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Gene expression in a developing embryo occurs in particular cells (spatial patterns) in a time-

specific manner (temporal patterns), which leads to the differentiation of cell fates. Images of

a Drosophila melanogaster embryo at a given developmental stage, showing a particular gene

expression pattern revealed by a gene-specific probe, can be compared for spatial overlaps. The

comparison is fundamentally important to formulating and testing gene interaction hypotheses.

Expression pattern comparison is most biologically meaningful when images from a similar time

point (developmental stage) are compared. In this paper, we present LdaPath, a novel formulation

of Linear Discriminant Analysis (LDA) for automatic developmental stage range classification. It

employs multivariate linear regression with the L1-norm penalty controlled by a regularization

parameter for feature extraction and visualization. LdaPath computes an entire solution path for

all values of regularization parameter with essentially the same computational cost as fitting one

LDA model. Thus, it facilitates efficient model selection. It is based on the equivalence relation-

ship between LDA and the least squares method for multiclass classifications. This equivalence

relationship is established under a mild condition, which we show empirically to hold for many high-

dimensional datasets, such as expression pattern images. Our experiments on a collection of 2705

expression pattern images show the effectiveness of the proposed algorithm. Results also show that
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the LDA model resulting from LdaPath is sparse, and irrelevant features may be removed. Thus,

LdaPath provides a general framework for simultaneous feature selection and feature extraction.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—

Data mining

General Terms: Algorithms

Additional Key Words and Phrases: Gene expression pattern image, dimensionality reduction,

linear discriminant analysis, linear regression
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1. INTRODUCTION

Understanding the roles of genes and their interactions is one of the central
themes of genome research. One popular approach, based on the analysis of mi-
croarray gene expression data [Golub et al. 1999; Gurunathan et al. 2004], often
does not capture spatial patterns of expression. In contrast, the classic genetic
analysis of spatial patterns of gene expression relies on the direct visualization
of the presence or absence of gene products (mRNA or protein). Recent ad-
vances in the in situ hybridization technique allow us to localize specific mRNA
sequences in morphologically preserved tissues/cells by hybridizing the comple-
mentary strand of a nucleotide probe to the sequence of interest. Large numbers
of images of a Drosophila melanogaster embryo at a given developmental stage,
showing a particular gene expression pattern revealed by a gene-specific probe,
are now available [Tomancak et al. 2002]. It is thus possible to study and un-
derstand the interplay of genes in different stages of development through the
examination of the spatial overlap of patterns of gene expression [Carroll et al.
2005; Gurunathan et al. 2004; Kumar et al. 2002; Peng and Myers 2004].

Estimation of the pattern overlap is most biologically meaningful when im-
ages from a similar time point (developmental stage) are compared. Stages
in Drosophila melanogaster development denote the time after fertilization at
which certain specific events occur in the developmental cycle. Embryogene-
sis is traditionally divided into a series of consecutive stages distinguished by
morphological markers [Bownes 1975] (see Figure 1). The duration of devel-
opmental stages varies from 15 minutes to more than 2 hours; therefore, the
stages of development are differentially represented in the embryo collections.
The first 16 stages of embryogenesis are divided into six stage ranges (stages
1–3, 4–6, 7–8, 9–10, 11–12, and 13–16). We are interested in how image analy-
sis can be used for automatic stage range annotation (classification). In recent
high-throughput experiments [Tomancak et al. 2002], each image is assigned
to one of the stage ranges manually.

It has been observed that across the various developmental stages, image tex-
tural properties at a subblock level are a distinguishing feature, because image
texture at the subblock level changes as embryonic development progresses
[Ye et al. 2006] (Figure 1). Gabor filters [Daugman 1988] were thus applied to
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Fig. 1. Spatial and temporal view of Drosophila images across different stages (1–16) of develop-

ment (of the same gene Kr). The textural features (based on the morphology of the embryo) are

different from the gene expression, which is indicted by the blue staining.

extract the textural features of image subblocks. Since not all features were
useful for stage range discrimination, Regularized Linear Discriminant Analy-
sis (RLDA) [Guo et al. 2003; Hastie et al. 2001] was applied for the extraction of
the most discriminant features, which are linear combinations of the textural
features derived from the Gabor filters.

Linear Discriminant Analysis (LDA) is a well-known method for feature
extraction and visualization that projects high-dimensional data onto a low-
dimensional space where the data achieves maximum class separability [Duda
et al. 2000; Fukunaga 1990; Hastie et al. 2001]. It has been shown to be partic-
ularly effective for applications involving image data, such as face recognition
[Belhumeour et al. 1997]. However, features extracted via LDA are linear com-
binations of the original set of features, and the coefficients learned from LDA
algorithms, such as RLDA, are typically nonzero. This often makes it difficult
to interpret the derived features. It is therefore desirable to derive a sparse for-
mulation of LDA, which contains only a small number of nonzero coefficients.
Sparsity often leads to easy interpretation and a good generalization ability. It
has been used successfully in several well-known algorithms, such as Principal
Component Analysis [d’Aspremont et al. 2004] and SVM [Zhu et al. 2003]. Im-
posing the sparsity constraint in LDA is, however, challenging, as it involves a
generalized eigenvalue problem [Duda et al. 2000; Fukunaga 1990; Hastie et al.
2001]. Furthermore, the RLDA algorithm [Ye et al. 2006] involves a regulariza-
tion parameter, which is commonly estimated via cross-validation from a given
candidate set. This parameter selection process is computationally expensive,
especially when the size of the regularization candidate set is large.

In this paper, we present LdaPath for automatic developmental stage range
classification. LdaPath overcomes the limitations of the RLDA algorithm, while
maintaining competitive classification performance. LdaPath employs multi-
variate linear regression for feature extraction and visualization. It is based on
the equivalence relationship between LDA and the least squares method for
multiclass classifications. LDA in the binary-class case has been shown to be
equivalent to linear regression with the class label as the output [Duda et al.
2000; Mika 2002]. This implies that LDA for binary-class classifications can be
formulated as a least squares problem, which, however, does not extend to the
multiclass case. We show in this paper that this equivalence relationship can
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be established for the multiclass case under a mild condition, which we show
empirically to hold for many high-dimensional datasets, such as expression
pattern images.

In mathematical programming, it is known that sparsity can often be
achieved by constraining or penalizing the L1-norm of the variables [Donoho
2006; Tibshirani 1996]. By casting LDA as a least squares problem, we can
achieve the sparsity in LDA by employing multivariate linear regression with
the L1-norm penalty controlled by a regularization parameter, which leads to si-
multaneous feature selection and feature extraction in LdaPath. Furthermore,
following the least squares formulation of LDA, we employ the Least Angle Re-
gression algorithm (LARS) in Efron et al. [2004] to compute the entire solution
path for LdaPath. The SvmPath algorithm developed in Hastie et al. [2004]
has the same flavor as LdaPath in that it computes the entire solution path for
SVM to speed up the model selection process. The key features of LdaPath are
summarized as follows:

(1) LdaPath enforces the sparsity constraint in the formulation, which en-
hances the biological interpretability of the resulting model; and

(2) LdaPath computes the entire solution path for all values of regularization
parameter, with essentially the same computational cost as fitting one LDA
model. Thus, it facilitates efficient model selection.

Experiments on a collection of 2705 expression pattern images from early stages
show that LdaPath is competitive with several other LDA-based dimensionality
reduction algorithms in classification, while its resulting LDA model is much
more sparse. Moreover, the sparsity constraint in LdaPath enhances the inter-
pretability of the resulting model, which is critical for biologists.

A preliminary version of this article, which shows the equivalence relation-
ship between LDA and linear regression in the multi-class case, appears in
the Proceedings of the Twenty-Fourth International Conference on Machine
Learning, 2007. This submission is substantially extended and contains: (1)
the LdaPath algorithm; and (2) extensive experiments on the application of
LdaPath to gene expression pattern image annotation.

2. METHODS

Expression pattern images used in this paper were collected from the Berkeley
Drosophila Genome project (BDGP) [Tomancak et al. 2002]. Since images from
BDGP were in different sizes and orientations, the image standardization pro-
cedure in Kumar et al. [2002] was applied, and all images were standardized
to a size of 128 × 320. Gabor filters were then used to extract the textural fea-
tures from the images, which were used to generate the feature vectors of size
d = 1280 via a linear transformation (see Section 3.1 for details). Our dataset
consists of n = 2705 gene expression pattern images represented as {(xi, yi)}n

i=1

from early stages (1–8), where xi ∈ IRd is the feature vector of the i-th image,
and yi ∈ {1, 2, . . . , k} (k = 3) denotes the class label of the i-th image. Let
X i ∈ IRd×ni be the data matrix of the i-th class, where ni is the size of X i and∑k

i=1 ni = n.
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2.1 An Overview of Linear Discriminant Analysis

LDA is a well-known method for feature extraction and visualization. It projects
high-dimensional data onto a low-dimensional space where the data achieves
maximum class separability [Duda et al. 2000; Fukunaga 1990; Hastie et al.
2001]. LDA computes a linear transformation G ∈ IRd×d ′

that maps xi in the
d -dimensional space to a vector in the d ′-dimensional space as follows:

xi ∈ IRd → GT xi ∈ IRd ′
(d ′ < d ).

In discriminant analysis [Fukunaga 1990], three scatter matrices (called
within-class, between-class and total scatter matrices) are defined as follows:

Sw = 1

n

k∑
i=1

∑
x∈X i

(
x − c(i))(x − c(i))T

, (1)

Sb = 1

n

k∑
i=1

ni
(
c(i) − c

)(
c(i) − c

)T
, (2)

St = 1

n

n∑
j=1

(x j − c)(x j − c)T , (3)

where c(i) is the centroid of the i-th class, and c is the global centroid. It fol-
lows from the definition that St = Sb + Sw. The traces [Golub and Van Loan
1996] of Sw and Sb, i.e., trace(Sw) and trace(Sb) measure the within-class cohe-
sion and the between-class separation, respectively. In the lower-dimensional
space resulting from the linear transformation, the scatter matrices become
GT SwG, GT SbG, and GT StG, respectively. An optimal transformation G max-
imizes trace(GT SbG) and minimizes trace(GT SwG) simultaneously, which is
equivalent to maximizing trace(GT SbG) and minimizing trace(GT StG) simul-
taneously, since St = Sb + Sw. The optimal transformation G∗ is computed by
solving the following optimization problem [Duda et al. 2000; Fukunaga 1990]:

G∗ = arg max
G

{trace((GT StG)−1GT SbG)}. (4)

It can be shown that G∗ consists of the top eigenvectors of S−1
t Sb corresponding

to the nonzero eigenvalues [Fukunaga 1990], provided that St is nonsingular.
Note that the traditional formulation of LDA in the multi-class case can not be
solved by least-squares methods. In addition, the traditional LDA formulation
fails when St is singular, which is the case for our expression pattern image
data.

The Uncorrelated LDA algorithm (ULDA) [Ye 2005] is an extension
of classical LDA for singular scatter matrices. The optimal transforma-
tion GU of ULDA is given by maximizing the following objective function:
trace

(
(GT StG)+GT SbG

)
, where M+ denotes the pseudo-inverse of M [Golub

and Van Loan 1996]. It has been shown that GU is given by the top eigenvec-
tors of S+

t Sb [Ye 2005]. A key property of ULDA is that the features in the
transformed space of ULDA are uncorrelated to each other, thus reducing the
redundancy in the transformed (dimension reduced) space.
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2.2 Multivariate Linear Regression with a Class Indicator Matrix

The LDA formulation in Section 2.1 is an extension of the original Fisher Lin-
ear Discriminant Analysis (FLDA) [Fisher 1936], which deals with binary-class
problems. It has been shown [Duda et al. 2000; Mika 2002] that FLDA is equiva-
lent to a least squares problem. Recall that gene expression pattern images are
from multiple stage ranges (there are k = 3 classes in our image dataset), while
the equivalence relationship between LDA and the least squares method does
not extend to the multiclass case [Duda et al. 2000; Hastie et al. 2001; Zhang
and Riedel 2005]. In this section, we study the least squares formulation of
LDA in the multiclass case, which forms the basis for the LdaPath algorithm
to be presented in the next section.

In multiclass classifications, it is common to apply linear regression of a
class membership indicator matrix Y ∈ IRn×k , which applies a vector-valued
class code for each of the samples [Hastie et al. 2001]. There are several well-
known indicator matrices in the literature. Denote Y1 = (Y1(i j ))ij ∈ IRn×k and

Y2 = (Y2(i j ))ij ∈ IRn×k as follows:

Y1(i j ) =
{

1 if yi = j ,
0 otherwise,

(5)

Y2(i j ) =
{

1 if yi = j ,
−1/(k − 1) otherwise.

(6)

The first indicator matrix Y1 is commonly used in connecting multiclass classi-
fication with linear regression [Hastie et al. 2001], while the second indicator
matrix has recently been used in extending SVM to multiclass classifications
[Lee et al. 2004]. A more general class indicator matrix has been studied in
Park and Park [2005].

In multivariate linear regression (MLR), a k-tuple of separating functions

f (x) = (
f1(x), f2(x), . . . , fk(x)

)
, (7)

for any x ∈ IRd is considered. Denote X̃ = [x̃1, . . . , x̃n] ∈ IRd×n, and Ỹ = (Ỹij) ∈
IRn×k as the centered data matrix X and the centered indicator matrix Y ,
respectively. That is, x̃i = xi − x̄ and Ỹij = Yij − Ȳ j , where x̄ = 1

n

∑n
i=1 xi and

Ȳ j = 1
n

∑n
i=1 Yij. Then, MLR determines the weight vectors, {wj }k

j=1 ∈ IRd , of

the k linear models, f j (x) = xT wj , for j = 1, . . . , k, via the minimization of the
following objective function:

L(W ) = 1

2
‖X̃ T W − Ỹ ‖2

F = 1

2

k∑
j=1

n∑
i=1

‖ f j (x̃i) − Ỹij‖2, (8)

where W = [w1, w2, . . . , wk] is the weight matrix, and ‖ · ‖F denotes the Frobe-
nius norm of a matrix [Golub and Van Loan 1996]. The optimal W is given by
[Hastie et al. 2001]

W = (
X̃ X̃ T )+

X̃ Ỹ , (9)

which is determined by X̃ and Ỹ . Both Y1 and Y2 defined above, as well as
the one in Park and Park [2005], could be used to define the centered indicator
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matrix Ỹ . However, the resulting linear regression models using these indi-
cator matrices are not, in general, equivalent to LDA. A natural question is
whether there exists a class indicator matrix Ỹ ∈ IRn×k , with which the multi-
variate linear regression is equivalent to LDA. If this is the case, then LDA can
essentially be formulated as a least squares problem in the multiclass case.

Note that in multivariate linear regression, each x̃i is transformed to

( f1(x̃i), . . . , fk(x̃i))
T = W T x̃i,

and the centered data matrix X̃ ∈ IRd×n is transformed to W T X̃ ∈ IRk×n, thus
achieving dimensionality reduction if k < d . In the following, we construct
a specific class indicator matrix Y3. We show in Section 2.3 the equivalence
relationship between multivariate linear regression using indicator matrix Y3

and LDA. The indicator matrix Y3 = (Y3(ij))ij ∈ IRn×k is constructed as follows:

Y3(i j ) =
⎧⎨
⎩

√
n
nj

−
√

nj

n if yi = j ,

−
√

nj

n otherwise,
(10)

where nj is the sample size of the j -th class, and n is the total sample size. It
can be shown that Y3 defined above has been centered (in terms of rows), and
thus Ỹ3 = Y3.

2.3 The LdaPath Algorithm

Recall from Section 2.1 that the optimal transformation matrix GU of ULDA
consists of the top eigenvectors of S+

t Sb corresponding to the nonzero eigen-
values. With Ỹ = Y3 chosen as the class indicator matrix, the optimal weight
matrix W3 for multivariate linear regression in Equation (9) becomes

W3 = (
X̃ X̃ T )+

X̃ Ỹ = (nSt)
+nHb = S+

t Hb. (11)

We will first study the relationship between W3 in Equation (11) and the eigen-
vectors of S+

t Sb. It is based on the decomposition of the scatter matrices as
follows.

Define matrices Hw, Hb, and Ht as follows:

Hw = 1√
n

[
X 1 − c(1)

(
e(1)

)T
, . . . , X k − c(k)

(
e(k)

)T ]
, (12)

Hb = 1√
n

[√
n1

(
c(1) − c

)
, . . . ,

√
nk

(
c(k) − c

)]
, (13)

Ht = 1√
n

(X − ceT ), (14)

where X i is the data matrix of the i-th class, X is the data matrix, e(i) is
the vector of all ones of length ni, and e is the vector of all ones of length n.
Then Sw, Sb, and St can be expressed as follows: Sw = Hw HT

w , Sb = HbHT
b ,

and St = Ht HT
t . It is easy to check that X̃ Y3 = nHb. Let Ht = U�V T be

the Singular Value Decomposition (SVD) [Golub and Van Loan 1996] of Ht ,
where Ht is defined in Equation (14), U and V are orthogonal, � = diag(�t , 0),

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 1, Article 4, Publication date: March 2008.
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�t ∈ IRt×t is diagonal, and t = rank(St). Then

St = Ht HT
t = U��T U T = Udiag

(
�2

t , 0
)
U T . (15)

Let U = (U1, U2) be a partition of U , such that U1 ∈ IRd×t and U2 ∈ IRd×(d−t).
Since St = Sb + Sw, we have

U T SbU = diag
(
U T

1 SbU1, 0
)
. (16)

Let

B = �−1
t U T

1 Hb ∈ IRt×k , (17)

where Hb is defined as in Equation (13) and let

B = P�̂QT (18)

be the SVD of B, where P and Q are orthogonal and �̂ ∈ IRt×k is diagonal.
Since Sb = HbHT

b , we have

�−1
t U T

1 SbU1�
−1
t = BBT = P�bP T , (19)

where

�b = �̂�̂T = diag
(
α2

1, . . . , α2
t

)
, (20)

α2
1 ≥ · · · ≥ α2

q > 0 = α2
q+1 = · · · = α2

t , (21)

and q = rank(Sb).
The relationship between ULDA and multivariate linear regression is sum-

marized as follows: (see Appendix A for a detailed proof)

LEMMA 2.1. Let W3 = S+
t Hb be defined as in Equation (11), and let GU be the

optimal transformation matrix of ULDA, which consists of the top eigenvectors
of S+

t Sb. Then W3 = [GU �0.5
bq , 0]QT , where �bq ∈ IRq×q consists of the first q

rows and the first q columns of �b defined in Equation (20), q = rank(Sb), and
Q defined in Equation (18) is orthogonal.

The Nearest-Neighbor (NN) algorithm [Duda et al. 2000] based on the
Euclidean distance is commonly applied as the classifier in the dimensionality
reduced space of LDA. If the weight matrix W3 is applied for dimensionality
reduction before NN, it is invariant of an orthogonal transformation, since any
orthogonal transformation preserves all pairwise distances. From Lemma 2.1,
W3 is essentially equivalent to [GU �0.5

bq , 0] or GU �0.5
bq , as the removal of zero

columns does not change the pairwise distance, either. The essential difference
between W3 and GU is therefore the diagonal matrix �0.5

bq .
Next, we show that matrix �bq is an identity matrix of size q, that is, W3 and

GU are essentially equivalent, under a mild condition C1: rank(St) = rank(Sb)+
rank(Sw), which has been shown to hold in many applications involving high-
dimensional data [Ye and Xiong 2006]. This is also the case for our expression
pattern image data. It can be shown [Ye and Xiong 2006] that if the data points
in the training set are linearly independent, then condition C1 holds. The main
result of this section is summarized in the following theorem: (see Appendix B
for a detailed proof)
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THEOREM 2.1. Let �bq ∈ IRq×q consist of the first q rows and the first q
columns of �b, where �b is defined in Equation (20). Assume condition C1:
rank(St) = rank(Sb) + rank(Sw) holds. Then �bq = Iq, where Iq is the identity
matrix of size q.

Theorem 2.1 implies that under condition C1, W3 is equivalent to GU , that is,
multivariate linear regression with Y3 as the class indicator matrix is equiva-
lent to ULDA. Thus, ULDA, an extension of classical LDA for singular scatter
matrices, can be formulated as a least squares problem.

Following the equivalence relationship established above, we next develop
a sparse formulation of LDA. Sparsity has recently received much attention
to improve model interpretability and generalization ability. It is known that
sparsity can often be achieved by constraining or penalizing the L1-norm of
the variables [Donoho 2006; Tibshirani 1996; Zhu et al. 2003]. Based on the
equivalence relationship between LDA and linear regression for the multiclass
problems established above, we propose to develop sparse LDA by minimizing
the following Lasso-type objective function [Tibshirani 1996]:

L1(W, γ ) = 1

2

k∑
j=1

(
n∑

i=1

∥∥x̃T
i w j − Ỹij

∥∥2

2
+ γ ‖wj ‖1

)
(22)

where ‖wj ‖1 = ∑d
i=1 |wji| denotes the 1-norm [Golub and Van Loan 1996] of

wj , and γ > 0 is a penalty (regularization) parameter. The optimal w∗
j , for

1 ≤ j ≤ k, is given by

w∗
j = arg min

wj

(
n∑

i=1

(
x̃T

i w j − Ỹij
)2 + γ ‖wj ‖1

)
, (23)

which can be reformulated as:

w∗
j = arg min

wj :‖wj ‖1≤τ

n∑
i=1

(
x̃T

i w j − Ỹij
)2

, (24)

for some tuning parameter τ > 0 [Tibshirani 1996]. The optimal w∗
j in

Equation (24) can be readily computed by applying the Least Angle Regres-
sion algorithm (LARS) in Efron et al. [2004]. One key feature of LARS is that
it computes the entire solution path for all values of τ , with essentially the
same computational cost as fitting one linear regression model. We thus call
the proposed algorithm LdaPath.

Note that when τ is large enough, the constraints in Equation (24) are not
effective, which leads to the following unconstrained optimization problem:
w̃∗

j = arg minw̃ j

∑n
i=1(x̃T

i w̃ j − Ỹij)
2. Denote T = max{‖w̃∗

1‖1, . . . , ‖w̃∗
k‖1}, which

defines an upper bound for τ , that is, 0 ≤ τ ≤ T . Define s = τ/T . It follows
that τ = Ts, for 0 ≤ s ≤ 1. The estimation of τ is equivalent to the estimation
of s, called the “Lasso coefficient” in the following discussion. Estimation of the
Lasso coefficient s is the key to the performance of LdaPath. Cross-validation
is commonly used to estimate the optimal value from a large candidate set
S = {s1, s2, . . . , sp}, where p = |S| is the size of S. An important property of
the Lasso constraint is that making s sufficiently small will shrink some of the
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coefficients of the weight vectors to be exactly zero, which results in a sparse
model. We show in the following proposition that a small value of s is also
necessary to overcome the over-fitting problem: (see Appendix C for a detailed
proof)

PROPOSITION 2.1. Let W ∗ = [w∗
1, . . . , w∗

k] be the weight matrix of LdaPath
using Lasso coefficient s = 1, and let x be a data point from the i-th class.
Assume condition C1 holds. Then, (W ∗)T x = (W ∗)T c(i), where c(i) is the centroid
of the i-th class. That is, all data points from the i-th class are mapped to a
common vector (W ∗)T c(i).

Proposition 2.1 above shows that under condition C1, LdaPath with s = 1 maps
all points from the same class to a common point. This leads to a perfect sepa-
ration between different classes; however, this may also lead to over-fitting. A
small value of s is therefore desirable in order to alleviate this problem, provided
that a good Lasso coefficient can be estimated. In the following experimental
studies, we will examine these issues in detail.

3. EXPERIMENTS

In this section, we apply LdaPath for Drosophila embryonic developmental
stage range classification. A collection of 2705 expression pattern images from
early stages was used in the experiments.

3.1 Data Preprocessing

We worked with expression pattern images in different sizes and orientations
from BDGP [Tomancak et al. 2002]. The image standardization procedure in
Kumar et al. [2002] was applied, and all images were standardized to a size
of 128 × 320. Then, Gabor filters were used to extract the texture information
from the images. The main steps for the data pre-processing include:

—Step 1: The image standardization procedure in Kumar et al. [2002] was
employed, and all images were standardized to a size of 128×320. Histogram
Equalization [Gonzalez and Woods 1993] was applied to improve the contrast
and to obtain an approximately uniform histogram distribution, while the
detailed information of the processed images was retained.

—Step 2: Each image was divided into 640 subblocks of size 8 × 8. Log Gabor
Filters were applied on each of the subblocks to extract the texture features
[Daugman 1988]. Gabor filters are the product of a complex sinusoidal func-
tion and a Gaussian-shaped function. We used Log Gabor filters with 4 dif-
ferent wavelet scales and 6 different filter orientations to extract the texture
information. Hence, 24 Gabor images were obtained from the filtering oper-
ation. Note that all 24 Gabor images have the same size (i.e., 128 × 320) as
the original one.

—Step 3: For each of the Gabor images, the mean value was used to represent
each of the subblocks. The averaged Gabor images were of size 16 × 40, and
were reshaped to form feature vectors of length 640. By concatenating all
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Fig. 2. Effectiveness of cross-validation on Lasso coefficient estimation. The test accuracy (corre-

sponding to the dashdot horizontal line) using the Lasso coefficient estimated from cross-validation

is close to the maximum possible accuracy when all possible Lasso coefficients are considered (shown

as a solid curve).

of the 24 feature vectors together, we obtain a new feature matrix of size
24 × 640 for each of the embryo images.

—Step 4: All 24 × 640 feature matrices were projected to a lower dimensional
space via a linear transformation so that the data dimensionality was further
reduced. To achieve maximum separability after the projection, the transfor-
mation was computed based on a variant of LDA. With the projection, each
of the feature matrices was reduced to a size of 2×640, which were reshaped
to feature vectors of length 1280. Note that the entries in these feature vec-
tors correspond to specific subblocks (regions) of the images (there are 640
subblocks in total). Each subblock of the images corresponds to 2 (instead
of 24) entries in the feature vector. More details on the computation of the
projection can be found in Appendix D.

3.2 Estimation of the Lasso Coefficient s

In this experiment, we investigated the estimation of the Lasso coefficient, de-
noted as s. We applied K -fold cross-validation (K = 5) for the estimation. Recall
from Section 2.3 that the Lasso coefficient lies in the range [0, 1]. We chose a
candidate set S = {s1, . . . , sp}, with p = 1000, for the Lasso coefficient with
si = (i − 1)/(p − 1), for i = 1, . . . , p. We ran the experiment using 300 samples
in the training set, and the rest in the test set. The experimental result is pre-
sented in Figure 2, where the accuracy corresponding to the dashdot horizontal
line denotes the test accuracy using the optimal Lasso coefficient estimated via
cross-validation. To examine the effectiveness of the cross-validation estima-
tion, we also plotted the test accuracies for all Lasso coefficients (shown as a
solid curve). We can observe from Figure 2 that the test accuracy using the
Lasso coefficient estimated from cross-validation is close to the maximum pos-
sible accuracy when all possible Lasso coefficients are considered. Note that it
is possible to use a large set S in cross-validation, due to the efficient model
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Table I. Comparison of Three LDA-Based Dimensionality

Reduction Algorithms on Mean Classification Accuracy (%)

and Standard Deviation (in parenthesis) using Different

Numbers of Training Sample Size

training sample size

algorithm 90 180 300 480 540

RLDA 82.71 85.74 86.60 87.48 87.24

(3.09) (1.82) (1.18) (0.99) (1.26)

ULDA 80.68 77.22 66.30 68.29 73.80

(2.11) (2.62) (2.67) (2.19) (2.01)

LdaPath 82.23 85.36 87.14 87.72 87.82

(2.14) (1.67) (0.90) (0.74) (0.87)

selection procedure in LdaPath. The experimental result confirms the effective-
ness of cross-validation in estimating the optimal Lasso coefficient from a given
candidate set.

3.3 Classification Performance

In this experiment, we compared LdaPath with two other LDA-based dimen-
sionality reduction algorithms including Regularized LDA (RLDA) and Un-
correlated LDA (ULDA). We performed our comparative study by repeating
random splitting of the whole dataset into training and test sets. The whole
dataset was randomly partitioned into a training set consisting of n samples
(n = 90, 180, 300, 480, and 540) and a test set consisting of the rest of the sam-
ples. To reduce the variability, the splitting was repeated 20 times, and the
mean accuracy was reported. For LdaPath, the classification performance de-
pends on the choice of the Lasso coefficient s. We chose the best s from a given
candidate set via 5-fold cross-validation as in Section 3.2. We observed that
condition C1 held in all cases, and LdaPath achieved the same classification
performance as ULDA when the Lasso coefficient s is set to 1. This confirms
the theoretical results in Section 2.3.

The classification result is summarized in Table I. We can observe from the
table that LdaPath is competitive with RLDA in terms of classification accuracy,
while they both perform much better than ULDA. Note that Nearest-Neighbor
is employed as the classifier in LdaPath. The classification accuracy for LdaPath
will be slightly higher, if other more sophisticated classifiers such as Support
Vector Machines (SVM) are used instead. However, the difference is not statisti-
cally significant. The transformation matrices in RLDA and ULDA are typically
quite dense (very small number of zeros). The main advantage of LdaPath over
both RLDA and ULDA lies in the sparseness of the resulting model, which will
be studied in the next experiment below.

3.4 Sparseness in LdaPath

In this experiment, we investigated the sparseness of the LDA model in LdaP-
ath. Recall that the sparseness of the weight vectors wi, for i = 1, . . . , k, depends
on the Lasso coefficient s. It has been observed [Tibshirani 1996] that a small
value of s shrinks many coefficients to be exactly zero. Figure 2 shows that
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Fig. 3. The entire collection of solution paths for a subset of the coefficients from w2 (top graph)

and w3 (bottom graph). The x-axis denotes the Lasso coefficient s, and the y-axis denotes the value

of the coefficients.

the optimal Lasso coefficient estimated from cross-validation is very small. We
therefore expect the corresponding weight vectors to be sparse.

Figure 3 shows the entire collection of solution paths for a subset of the
coefficients from two weight vectors, w2 and w3. We have observed the same
trend in w1 (results omitted due to space constraint). The x-axis denotes the
Lasso coefficient s, and the y-axis denotes the value of the coefficients. The
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Table II. Percentage of the Nonzero Entries in the

Weight Vectors, w1, w2, and w3 of LdaPath

training sample size

vector 180 300 480 540 750 900

w1 6.79 8.52 16.48 19.29 21.09 16.40

w2 7.58 9.84 18.59 22.03 25.31 22.81

w3 6.33 9.92 17.58 21.95 23.36 19.77

Fig. 4. Plot of discriminant features corresponding to stage range 4–6 (left graph) and stage

range 7–8 (right graph), where rectangular blocks indicate the regions on the images with nonzero

coefficients.

vertical lines denote (a subset of) the turning point of the path, as the solution
path for each of the coefficients is piecewise linear [Efron et al. 2004]. We can
observe from Figure 3 that when s = 1, most of the coefficients are nonzero,
that is, the model is dense. When the value of the Lasso coefficient s decreases
(from the right to the left side along the x-axis), more and more coefficients from
both w2 and w3 become exactly zero. All coefficients become zero when s = 0.

Table II shows the percentage of the nonzero entries in the three weight
vectors for various training sample sizes, when the optimal Lasso coefficient
estimated from cross-validation is used. We can observe that when the sample
size is small, about 90% of the coefficients in the weight vectors are zero, while
for a larger sample size, about 80% of the coefficients are zero. Together with
the classification result in Section 3.3, we conclude that LdaPath uses a much
smaller number of features than RLDA, while it is competitive with RLDA
in classification. Consequently, it is expected that the features eliminated in
LdaPath may be irrelevant for classification, which will be examined in the
next experiment.

3.5 Biological Interpretability of LdaPath

In this experiment, we examined the discriminant features detected by
LdaPath. Our experimental results in Table II have shown that the weight vec-
tors in LdaPath are sparse. Sparsity may enhance the biological interpretability
of the model resulting from LdaPath. In expression pattern image data, each
feature corresponds to a specific region in the image. In this case, the discrim-
inant features for each class correspond to the nonzero entries, and may carry
biological significance. We found from our experiment (shown in Figure 4) that
for images from stage range 4–6, many regions associated with the nonzero
coefficients locate along the boundary of the embryo, especially near the two
ending parts, while in comparison, more regions associated with the nonzero
coefficients locate inside the embryo for images from stage range 7–8. These
are consistent with the known knowledge from the developmental biology com-
munity [Hartenstein 1993]. That is, features from some regions of biological
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images provide most of the discriminant information in some stages of devel-
opment. For example, morphological changes at the anterior and posterior end
of the embryo occur during stages 4–6 (e.g., the formation and shifting of pole
cells at the posterior end), and the prominent displacement of cell membranes
at the anterior and posterior ends. Further changes occur in stages 7–8, which
are mainly restricted to the interior of the embryo (e.g., the formation of am-
nioserosa and amnioproctodeal invagination [Hartenstein 1993]). We also ob-
serve some regions with nonzero entries outside the embryos. This is probably
due to the presence of noises in the image data, which may come from the image
generation or image standardization process.

3.6 Visualization

In this experiment, we visualized the effectiveness of LdaPath. To this end,
we ran LdaPath with different values of s (0.07, 0.8, 1) on a training set of
300 images and applied the projection to a test set of 2405 images. There were
k = 3 stage ranges (classes) in our experiments, and all images were projected
onto the 3D space spanned by the three weight vectors. In Figure 5, we showed
the projection of the training images (left column) and a subset of test images
(right column) onto the 2D plane spanned by the first two weight vectors, w1

and w2, for clarity of presentation. We depicted each image by the corresponding
stage range (1, 2, and 3). We can observe from Figure 5 (graph c1) that when
s = 1, all training points from the same class are mapped to a common point,
which leads to the perfect separation in the training set. However, the test
data points are scattered around (graph c2), and the classification accuracy is
about 77.71% only. When the value of s decreases, the diameter of each class
in the training set increases, while the three classes in the test set are better
separated. When s = 0.8 (graphs b1–b2), the classification accuracy is about
80.37%. We conducted further studies and found that the best accuracy (about
87.19%) estimated via cross-validation occurs when s = 0.07 (graphs a1–a2),
and when the value of s further decreases, the accuracy starts to go down. The
experimental studies show the effectiveness of the Lasso constraint in LdaPath,
as well as the importance of model selection in estimating the optimal value of
the Lasso coefficient s.

4. DISCUSSION

In this paper, we present LdaPath for automatic Drosophila embryonic devel-
opmental stage range classification based on gene expression pattern images.
The key features of the proposed LdaPath algorithm include: (1) LdaPath en-
forces the sparsity constraint in the formulation, which enhances the biological
interpretability of the resulting model, and (2) LdaPath computes the entire
solution path for all values of regularization parameter, with essentially the
same computational cost as fitting one LDA model. Thus LdaPath facilitates
efficient model selection. Experiments on a collection of 2705 expression pattern
images from early stages show the effectiveness of the LdaPath algorithm. The
experimental results demonstrate the promise of the proposed computational
approach for automatic embryonic developmental stage range classification.
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Fig. 5. Visualization of the training images (left row) and a subset of test images (right column)

after the projection onto the 2D space spanned by the first two weight vectors with different values

of s, i.e., s = 0.07 (top row a1–a2), s = 0.8 (middle row b1–b2), and s = 1 (bottom row c1–c2). The

training sample size is 300. Images from the first range (1–3), the second range (4–6), and the

third range (7–8) are depicted by 1, 2, and 3, respectively. The test accuracy for each value of s is

reported.
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We have focused on images from early stages (stage ranges 1–8) in this paper.
Since there exist distinct morphological patterns for images from early stages,
LdaPath is expected to work well in this case. However, the morphological pat-
terns for images from late stages (stage ranges 9–16) are much more complex
than those from early stages (see Figure 1). We plan to expand our data col-
lection to include images from late stage ranges and examine the effectiveness
of LdaPath in detecting morphological markers characterizing each of the late
stage ranges.

LdaPath bears some resemblance to 1-norm SVM [Zhu et al. 2003]. LdaPath
is natural for multiclass classifications. However, how to effectively combine
binary classifications remains an important issue in multiclass 1-norm SVM
[Wang and Shen 2006]. We plan to examine how the coding matrix Y3 from
LdaPath, as well as other coding methods [Ie et al. 2005; Wang and Shen 2006],
may be used in 1-norm SVM for stage range classification and discriminant
feature detection, especially when all six stage ranges are considered.

APPENDIX

A. Proof of Lemma 2.1

PROOF. From Equation (15), we can decompose matrix S+
t Sb as follows:

S+
t Sb = U

( (
�2

t

)−1
0

0 0

)
U T HbHT

b

= U

( (
�2

t

)−1U T
1 HbHT

b U1 0

0 0

)
U T

= U

(
�−1

t BBT �t 0

0 0

)
U T

= U

(
�−1

t P 0

0 I

) (
�b 0

0 0

) (
P T �t 0

0 I

)
U T ,

where the second equality follows from Equation (16), and the last two equali-
ties follow since B = �−1

t U T
1 Hb = P�̂QT is the SVD of B as in Equation (18)

and �b = �̂�̂T . Thus, the transformation of ULDA is given by

GU = U1�
−1
t Pq , (25)

where Pq consists of the first q columns of P , since only the first q diagonal
entries of �b are nonzero. On the other hand,

S+
t Hb = U1�

−1
t

(
�−1

t U T
1 Hb

) = U1�
−1
t P�̂QT

= U1�
−1
t Pq

[
�̂q , 0

]
QT = [

GU �0.5
bq , 0

]
QT , (26)

where �̂q , �bq ∈ IRq×q consists of the first q rows and the first q columns of
�̂, �b, respectively, the third equality follows since only the first q rows and the
first q columns of �̂ are nonzero and the last equality follows since �b = �̂�̂T .
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It follows that

W3 = [
GU �0.5

bq , 0
]
QT ,

where Q is orthogonal.

B. Proof of Theorem 2.1

PROOF. Let matrix H ∈ IRd×d be defined as follows:

H = U
(

�−1
t P 0
0 Id−t

)
, (27)

where U and �t are defined in Equation (15), and P is defined in Equation (18).
It follows from Equations (15)–(20) that

HT SbH =
(

�b 0
0 0

)
, HT St H =

(
It 0
0 0

)
. (28)

Since Sw = St − Sb, we have

HT Sw H =
(

�w 0
0 0

)
, (29)

for some diagonal matrix �w = It − �b.
From Equations (20), (21), (28), and (29), we have

HT SbH = diag
(
α2

1, . . . , α2
t , 0 . . . , 0

)
,

HT Sw H = diag
(
β2

1 , . . . , β2
t , 0 . . . , 0

)
, (30)

where α2
1 ≥ · · · ≥ α2

q > 0 = α2
q+1 = · · · = α2

t , and α2
i + β2

i = 1, for all i. Condition

C1 implies that

t = rank(HT St H) = rank(HT SbH) + rank(HT Sw H).

Since α2
i + β2

i = 1, at least one of αi and βi is nonzero. Thus the following
inequality:

rank(HT SbH) + rank(HT Sw H) ≥ t

always holds. The equality holds only when either αi or βi is zero, for all i. That
is, αiβi = 0, for all i. Hence, α2

1 = · · · = α2
q = 1, that is, �bq , which consists of

the first q rows and the first q columns of �b, equals to Iq .

C. Proof of Proposition 2.1

PROOF. When the Lasso coefficient s is set to 1, the weight matrix W ∗ in
LdaPath equals to W3. It follows from Equation (26) in Appendix A that

W ∗ = W3 = U1�
−1
t Pq

[
�̂q , 0

]
QT .

From Equations (27) and (29) in Appendix B, we have(
U1�

−1
t Pq

)T Sw
(
U1�

−1
t Pq

) = �wq , (31)

where �wq consists of the first q rows and the first q columns of the diagonal
matrix �w = It − �b. From Appendix B, �bq , consisting of the first q rows and
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the first q columns of �b, is an identity matrix, when condition C1 holds. Thus
�wq = Iq − �bq = 0. It follows from Equation (31) that (U1�

−1
t Pq)T Sw = 0, as

Sw is positive semi-definite. Hence

(W ∗)T Sw = Q[�̂q , 0]T (
U1�

−1
t Pq

)T Sw = 0, (32)

and

0 = (W ∗)T SwW ∗ = (W ∗)T Hw HT
w W ∗, (33)

where Hw is defined as in Equation (12):

Hw = [
X 1 − c(1)

(
e(1)

)T
, . . . , X k − c(k)

(
e(k)

)T ]
,

where X i is the data matrix of the i-th class, and e(i) is the vector of all ones.
It follows from Equation (33) that (W ∗)T Hw = 0. Considering the i-th block of
(W ∗)T Hw, we have that

(W ∗)T (
X i − c(i)(e(i))T ) = (

(W ∗)T X i − (W ∗)T c(i)(e(i))T ) = 0.

Hence, (W ∗)T x = (W ∗)T c(i), for each column x in X i. This completes the proof
of the proposition.

D. Computation of the Projection Matrix

Let Ai ∈ IRr×c, for i = 1, . . . , n, be the n feature matrices (r = 24, and c = 640).
Let Mi = 1

ni

∑
y j =i A j be the mean of the i-th class, 1 ≤ i ≤ k, and M = 1

n

∑n
i=1 Ai

be the global mean. We aim to find a transformation matrix L ∈ IRr×� that maps
each Ai ∈ IRr×c, for 1 ≤ i ≤ n, to a matrix Bi ∈ IR�×c such that Bi = LT Ai. The
optimal transformation (projection) L is computed based on a variant of Two-
dimensional LDA [Ye et al. 2004] as follows.

A natural similarity metric between matrices is the Frobenius norm [Golub
and Van Loan 1996]. Under this metric, the (squared) within-class and between-
class distances Dw and Db can be computed as follows:

Dw =
k∑

i=1

∑
y j =i

‖Aj − Mi‖2
F , Db =

k∑
i=1

ni‖Mi − M‖2
F ,

where yj is the class label of the j -th feature matrix Aj . Using the property of
the trace, that is, trace(M M T ) = ‖M‖2

F , for any matrix M , we can rewrite Dw
and Db as follows:

Dw = trace

(
k∑

i=1

∑
y j =i

(Aj − Mi)(Aj − Mi)
T

)
, (34)

Db = trace

(
k∑

i=1

ni(Mi − M )(Mi − M )T

)
. (35)

In the low-dimensional space resulting from the linear transformation L, the
within-class and between-class distances become

D̃w = trace

(
k∑

i=1

∑
y j =i

LT (Aj − Mi)(Aj − Mi)
T L

)
, (36)
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D̃b = trace

(
k∑

i=1

ni LT (Mi − M )(Mi − M )T L

)
. (37)

The optimal transformation L would maximize D̃b and minimize D̃w and is
given by the eigenvectors of S̃−1

w S̃b, where S̃w and S̃b are defined as follows:

S̃w =
k∑

i=1

∑
y j =i

(Aj − Mi)(Aj − Mi)
T , (38)

S̃b =
k∑

i=1

ni(Mi − M )(Mi − M )T . (39)

With the projection by L, each of the feature matrices is reduced to a size of
�×640, where 1 ≤ � ≤ 24. In general, a larger value of � leads to a higher classi-
fication accuracy. Our experiments showed that the classification performance
improved significantly when we increased the value of � from 1 to 2, while any
further increase of � didn’t improve the classification performance much. We
thus used � = 2 in the our experiments, and the resulting feature matrices in
the low dimensional space are of size 2 × 640, which were reshaped to feature
vectors of length 1280.
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