.
In MEGA X and other programs (Sanderson
2003; Britton et al. 2007; Smith and O’Meara
2012; Xia 2018a), this can be easily done by
assigning a fixed time to a node, which converts
all other node heights into times.

For analyses with fixed node calibrations, cal-
ibration times can come from biogeography or
from ecological/environmental considerations.
In fact, a literature survey of molecular dating
studies has shown that 15% used times derived
from geological events that were associated with
geophysical isolation or the appearance of new
habitats (Hipsley and Müller 2014). These
calibrations can be derived from vicariance,
geodispersal, or biological dispersal (Ho et al.
2015b). The geological event is a good source
of calibration especially for the species that were
directly affected by that event (see Chap. 9).
However, it is not appropriate to use those
calibrations if the research goal is to test the
impact of those geological events
(Kodandaramaiah 2011). Similarly, one can use
the fossil record to obtain an estimate of a single
divergence time in the tree, which is then used to
calibrate the clock. Many early studies used a
single calibration point because gene-specific
alignments generally contained only a few spe-
cies (e.g., Hedges et al. 1996).

12.4.3 Dating with Multiple Node
Calibrations

The most common approach to calibrate a molec-
ular clock is to use many dates derived from the
fossil record (Hipsley and Müller 2014). As
expected, this practice is particularly common
for fossil-rich groups in the tree of life (Ksepka
et al. 2015). In fact, studies have been using
increasingly large numbers of calibrations, with
some contemporary analyses incorporating many

tens of calibrations (e.g., Meredith et al. 2011; dos
Reis et al. 2015; Barba-Montoya et al. 2018;
Morris et al. 2018).

12.4.3.1 Using Multiple Fixed
Calibrations or Calibration
Constraints

Efficient non-Bayesian relaxed-clock methods
allow the use of multiple point calibrations. For
example, RelTime uses a linear regression
between the relative node heights in the
ultrametric tree and all of the user-supplied fixed
calibration points. The resulting scaling factor ( f )
then converts all of the relative times into abso-
lute divergence times. In practice, however, fossil
dates do not correspond directly to actual species
divergence times, so they are rarely used as fixed
calibration points. Instead, the earliest fossil
record usually provides a reliable minimum age
constraint on a node in the phylogeny (Hedges
and Kumar 2004). In some cases, it is possible to
place a maximum age constraint, but these are
usually difficult to determine (Marshall 2008;
Ho and Duchêne 2014; Bromham et al. 2018;
Hedges et al. 2018). In practice, despite these
difficulties, many researchers prefer to impose
both minimum and maximum constraints on mul-
tiple nodes in the phylogeny.

RelTime can use all types of constraints in
calibrating the molecular clock. It generates a
global time factor ( f ) that produces time
estimates that best satisfy the calibration
constraints. If there is a range of f values that do
not violate the calibration constraints, then the
midpoint of that range becomes the estimate of
f. When one or more of the absolute times fall
outside the calibration constraints, then f is set so
that the deviation from the calibration constraints
is minimized. After that, times for calibrated
nodes are adjusted to ensure that the calibration
constraints are fully respected, such that the
estimated times for any offending nodes are
between the minimum and maximum constraint
times specified by the user. This requires altering
local evolutionary rates, which prompts
re-optimization of all other node times in the
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tree recursively in the RelTime algorithm
(Tamura et al. 2013; Tao et al. 2020).

The penalized-likelihood method adds age
constraints in the optimization of the penalty
functions of rate smoothing, to ensure that the
absolute times are within the calibration
constraints imposed by the researcher (see the
documentation for the r8s software). PATHd8
also smooths rates to resolve the conflicts
between estimated ages and calibrations. How-
ever, PATHd8 requires the specification of at
least one fixed node age as the anchor calibration,
which is used to scale relative dates to absolute
dates as the first step. Then, the method smooths
rates of sister lineages to fit all calibration
constraints (Britton et al. 2007). Also, because
PATHd8 is fundamentally a strict-clock method,
it has limited power in smoothing the rates com-
pared with the relaxed-clock methods (e.g.,
penalized likelihood and RelTime). The least-
squares-based method (DAMBE) utilizes the cal-
ibration bounds during the minimization of the
residual sum of squares (RSS) of patristic
distances and pairwise distances computed
based on the evolutionary rate and predicted
divergence times (Xia and Yang 2011). In this
case, times used to compute the distance are con-
trolled by the calibration constraints imposed in
the RSS minimization. To minimize the RSS, the
resulting times will be equal to the maximum or
minimum bounds in some cases (Xia and Yang
2011).

12.4.3.2 Using Calibration Constraints
with Probability Densities

In addition to minimum and/or maximum
constraints, it is becoming commonplace to use
probability densities that reflect prior belief about
the possible location of the true species diver-
gence time relative to the minimum and/or maxi-
mum constraints. Early on, Hedges and Kumar
(2004) mentioned several possible distributions
(triangular, lognormal, and uniform densities) to
model such calibration uncertainty. However,
they preferred a uniform distribution for their
studies due to a lack of additional information

about the true density (Meredith et al. 2011;
Morris et al. 2018). With the development of
Bayesian methods, it became possible to incorpo-
rate any desired probability density in molecular
dating (Drummond et al. 2006; Yang and Rannala
2006; Barba-Montoya et al. 2017). Indeed,
more recent studies use nonuniform distributions
(e.g., Cauchy, lognormal, and exponential
distributions) in which a stronger constraint is
placed on the minimum time. As expected, the
quality of the calibrations and the density
assumptions have a major impact on divergence-
time estimates in Bayesian analyses, even if a
huge amount of molecular data is available
(Barba-Montoya et al. 2017; Bromham et al.
2018).

Tao et al. (2020) have developed an approach
to incorporate such densities and automatically
accommodate the interactions among calibrations
in the RelTime method. The new approach
resamples calibration constraints from densities
many times, to generate a distribution of times
for each calibrated node that is analogous to the
‘effective prior’ in Bayesian approaches, and then
derives minimum and maximum bounds (called
effective bounds) for use in the RelTime analysis
to estimate divergence times and confidence
intervals. Confidence intervals produced by this
approach overlapped with those reported by the
Bayesian analyses and were much narrower than
those generated by using the original approach
that did not account for interactions among
calibrations in RelTime (Tao et al. 2020). The
new approach is available in MEGA X for the
RelTime method. These effective bounds can also
be used in penalized likelihood and other
non-Bayesian dating analyses.

12.4.3.3 Using Molecular Dates
as Calibrations (Secondary
Calibrations)

Many studies use previously published molecular
dates to calibrate the clock. These are referred to
as secondary calibrations because they are not
based on direct fossil or biogeographical data,
but rather on inferred molecular dates. A literature
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survey found that about 15% of studies have used
secondary calibrations (Hipsley and Müller
2014). The use of secondary calibrations traces
its origins to Kumar and Hedges (1998). They
estimated vertebrate divergence times using a
secondary mammalian calibration, which was
inferred by using the bird-mammal divergence
time from the fossil record. This procedure was
needed for inferring intra- and interordinal dates
using protein sequence alignments that lacked
bird sequences. This approach enabled them to
increase the number of genes that could be used to
infer divergence times. In fact, Hedges and
Kumar (2004) suggested that, in some situations,
more accurate time estimates might be obtained
by using a secondary calibration from a robust
source than by using an unreliable primary fossil
calibration.

Secondary calibrations continue to be used for
groups that have limited fossil records, such as
bacteria (Chriki-Adeeb and Chriki 2016) and
fungi (Heckman et al. 2001). They have also
been used in several recent studies to increase
the total number of available calibrations for dat-
ing large phylogenies that contain hundreds of
species (e.g., dos Reis et al. 2012, 2018). Ulti-
mately, one must use secondary calibrations judi-
ciously, because this practice might produce
results significantly different from those produced
by using primary calibrations (Graur and Martin
2004; Sauquet et al. 2012; Schenk 2016). How-
ever, Hedges and Kumar (2004) found that the
inconsistencies in times estimated using the pri-
mary and secondary calibrations reported by
Graur and Martin (2004) were caused by an incor-
rect assumption of Gaussian distribution of
multigene times and, thus, an incorrect calcula-
tion of the time and confidence intervals. The
actual distribution should be very skewed because
of the small sample size and a large extrapolation.
In fact, Morrison (2008) suggested that a lognor-
mal distribution is the most appropriate to model
a secondary calibration. The time estimated using
the secondary calibration was consistent with the
primary time when a skewed distribution was
assumed (Hedges and Kumar 2004). Clearly, fur-
ther research is needed to inform best practices for
using secondary calibrations.

12.5 Molecular Dating with Missing
Sequence Information

Modern studies often involve large data sets with
hundreds of species and genes, due to the growth
of public databases and dramatically decreased
sequencing costs. However, a disadvantage of
building and using such big data sets is that they
might contain a large proportion of missing data.
For example, the alignment analysed by Barba-
Montoya et al. (2018) had 71.4% missing data.
Fortunately, both empirical and simulation stud-
ies have found that missing data had little impact
on divergence-time estimation by both Bayesian
and non-Bayesian dating methods, especially
when multiple calibrations were used (Douzery
et al. 2004; Filipski et al. 2014; Zheng and Wiens
2015). These results indicate that molecular time
estimation is robust even when sequences are
missing from the majority of genes for most of
the species. However, if the data are highly or
systematically sparse, resulting in pairs of species
with no common genes, then divergence-time
estimation can be seriously misled, especially
when only a few or no calibrations are used
(Filipski et al. 2014; Zheng and Wiens 2015).

Filipski et al. (2014) showed that time
estimates for nodes with zero data coverage (i.e.,
nodes without any common genes for any pair of
species in the immediate descendent clades) were
unreliable because there were no data to allow the
corresponding branch lengths to be estimated. In
general, the accuracy of branch-length estimates
is low when the overall number of informative
characters is small, which would result in poor
time estimates (Wiens and Moen 2008; Wiens
and Morrill 2011). Limited numbers of informa-
tive sites in sequence alignments can reduce the
accuracy and precision of time estimates and,
thus, lead to spurious changes in diversification
rates (Marin and Hedges 2018) and mislead sta-
tistical tests of evolutionary rate correlation (Tao
et al. 2019). Therefore, it is important to detect
nodes with low or zero data coverage before any
dating analysis.

One can use MEGA X to visualize data cover-
age for each node in a phylogeny (Fig. 12.5). The
data coverage for each node in the phylogeny is

210 Q. Tao et al.



the percentage of positions at which at least one
pair of sequences in the descendent clades has a
valid nucleotide base or amino acid residue. For
example, node A has a data coverage of 25%
because only one out of four sites has a valid
state between sequences S4 and S5. Node B has
a data coverage of 0%, because S3 does not share
any positions with a valid state in either S4 or S5
(Fig. 12.5). When the data coverage is zero
(or low), there is no (or limited) ingroup informa-
tion to allow the estimation of branch lengths
(branch lengths ¼ 0), and RelTime will predict
that no time has elapsed on that branch. This
results in the age of node B (tB) becoming the
same as the age of node D (tD) (Filipski et al.
2014). Therefore, dates for nodes with high data
coverage are expected to be estimated with higher
accuracy.

12.6 Estimation of Confidence
Intervals

In Bayesian methods, the credibility intervals or
HPD intervals of node ages can be derived from
the posterior distributions of times. Although the
Bayesian credibility intervals and HPD intervals
are not the same as the traditional analytical con-
fidence intervals used in frequentist statistics

(Jaynes and Kempthorne 1976), many researchers
interpret them in a similar way. However, for
non-Bayesian methods, the calculation of confi-
dence intervals is complex. This is because it is
difficult to generate analytical equations to
account for the variance in node times introduced
by the stochastic error in branch-length estima-
tion, the rate heterogeneity among branches, and
the uncertainty of calibrations. Therefore, many
non-Bayesian methods (e.g., penalized likeli-
hood) compute confidence intervals for diver-
gence times by using the bootstrap approach, in
which only sites or genes of molecular sequences
are resampled. This leads to overly narrow confi-
dence intervals because the site-bootstrapping
approach only captures errors associated with
the estimation of branch lengths in the tree. It
cannot account for the variance introduced by
evolutionary rate differences among lineages,
which can have a big impact on the precision of
time estimation (Kumar and Hedges 2016)
(Table 12.2).

Tamura et al. (2013) suggested a method to
generate confidence intervals encompassing the
error due to branch-length estimation and rate
variation for the RelTime method. Tao et al.
(2020) improved this method and presented the
analytical equations to compute confidence
intervals for RelTime reliably, which is available
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Fig. 12.5 An example of computing node data coverage
for a phylogeny containing five species (S) and four nucle-
otide bases or amino acid residues (b) in the alignment
matrix. Node times are given by ti. Not all bases are

available for each species. The available states are
designated by check marks and missing ones are indicated
by dashes in the matrix. The percentage of data coverage
of each internal node is shown
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in MEGA X. Simulation analyses showed that
RelTime performed better than Bayesian methods
and produced confidence intervals with high
probabilities of containing the true values
(�94%) for both small and large data sets when
a minimum number of calibrations was used.

The uncertainty in calibrations is also an
important source of estimation error in the infer-
ence of divergence times. Therefore, reliable and
well-constrained calibrations can be very effec-
tive in reducing the widths of confidence
intervals. Bayesian methods use different proba-
bility densities to accommodate the uncertainty
in calibrations and to account automatically for
the interaction among calibrations. Tao et al.
(2020) have developed a new method for use in
the RelTime framework to derive calibration
boundaries from probability densities that
account for their interactions (mentioned above).
The resulting confidence intervals are comparable
to the HPD intervals generated from Bayesian
methods in empirical analyses (Tao et al. 2020).
This method, with modifications, can also be used
for other non-Bayesian methods (e.g., penalized
likelihood).

12.7 Dating
with Non-contemporaneous
Molecular Data

In some studies, molecular sequences are
obtained from biological samples that have been
acquired at different times. This is common in the
analysis of DNA and protein sequences from fast-
evolving pathogens and those generated from
ancient samples (Rambaut 2000; Stadler and
Yang 2013; Biek et al. 2015). This makes the
tips of the evolutionary tree asynchronous. Sev-
eral rapid dating methods have been developed
for this type of sequence data (see also Chap. 10).
As with the evolution of methods for dating
analyses of contemporaneous data, the first
approaches to be developed were based on a strict
clock. In the single-rate dated tips (SRDT)
method, the slope of a linear regression between
the root-to-tip distances (or pairwise distances
from the outgroup sequence) and the sampling

dates is used to determine the global rate and
the dates for the internal nodes (Li et al. 1988;
Bollyky and Holmes 1999; Rambaut 2000).
SRDT is a very fast method and has been
implemented in the TipDate software (Rambaut
2000). Some UPGMA-like methods, such as
serial-sampled UPGMA (Drummond and
Rodrigo 2000) and TREBLE (Yang et al. 2007),
were also developed under the strict-clock
model. The least-squares method of Xia and
Yang (2011), implemented in the DAMBE
software, can also be modified to analyse
non-contemporaneous data to minimize the resid-
ual sum of squares under a global clock (Xia
2018b).

Non-Bayesian methods that relax the assump-
tion of rate constancy have also been developed,
and they do not require the specification of many
priors as in Bayesian approaches (To et al. 2016;
Miura et al. 2020). Maximum-likelihood methods
have been developed to estimate substitution rates
and node dates under local and discrete clocks
(Physher; Fourment and Holmes 2014) and under
a relaxed clock (TreeTime; Sagulenko et al.
2018). TreeTime uses a normal prior to control
the rate variation to be more autocorrelated-like
or independent-like. The penalized-likelihood
method implemented in r8s can also be used for
dating non-contemporaneous data (Sanderson
2003). To et al. (2016) developed a least-squares
dating (LSD) method that assumes the noise in
molecular rates to be normal-like to account for
independent rate variation across branches. Volz
and Frost (2017) combined the maximum-
likelihood and least-squares criteria to develop
treedater. Miura et al. (2020) developed a method
based on the RelTime approach, called RelTime
with Dated Tips (RTDT), and the method is avail-
able in MEGA X.

Many of these non-Bayesian methods have
been evaluated using data sets simulated under
IBR models. They perform as well as Bayesian
methods in estimating substitution rates and the
root age (Fourment and Holmes 2014; To et al.
2016; Volz and Frost 2017; Sagulenko et al.
2018). Miura et al. (2020) conducted a bench-
mark study to assess the performance of various
Bayesian and non-Bayesian methods in
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estimating divergence times for a large collection
of simulated data sets, which were simulated
under ABR and IBR models, using different tree
shapes, and with strong and weak temporal
signals. For data sets with moderate or strong
temporal signals, RTDT performed better than
other non-Bayesian methods because it produced
good node-by-node time estimates and reliable
confidence intervals that often contained the true
values. Other non-Bayesian methods (e.g., LSD
and TreeTime) performed well for IBR data sets,
but not for ABR data sets. When there was a weak
temporal signal in the data, Bayesian methods
provided better estimates than non-Bayesian
methods, as long as the correct rate model was
specified. Tong et al. (2018) also suggested that
non-Bayesian methods produced reliable rate
estimates when the evolutionary rate was high,
but that Bayesian methods generated slightly bet-
ter estimates when there was a low evolutionary
rate and weak temporal signal.

Non-Bayesian methods also allow the data to
have missing sampling dates or to have
uncertainties in the sampling dates (Volz and
Frost 2017; Sagulenko et al. 2018; Miura et al.
2020). All of these non-Bayesian methods are
orders of magnitude faster than Bayesian methods
(Volz and Frost 2017; Miura et al. 2020), so they
provide the feasibility of dating phylogenies with
thousands of tips and sampling dates, which are
expected to become increasingly common in
molecular epidemiology. Miura et al. (2020)
provided brief guidelines for users to select the
most appropriate method for tip-dating analysis,
based on the characteristics of the data set being
analysed.

12.8 Phylogenetic Uncertainty

In the above, we focused on the application of
non-Bayesian methods for estimating divergence
times and confidence intervals for a given topol-
ogy, because molecular dating is frequently done
after inferring a phylogenetic tree. Ideally, one
would obtain a reliable tree topology using maxi-
mum likelihood and other methods, and then

estimate divergence times and their uncertainties
based on this fixed topology. If the inferred tree is
inaccurate, divergence times estimated for many
of the nodes will be meaningless, because they
would not correspond to actual evolutionary
divergence events. The placement of calibrations
can also become complicated when the phyloge-
netic tree is not well established. The presence of
uncertainty in the tree topology is expected to
inflate the uncertainty of divergence-time
estimates (Ho 2009).

In some situations, however, one might fix the
nodes of interest and allow the rest of the phylog-
eny to be inferred from the data. In this case, it is
possible to apply a chosen non-Bayesian method
to each alternative topology and report the mean
time estimate, the standard deviation, and a sum-
mary confidence interval around the meantime of
the node of interest across all of the candidate
topologies. For example, it is of great interest to
date the origin of a set of pathogenic strains in
tip-dating analyses. The accuracy of time
estimates for this node has been tested in simula-
tion analyses by using phylogenies inferred from
the sequence alignment, rather than fixing the
topology (To et al. 2016; Volz and Frost 2017;
Sagulenko et al. 2018; Miura et al. 2020). The
results of these analyses have been very encour-
aging, with RTDT and other non-Bayesian
methods producing reliable estimates for this
node. Similar procedures can be applied to dating
species and divergences between duplicated
genes by using relaxed non-Bayesian methods.

12.9 Concluding Remarks

We anticipate that RelTime, penalized likelihood,
and other non-Bayesian methods will become
more widely used for a number of reasons. First,
the computational speed and reliable inferences
offered by these non-Bayesian methods allow one
to use larger data sets for dating the tree of life
or for testing biological hypotheses. Because
Bayesian methods often demand large amounts
of computational time and memory, many
researchers adopt a divide-and-conquer approach
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by running the Bayesian methods on small
partitions and gluing the results together (Misof
et al. 2014; Oliveros et al. 2019). Alternatively,
researchers might filter the genes until the size of
the remaining data set is feasible for Bayesian
inference (Hughes et al. 2018). This situation is
going to become more acute, because progress in
sequencing technology has been a boon for
molecular systematics and biodiversity research,
leading to a two-dimensional expansion of data
sets (sites and species) available for dating studies
(e.g., Zeng et al. 2014; Testo and Sundue 2016;
Zheng and Wiens 2016; Barba-Montoya et al.
2018; Hughes et al. 2018). For this reason, faster
Bayesian implementations are also being devel-
oped (Åkerborg et al. 2008; Lartillot et al. 2013).

Second, the use of efficient and reliable
methods will enhance scientific rigour by
allowing an assessment of the robustness of
estimates to the assumptions made in dating
analyses. Such analyses might involve studying
the effects of using different combinations of
genes, species, calibrations, and priors. Owing
to computational time requirements, such
explorations can be difficult for large data sets.
Rapid non-Bayesian methods provide researchers
with a toolkit to test the sensitivity of molecular
time estimates and to improve downstream
investigations of the biological process.

Third, the computational time requirements
imposed by Bayesian methods make it challeng-
ing to examine the accuracy and precision of their
estimates for large data sets, whereas rapid
non-Bayesian methods have been tested on data
sets with hundreds to thousands of species (Smith
and O’Meara 2012; Tamura et al. 2012, 2018). A
high computational burden also discourages inde-
pendent evaluation of Bayesian date estimates by
others interested in reproducing the results. Many
practitioners are frustrated by the fact that inde-
pendent attempts to simply reproduce the results
of Bayesian dating can take weeks to months, and
can only be pursued by research groups with
access to extensive computing resources. This
delays, and even impedes, scientific discourse
and progress. The presence of reliable, efficient
non-Bayesian methods is very useful and makes
molecular dating accessible to all, including those

without ready access to high-performance com-
puting infrastructure.

Admittedly, Bayesian methods are useful
when one wishes to incorporate some other infor-
mation into divergence-time inference (e.g., bio-
geographic data) or to get a joint inference of
some other phylogenetic features (e.g., popula-
tion dynamics parameters). However, whether
the inclusion of additional information or the
joint inference will improve the accuracy of
divergence-time estimation requires more exten-
sive study, because appropriate settings for priors
are usually unknown.

In fact, we suggest that users apply both
Bayesian and non-Bayesian methods to obtain
estimates of divergence times and their confi-
dence intervals for molecular data sets, where
possible. This would allow us to detect potential
biases introduced by the assumptions and
methods. Nevertheless, it is important to note
that concordance between time estimates from
Bayesian and non-Bayesian approaches should
not be taken to suggest that the estimated times
are correct. This is because the estimation of
absolute divergence times highly depends on
the calibration constraints used, and all methods
will be negatively affected if the calibration
constraints or densities used are incorrect
(Battistuzzi et al. 2015; Hedges et al. 2018). For
example, the use of an exponential density
indicates a very high probability that the node
age is close to the minimum constraint (Hedges
and Kumar 2004; Ho and Duchêne 2014). With-
out proper justification and prior independent
data, the choice of calibration density is largely
subjective (Heath 2012; Bromham et al. 2018),
which can adversely affect molecular date
estimates. Different density distributions, even
with the same minimum and maximum bounds,
can produce different posterior time estimates in
Bayesian methods (dos Reis et al. 2015; Barba-
Montoya et al. 2017; Warnock et al. 2017; Morris
et al. 2018). In addition, there are concerns about
the imposition of maximum constraints on node
times, because the fossil record only provides
reliable minimum constraints (Battistuzzi et al.
2015; Bromham et al. 2018; Hedges et al.
2018). Therefore, one needs to examine the
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reliability of calibrations before conducting dat-
ing analyses (Andújar et al. 2014; Battistuzzi
et al. 2015; Hedges et al. 2018).

In general, we see no reason for avoiding
non-Bayesian methods for constructing time-
trees, given that they are computationally efficient
and produce estimates of divergence times and
their surrounding uncertainties that are scientifi-
cally rigorous and reproducible. In particular,
efficient non-Bayesian methods might be the
only feasible option for many users for analysing
large data sets containing thousands of genes and
species.
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