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Abstract—A central theme in learning from image data is to develop appropriate representations for the specific task at hand. Thus, a

practical challenge is to determine what features are appropriate for specific tasks. For example, in the study of gene expression

patterns in Drosophila, texture features were particularly effective for determining the developmental stages from in situ hybridization

images. Such image representation is however not suitable for controlled vocabulary term annotation. Here, we developed feature

extraction methods to generate hierarchical representations for ISH images. Our approach is based on the deep convolutional neural

networks that can act on image pixels directly. To make the extracted features generic, the models were trained using a natural image

set with millions of labeled examples. These models were transferred to the ISH image domain. To account for the differences between

the source and target domains, we proposed a partial transfer learning scheme in which only part of the source model is transferred.

We employed multi-task learning method to fine-tune the pre-trained models with labeled ISH images. Results showed that feature

representations computed by deep models based on transfer and multi-task learning significantly outperformed other methods for

annotating gene expression patterns at different stage ranges.

Index Terms—Deep learning, transfer learning, multi-task learning, image analysis, bioinformatics
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1 INTRODUCTION

A general consensus in image-related research is that
different recognition and learning tasks may require

different image representations. Thus, a central challenge in
learning from image data is to develop appropriate repre-
sentations for the specific task at hand. Traditionally, a com-
mon practice is to hand-tune features for specific tasks,
which is time-consuming and requires substantial domain
knowledge. For example, in the study of gene expression
patterns in Drosophila melanogaster, texture features based
on wavelets, such as Gabor filters, were particularly effec-
tive for determining the developmental stages from in situ
hybridization (ISH) images [29]. Such image representation,
often referred to as “global visual features”, is not suitable
for controlled vocabulary (CV) term annotation because
each CV term is often associated with only a part of an
image, thereby requiring an image representation of local

visual features [11]. Examples of gene expression patterns
and the associated CV terms are showed in Fig. 1. Current
state-of-the-art systems for CV term annotation first
extracted local patches of an image and computed local fea-
tures which are invariant to certain geometric transforma-
tions (e.g., scaling and translation). Each image was then
represented as a bag of “visual words”, known as the “bag-
of-words” representation [10], or a set of “sparse codes”,
known as the “sparse coding” representation [12], [24], [30].

In addition to being problem-dependent, a common
property of traditional feature extraction methods is that
they are “shallow”, because only one or two levels of feature
extraction was applied, and the parameters for computing
features are usually not trained using supervised algo-
rithms. Given the complexity of patterns captured by bio-
logical images, these shallow models of feature extraction
may not be sufficient. Therefore, it is desirable to develop a
multi-layer feature extractor [7], [32], [33], alleviating the
tedious process of manual feature engineering and enhanc-
ing the representation power.

In this work, we proposed to employ the deep learning
methods to generate representations of ISH images. Deep
learning models are a class of multi-level systems that can act
on the raw input images directly to compute increasingly
high-level representations. One particular type of deep learn-
ing models that have achieved practical success is the deep
convolutional neural networks (CNNs) [16]. These models
stack many layers of trainable convolutional filters and pool-
ing operations on top of each other, thereby computing
increasingly abstract representations of the inputs. Deep
CNNs trained with millions of labeled natural images using
supervised learning algorithms have led to dramatic perfor-
mance improvement in natural image recognition and detec-
tion tasks [6], [13], [23].
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However, learning a deep CNN is usually associated
with the estimation of millions of parameters, and this
requires a large number of labeled image samples. This bot-
tleneck currently prevents the application of CNNs to many
biological problems due to the limited amount of labeled
training data. To overcome this difficulty, we proposed to
develop generic and problem-independent feature extrac-
tion methods, which involves applying previously obtained
knowledge to solve different but related problems. This is
made possible by the initial success of transferring features
among different natural image data sets [3], [22], [31]. These
studies trained the models on the ImageNet data set that
contains millions of labeled natural images with thousands
of categories. The learned models were then applied to
other image data sets for feature extraction, since layers of
the deep models are expected to capture the intrinsic char-
acteristics of visual objects.

In this article, we explored whether the transfer learning
property of CNNs can be generalized to compute features
for biological images. We proposed to transfer knowledge
from natural images by training CNNs on the ImageNet
data set. We then proposed to fine-tune the trained model
with labeled ISH images, and resumed training from

already learned weights using multi-task learning schemes.
To take this transfer learning idea one step further, we pro-
posed another approach with partial transfer of parameters
from pre-trained VGGmodel to be fine-tuned on the labeled
ISH images. Specifically, we truncated the pre-trained VGG
model at some intermediate layer followed by one max
pooling and two fully connected layers to obtain the new
CNN model. The three models were then all used as a fea-
ture extractors to compute image features from Drosophila
gene expression pattern images. The resulting features were
subsequently used to train and validate our machine learn-
ing method for annotating gene expression patterns. The
overall pipeline of this work is given in Fig. 2.

Experimental results showed that our approach of using
CNNs outperformed the sparse coding methods [24] for
annotating gene expression patterns at different stage
ranges. In addition, our results indicated that the transfer
and fine-tuning of knowledge by CNNs from natural
images is very beneficial for producing high-level represen-
tations of biological images. Furthermore, we showed that
the intermediate layers of CNNs produced the best gene
expression pattern representations. This is because the early
layers encode very primitive image features that are not

Fig. 1. Gene expression patterns and the associated temporal stages and body part keywords in the BDGP [26] (left) and Fly-FISH [17] (right) data-
bases for the gene engrailed in two stage-ranges.

Fig. 2. Pipeline of deep models for transfer learning and multi-task learning. The network was trained on the ImageNet data containing millions of
labeled natural images with thousands of categories (top row). The pre-trained parameters are then transferred to the target domain of biological
images. We first directly used the pre-trained model to extract features from Drosophila gene expression pattern images. We then fine-tuned the
trained model with labeled ISH images. We then employed the fine-tuned model to extract features to capture CV term-specific discriminative infor-
mation (bottom row).
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enough to capture gene expression patterns. Meanwhile, the
later layers captured features that are specific to the training
natural image set, and these features may not be relevant to
gene expression pattern images. Our result also showed
that partial transfer of parameters led to improved perfor-
mance, as compared to the complete transfer scheme.

2 DEEP MODELS FOR TRANSFER LEARNING AND

FEATURE EXTRACTION

Deep learning models are a class of methods that are capa-
ble of learning hierarchy of features from raw input images.
Convolutional neural networks are a class of deep learning
models that were designed to simulate the visual signal
processing in central nervous systems [1], [13], [16]. These
models usually consist of alternating combination of convo-
lutional layers with trainable filters and local neighborhood
pooling layers, resulting in a complex hierarchical represen-
tations of the inputs. CNNs are intrinsically capable of cap-
turing highly nonlinear mappings between inputs and
outputs. When trained with millions of labeled images, they
have achieved superior performance on many image-
related tasks [13], [16], [23].

A key challenge in applying CNNs to biological prob-
lems is that the available labeled training samples are very
limited. To overcome this difficulty and develop a universal
representation for biological image informatics, we pro-
posed to employ transfer learning to transfer knowledge
from labeled image data that are problem-independent. The
idea of transfer learning is to improve the performance of a
task by applying knowledge acquired from different but
related task with a lot of training samples. This approach of
transfer learning has already yielded superior performance
on natural image recognition tasks [3], [19], [22], [31].

In this work, we explored whether this transfer learning
property of CNNs can be generalized to biological images.
Specifically, the CNN model was trained on the ImageNet
data containingmillions of labeled natural imageswith thou-
sands of categories and used directly as feature extractors to

compute representations for ISH images. Although the pre-
trained model is obtained from a different data source, the
internal layers in the model act as generic representations of
different levels of abstraction, which vary from simple object
components like edges or corners to complicated structures
like shapes. This property of the pre-trained model guaran-
tees the feasibility of transfer learning in our study of gene
expression patterns in Drosophila ISH images. In this work,
we applied the pre-trained VGGmodel [23] that was trained
on the ImageNet data to perform several computer vision
tasks, such as localization, detection and classification. There
are two pre-trained models in [23], which are “16” and “19”
weight layersmodels. Since these twomodels generated sim-
ilar performance on our ISH images, we used the “16”
weight layers model in our experiment. The VGG architec-
ture contains 36 layers. This network includes convolutional
layers with fixed filter sizes and different numbers of feature
maps. It also applied rectified non-linearity, max pooling to
different layers.

More details on various layers in the VGG weight layer
model are given in Fig. 3. Since the output feature represen-
tations of layers before the third max pooling layer involve
larger feature vectors, we used each Drosophila ISH image
as input to the VGG model and extracted features from
layers 17, 21, 24, and 30 to reduce the computational cost.
We then flattened all the feature maps and concatenated
them into a single feature vector. For example, the number
of feature maps in layer 21 is 512, and the corresponding
size of feature maps is 28� 28. Thus, the corresponding size
of feature vector for this layer is 401,408.

3 DEEP MODELS FOR PARTIAL PARAMETER

TRANSFER

To account for the differences between natural and biologi-
cal images, we proposed a new transfer learning scheme,
known as partial parameter transfer, to only transfer part of
the parameters learned from natural images to biological
images. To be specific, we started from a pre-trained VGG

Fig. 3. Detailed architecture of the VGG model. “Convolution”, “Max pooling” and “ReLU” denote convolutional layer, max pooling layer and rectified
linear unit function layer, respectively. This model consists of 36 layers. We extracted features from layers 17, 21, 24, and 30.
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model, and then truncated this VGG model at some inter-
mediate layer. We then stacked one max pooling and two
fully connected layers to obtain the new CNN model. The
multi-task learning strategy was then used to fine-tune the
modified CNN model from labeled ISH images. We first
identified the most discriminative intermediate layer for
gene expression annotation as a pivot layer. Then we kept
the layers below this pivot layer, and added max pooling
and fully connected layers, where the parameters are opti-
mized during the fine-tuning stage using multi-task learn-
ing [25]. The pipeline of our method is illustrated in Fig. 4.

Note that this method is different from the fine-tuning
method with multi-task learning we proposed before. We
previously used the whole set of pre-trained architecture
and parameters to obtain representations of ISH images.
However, in this new scheme, we only retained several
lower layers, which are mainly representative of local infor-
mation. The intuition behind this method is that the higher
layers of the pre-trained CNN model are usually more
adjusted to label information of the training natural images,
and these layers may not be informative enough for reflect-
ing label information of gene expression pattern images.
The proposed model with partial transfer learning could
not only capture the common characteristics of images by
pre-training, but also be representative for ISH images spe-
cifically from fine-tuning.

4 DEEP MODELS FOR MULTI-TASK LEARNING

In addition to the transfer learning scheme described above,
we also proposed a multi-task learning strategy in which a
CNN is first trained in the supervised mode using the
ImageNet data and then fine-tuned on the labeled ISH Dro-
sophila images. This strategy is different from the pre-
trained model we used above. To be specific, the pre-trained
model is designed to recognize objects in natural images
while we studied the CV term annotation of Drosophila
images instead. Although the leveraged knowledge from
the source task could reflect some common characteristics
shared in these two types of images such as corners or
edges, extra efforts are also needed to capture the specific
properties of ISH images. The Drosophila gene expression
pattern images are organized into groups, and multiple CV
term annotations are assigned to multiple images in the

same group. This multi-image multi-label nature poses sig-
nificant challenges to traditional image annotation method-
ologies. This is partially due to the fact that there are
ambiguous multiple-to-multiple relationships between
images and CV term annotations, since each group of
images are associated with multiple CV term annotations.

In this paper, we proposed to use multi-task learning
strategy [4], [8], [9] to overcome the above difficulty. To be
specific, we first employed a CNN model that is pre-trained
on natural images to initialize the parameters of a deep net-
work. Then, we fine-tuned this network using multiple
annotation term prediction tasks to obtain CV term-specific
discriminative representation. The pipeline of our method
is illustrated in Fig. 2. We have a single pre-trained network
with the same inputs but with multiple outputs, each of
which corresponds to a term annotation task. These outputs
are fully connected to a hidden layer that they share.
Because all outputs share a common layer, the internal rep-
resentations learned by one task could be used by other
tasks. Note that the back-propagation is done in parallel on
these outputs in the network. For each task, we used its
individual loss function to measure the difference between
outputs and the ground truth. In particular, we are given a
training set of k tasks fXi; y

j
igmi¼1, j ¼ 1; 2; . . . ; k, where

Xi 2 Rn denotes the ith training sample,m denotes the total
number of training samples. Note that we used the same
groups of samples for different tasks, which is a simplified
version of traditional multi-task learning. The output label

yji denotes the CV term annotation status of training sample,
which is binary with the form:

yji ¼
1 if Xi is annotated with the jth CV term;
0 otherwise.

�

To quantitatively measure the difference between the pre-
dicted annotation results and ground truth from human
experts, we used a loss function in the following form:

lossðy; ŷÞ ¼ �
Xm
i¼1

Xk
j¼1

yji logfðŷjiÞ þ ð1� yjiÞlogð1� fðŷjiÞÞ
� �

;

Fig. 4. Illustration of the partial transfer learning scheme. “Conv”, “Max pooling”, “ReLU” and “Full” denote the convolutional layer, max pooling layer,
rectified linear unit layer and fully connected layer, respectively. The network was trained on the ImageNet data containing millions of labeled natural
images with thousands of categories (left). The pre-trained parameters are partially transferred to the target domain of biological images. In particu-
lar, we truncated the pre-trained CNN model at layer 21, and attached one max pooling and two fully connected layers to obtain the new CNN model.
Then we used multi-task learning approach to fine-tune the modified CNN model using labeled ISH images (right).
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where

fðqÞ ¼
1

1þe�q if q � 0

1� 1
1þe�q if q < 0;

�

and y ¼ fyjigm;k
i;j¼1 denotes the ground truth label matrix over

different tasks, and ŷ ¼ fyjigm;k
i;j¼1 is the output matrix of our

network through feedforward propagation. Note that ŷji
denotes the network output before the softmax activation
function. This loss function is a special case of the cross
entropy loss function by using sigmoid function to induce
probability representation [2]. Note that our multi-task loss
function is the summation of multiple loss functions, and all
of them are optimized simultaneously during training.

5 BIOLOGICAL IMAGE ANALYSIS

TheDrosophila melanogaster has been widely used as a model
organism for the study of genetics and developmental biol-
ogy. To determine the gene expression patterns during Dro-
sophila embryogenesis, the Berkeley Drosophila Genome
Project (BDGP) used high throughput RNA in situ hybrid-
ization to generate a systematic gene expression image data-
base [26], [27]. In BDGP, each image captures the gene
expression patterns of a single gene in an embryo. Each
gene expression image is annotated with a collection of ana-
tomical and developmental ontology terms using a CV term
annotation to identify the characteristic structures in
embryogenesis. This annotation work is now mainly carried
out manually by human experts, which makes the whole
process time-consuming and costly. In addition, the number
of available images is now increasing rapidly. Therefore, it
is desirable to design an automatic and systematic annota-
tion approach to increase the efficiency and accelerate bio-
logical discovery [5], [11], [14], [15], [20], [21], [34].

Prior studies have employed machine learning and com-
puter vision techniques to automate this task. Due to the
effects of stochastic process in development, every embryo
develops differently. In addition, the shape and position of
the same embryonic part may vary from image to image.
Thus, how to handle local distortions on the images is crucial
for building robust annotation methods. The seminal work
in [35] employed the wavelet-embryo features by using the
wavelet transformation to project the original pixel-based
embryonic images onto a new feature domain. In subsequent
work, local patches were first extracted from an image and
local features which are invariant to certain geometric trans-
formations (e.g., scaling and translation) were then computed
from each patch. Each image was then represented as a bag of
“visual words”, known as the “bag-of-words” representa-
tion [10], or a set of “sparse codes”, known as the “sparse
coding” representation [24], [30]. All prior methods used
handcrafted local features combined with high-level meth-
ods, such as the bag-of-words or sparse coding schemes, to
obtain image representations. These methods can be viewed
as two-layer feature extractors. In this work, we proposed to
employ the deep CNNs as a multi-layer feature extractor to
generate image representations for CV term annotation.

We showed here that a universal feature extractor
trained on problem-independent data set can be used to
compute feature representations for CV term annotation.

Furthermore, the model trained on problem-independent
data set, such as the ImageNet data, can be fine-tuned on
labeled data from specific domains using the error back
propagation algorithm. This will ensure that the knowledge
transferred from problem-independent images is adapted
and tuned to capture domain-specific features in biological
images. Since generating manually annotated biological
images is both time-consuming and costly, the transfer of
knowledge from other domains, such as the natural image
world, is essential in achieving competitive performance.

6 EXPERIMENTS

6.1 Experimental Setup

In this study, we used the Drosophila ISH gene expression
pattern images provided by the FlyExpress database [15],
[28], which contains genome-wide, standardized images
from multiple sources, including the Berkeley Drosophila
Genome Project. For each Drosophila embryo, a set of high-
resolution, two-dimensional image series were taken from
different views (lateral, dorsal, and lateral-dorsal and other
intermediate views). These images were then subsequently
standardized semi-manually. In this study, we focused on
the lateral-view images only, since most of images in FlyEx-
press are in lateral view.

In the FlyExpress database, the embryogenesis of Dro-
sophila has been divided into six discrete stage ranges
(stages 1-3, 4-6, 7-8, 9-10, 11-12, and 13-17). We used those
images in the later five stage ranges in the CV term annota-
tion, since only a very small number of keywords were
used in the first stage range. One characteristic of these
images is that a group of images from the same stage and
same gene are assigned with the same set of keywords.
Prior work in [24] has shown that image-level annotation
outperformed group-level annotation using the BDGP
images. In this work, we focused on the image-level annota-
tion only and used the same top 10 keywords that are most
frequently annotated for each stage range as in [24]. The sta-
tistics of the numbers of images and most frequent 10 anno-
tation terms for each stage range are given in Table 1.

For CV termannotation, our image data set is highly imbal-
anced with much more negative samples than positive ones.
For example, there are 7,564 images in stages 13-17, but only
891 of them are annotated the term “dorsal prothoracic pha-
ryngeal muscle”. The commonly-used classification algo-
rithms might not work well for our specific problem, because
they usually aimed to minimizing the overall error rate with-
out paying special attention to the positive class. Prior work
in [24] has shown that using under-sampling with ensemble
learning could produce better prediction performance. In par-
ticular, we selectively under-sampled the majority class to
obtain the same number of samples as the minority class and
built a model for each sampling. This process was performed
many times for each keyword to obtain a robust prediction.
Following [24], we employed classifier ensembles built on
biased samples to train robust models for annotation. In order
to further improve the performance, we produced the final
prediction by usingmajority voting, since this sample scheme
is one of the widely used methods for fusion of multiple clas-
sifiers. For comparison purpose, we also implemented the
existing sparse coding image representation method studied
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in [24]. The annotation performance was measured using
accuracy, specificity, sensitivity and area under the ROC
curve (AUC) for CV term annotation. For all of these meas-
ures, a higher value indicates better annotation performance.
All classifiers used in this work are the ‘2-norm regularized
logistic regression.

6.2 Comparison of Features Extracted from
Different Layers

The deep learning model consists of multiple layer of fea-
ture maps for representing the input images. With this hier-
archical representation, a natural question is which layer
has the most discriminative power to capture the character-
istics of input images. When such networks were trained on
natural image data set such as the ImageNet data, the fea-
tures computed in lower layers usually correspond to local
features of objects such as edges, corners or edge/color con-
junctions. In contrast, the features encoded at higher layers

mainly represent class-specific information of the training
data. Therefore, for the task of natural object recognition,
the features extracted from higher layers usually yielded
better discriminative power [31].

In order to identify themost discriminative features for the
gene expression pattern annotation tasks, we compared the
features extracted from various layers of the VGG network.
Specifically, we used the ISH images as inputs to the pre-
trained VGG network and extracted features from layers 17,
21, 24, and 30 for each ISH image. These features were used
for the annotation tasks, and the results are given in Fig. 5.We
can observe that for all stage ranges, layer 21 features outper-
formed other features in terms of overall performance. Specif-
ically, the discriminative power increased from layer 17 to
layer 21, and then dropped afterwards as the depth of net-
work increased. This indicates that gene expression features
are best represented in the intermediate layers of CNN that
was trained on natural image data set. One reasonable

TABLE 1
Statistics of the Data Set Used in This Work

Stages
Number
of images

# of positive samples for each term

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10

4-6 4,173 953 438 1,631 1,270 1,383 1,351 351 568 582 500
7-8 1,953 782 741 748 723 753 668 510 340 165 209
9-10 2,153 899 787 778 744 694 496 559 452 350 264
11-12 7,441 2,945 2,721 2,056 1,932 1,847 1,741 1,400 1,129 767 1,152
13-17 7,564 2,572 2,169 2,062 1,753 1,840 1,699 1,273 1,261 891 1,061

The Table Shows the Total Number of Images for Each Stage Range and the Numbers of Positive Samples for Each Term.

Fig. 5. Comparison of annotation performance achieved by features extracted from different layers of deep models for transfer learning over five
stage ranges. “Lx” denotes the hidden layer from which the features were extracted.
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explanation about this observation is the lower layers com-
pute very primitive image features that are not enough to cap-
ture gene expression patterns. Meanwhile, the higher layers
captured features that are specific to the training natural
image set, and these features may not be relevant for gene
expression pattern images.

Then we proposed to use multi-task learning strategy to
fine-tune the pre-trained network with labeled ISH images.
In order to show the gains through fine-tuning on pre-
trained model, we extracted features from the same hidden
layers that are used for the pre-trained model. We reported
the predictive performance achieved by features of different
layers in the proposed fine-tuned model in Fig. 6. It can be
observed from the results that the predictive performance
was generally higher on middle layers in the deep architec-
ture. In particular, layer 21 outperformed other layers sig-
nificantly. This result is consistent with the observation
found on the pre-trained model.

6.3 Comparison with Prior Methods

We also compared the performance achieved by different
methods including sparse coding, transfer learning model
and multi-task learning. These results demonstrated that
our deep models with multi-task learning were able to accu-
rately annotate gene expression images over all embryogen-
esis stage ranges. To compare our generic features with the
domain-specific features used in [24], we compared the
annotation performance of our deep learning features with
that achieved by the domain-specific sparse coding fea-
tures [24]. For the sparse coding method, they first extracted

a sequence of patches from each image, and applied the
scale invariant feature transform (SIFT) descriptor [18] to
represent each patch. They constructed the codebook based
on these SIFT feature vectors by applying the k-means algo-
rithm. The cluster centers were treated as visual words.
They also set the number of visual words to 2,000 as in [30].
They then employed lasso type regularization to obtain dif-
ferent weights of multiple visual words in the codebook for
each SIFT feature vector. The average pooling function
was used to summarize the final representations of images.
The regularization parameter � was tuned through cross-
validation on a subset of images. Deep learning models
include transfer learning, multi-task learning combined
with complete transfer learning or partial transfer learning.
In this experiment, we only considered the features
extracted from layer 21 since they yielded the best perfor-
mance among different layers. For the multi-task learning
model with partial transfer learning, we truncated the pre-
trained CNN model at layer 21, and immediately stacked
one max pooling and two fully connected layers to obtain
the new CNN model. Then we used multi-task learning
approach to fine-tune the modified CNN model from
labeled ISH images. The performance of these four types of
features averaged over all terms is given in Fig. 7 and
Table 2. We can observe that the deep models for multi-task
learning features outperformed the sparse coding features
and transfer learning features consistently and significantly
in all cases. To examine the performance differences on
individual anatomical terms, we showed the AUC values
on each term in Fig. 8 for different stage ranges. We can

Fig. 6. Comparison of annotation performance achieved by features extracted from different layers of the deep models for multi-task learning over
five stage ranges. “Lx” denotes the hidden layer from which the features were extracted.
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observe that our features extracted from layer 21 of the VGG
networks for transfer learning and multi-task learning out-
performed the sparse coding features over all stage ranges
for all terms consistently. These results demonstrated that
our generic features of deep models were better at repre-
senting gene expression pattern images than the problem-
specific features based on sparse coding. In addition, we

observed that partial transfer of parameters from models
trained on natural images led to better performance than
the complete transfer scheme. This showed that our new
partial transfer learning method is effective in transfer-
ring knowledge from natural images to biological images.

In Fig. 9, we provided a term-by-term and image-by-image
comparison between the results of the deep model for multi-

Fig. 7. Performance comparison of different methods. “SC” and “TL” denote sparse coding and transfer learning, respectively. “CTLþMTL” and “PTL
þ MTL” denote the performance achieved by complete and partial transfer learning, respectively, with multi-task learning models. We only consider
the features extracted from layer 21 of these two deep models.

TABLE 2
Performance Comparison in Terms of Accuracy, Sensitivity, Specificity,

and AUC Achieved by CNN Models and Sparse Coding Features for All Stage Ranges

Measures Methods Stage 4-6 Stage 7-8 Stage 9-10 Stage 11-12 Stage 13-17

Accuracy

PTLþMTL 0:8197� 0:0279 0:8471� 0:0225 0:8307� 0:0291 0:8099� 0:0318 0:8591� 0:0301
CTLþMTL 0:7938� 0:0381 0:8216� 0:0231 0:8318� 0:0216 0:8128� 0:0325 0:8327� 0:0256

TL 0:7521� 0:0326 0:7837� 0:0269 0:7929� 0:0231 0:8094� 0:0331 0:8205� 0:0304
SC 0:7217� 0:0352 0:7401� 0:0351 0:7549� 0:0303 0:7659� 0:0326 0:7681� 0:0231

Sensitivity

PTLþMTL 0:8104� 0:0391 0:8014� 0:0317 0:7794� 0:0327 0:8312� 0:0297 0:8207� 0:0331
CTLþMTL 0:7825� 0:0372 0:7829� 0:0368 0:7721� 0:0412 0:8026� 0:0401 0:8185� 0:0259

TL 0:7405� 0:0293 0:7515� 0:0342 0:7876� 0:0401 0:7905� 0:0389 0:7964� 0:0317
SC 0:7321� 0:0408 0:7190� 0:0331 0:7468� 0:0298 0:7576� 0:0329 0:7328� 0:0235

Specificity

PTLþMTL 0:8591� 0:0291 0:8779� 0:0206 0:8617� 0:0318 0:8673� 0:0332 0:8709� 0:0317
CTLþMTL 0:8436� 0:0376 0:8581� 0:0380 0:8422� 0:0284 0:8527� 0:0252 0:8716� 0:0256

TL 0:7915� 0:0247 0:8160� 0:0316 0:7983� 0:0315 0:8342� 0:0237 0:8517� 0:0306
SC 0:7140� 0:0389 0:7605� 0:0392 0:7629� 0:0298 0:7749� 0:0329 0:8005� 0:0298

AUC

PTLþMTL 0:8607� 0:0415 0:8671� 0:0341 0:8736� 0:0302 0:8913� 0:0246 0:8972� 0:0231
CTL þMTL 0:8493� 0:0427 0:8565� 0:0279 0:8695� 0:0276 0:8776� 0:0291 0:8824� 0:0197

TL 0:8344� 0:0439 0:8401� 0:0346 0:8508� 0:0257 0:8702� 0:0271 0:8746� 0:0299
SC 0:7687� 0:0432 0:7834� 0:0358 0:7921� 0:0294 0:8061� 0:0342 0:8105� 0:0280

“PTLþMTL” and “CTLþMTL” denote the features extracted from layer 21 of the deep models for multi-task learning with complete and partial transfer
learning, respectively. “SC” and “TL” denote the performance of the sparse coding and transfer learning features.
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task learning with partially transfer parameters and the
sparse coding features for the 10 terms in stages 13-17. The x-
axis corresponds to the 10 terms. The y-axis corresponds to a
subset of 50 images in stages 13-17 with the largest numbers
of annotated terms. Overall, it is clear that the total number of
green and blue entries is much more than the number of red
and pink entries, indicating that, among all predictions dis-
agreed by these two methods, the predictions by the multi-
task learning featureswere correctmost of the time.

7 CONCLUSIONS AND FUTURE WORK

In this work, we proposed to employ the deep convolutional
neural networks as a multi-layer feature extractor to generate
generic representations for ISH images. We used the deep
convolutional neural network trained on large natural image
set as feature extractors for ISH images. We first directly used
the model trained on natural images as feature extractors. We

then employed multi-task classification methods to fine-tune
the pre-trained andmodifiedmodel with labeled ISH images.
Although the number of annotated ISH images is small, it
nevertheless improved the pre-trained model. We compared
the performance of our generic approach with the problem-
specific methods. Results showed that our proposed
approach significantly outperformed prior methods on ISH
image annotation. We also showed that the intermediate
layers of deepmodels produced the best gene expression pat-
tern representations.

In the current study, we focus on using deep models for
CV annotation. There are many other biological image anal-
ysis tasks that require appropriate image representations
such as developmental stage prediction. We will consider
broader applications in the future. In this work, we consid-
ered a simplified version of the problem in which each term
is associated with all images in the same group. We will

Fig. 8. Performance comparison of different methods for all stage ranges. “SC”, ‘TL”, “CTL þ MTL” and “PTL þ MTL” denote sparse coding, transfer
learning, complete transfer learning and partial transfer learning with multi-task learning models, respectively.
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extend our model to incorporate the image group informa-
tion in the future.
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